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In this article, it is shown that by using the known (or estimated) value of car-
rier tracking loop SNR in the decision metric, it is possible to improve the error
probability performance of a partially coherent multiple phase-shift-keying (MPSK)
system relative to that corresponding to the commonly used ideal coherent decision
rule. Using a maximum-likelihood approach, an optimum decision metric is derived
and shown to take the form of a weighted sum of the ideal coherent decision metric
(i.e., correlation) and the noncoherent decision metric which is optimum for differ-
ential detection of MPSK. The performance of a receiver based on this optimum
decision rule is derived and shown to provide continued improvement with increas-
ing length of observation interval (data symbol sequence length). Unfortunately,
increasing the observation length does not eliminate the error floor associated with
the finite loop SNR. Nevertheless, in the limit of infinite observation length, the av-
erage error probability performance approaches the algebraic sum of the error floor
and the performance of ideal coherent detection, i.e., at any error probability above
the error floor, there is no degradation due to the partial coherence. It is shown
that this limiting behavior is virtually achievable with practical size observation
lengths. Furthermore, the performance is quite insensitive to mismatch between
the estimate of loop SNR (e.g., obtained from measurement) fed to the decision
metric and its true value. These results may be of use in low-cost Earth-orbiting or
deep-space missions employing coded modulations.
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Multiple Symbol Partially Coherent Detection of MPSK

l. Introduction

It 1s well known that for ideal phase coherent detection
of multiple phase-shift-keying (MPSK), the decision rule
that minimizes average bit error probability is based on
a correlation metric and leads to bit-by-bit decisions. In
practical situations, the phase introduced by the transmis-
sion over the channel is unknown and thus the assumption
of perfect knowledge of this parameter at the receiver is
idealistic. Typically, if the channel phase is reasonably
well behaved, the receiver will attempt to estimate it via
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some type of phase synchronization subsystem, such as a
carrier phase tracking loop. Since the estimate is made in
the presence of the ever-present additive channel thermal
noise, the receiver’s phase estimate used for demodulation
purposes is not perfect. Detection under these circum-
stances is known as partially coherent detection.

Ordinarily in this environment, one continues to use the
ideal coherent detection correlation metric despite the fact
that it is no longer optimum for partially coherent detec-



tion. In particular, the presence of a phase error between
the true channel and the receiver’s estimate of it intro-
duces memory into the observation, and thus any metric
leading to bit-by-bit detection cannot be optimum. In-
stead, one must resort to sequence estimation where the
length of the sequence is proportional to the duration over
which the phase error can be assumed constant.

In this article, a maximum-likelihood approach to par-
tially coherent detection is taken, an approach not unlike
that previously applied to noncoherent and coherent de-
tection. It will be shown that considerable performance
improvement can be gained by using the optimum metric
which leads to a maximum-likelihood sequence estimation
(MLSE) type of algorithm.

Il. Maximum-Likelihood Partially Coherent
Detection of MPSK Over an AWGN
Channel

Consider the transmission of MPSK signals over an ad-
ditive white Gaussian noise (AWGN) channel. The base-
band representation of the transmitted signal in the inter-
val (kT,(k + 1)T) has the complex form

sp = V2Pel (1)

where P denotes the constant signal power, T denotes
the MPSK symbol interval, and ¢; the transmitted phase
which takes on one of M uniformly distributed values
Bm =2rm/M;m =0,1,..., M — 1 around the unit circle.
Assume that in addition to AWGN, the channel introduces
a phase @ which can be constant (independent of time) over
a duration of N data symbols and uniformly distributed
in the interval (—m, 7). Thus, the received sequence r is
expressed as

r=se’’ +n (2)

1 ||R—£~'.r'3-"¢’c 2
p(R[s, ¢c) = W exp {"T

1 1 [
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where r = (rg,m,...,7N-1),8 = (S0,51,...,5N-1), and
n = (ng, ny, ..., ny—1) are the received sequence, transmit-
ted sequence, and noise sequence, respectively. Also, ny is
a sample of zero mean complex Gaussian noise with vari-
ance (per dimension) 02 = Ng/T where Ny is the single-
sided power spectral density of the noise process n(t) at
the receiver input.

For partially coherent detection, the receiver provides
a carrier phase synchronization subsystem, e.g., a tracking
loop, which derives a complex reference signal e/® whose
phase # is an estimate of the unknown channel phase 6.
After demodulating r with this reference (complex conju-
gate multiplication of the two signals), one gets

R = re"jé = sel% + ne‘jé 3)

where ¢, 20— § is the carrier phase error and typically
has a Tikhonov probability density function (pdf) [1], i.e.,

__exp(p cos o)

po) = TBETEED e (@)

Here p is a parameter related! to the tracking loop SNR
and Ip(.) is the zeroth-order modified Bessel function of
the first kind.

For the assumed AWGN model for n, the a posteriori
probability of the demodulated received sequence R given
the transmitted sequence s and the carrier phase error ¢,
follows from Eq. (3) and is

1 For first-order tracking loops, p is indeed the loop SNR. For second-
order loops, p is approximately the loop SNR for sufficiently large
values [1]. In what follows, p is referred to simply as the loop SNR
which is assumed to be known or estimated.

N-1
> Ri_isi_;
i=0

cos (¢e — a)] } (5)
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where

N-1
Im { E Rk—is;—i}

1=0

N-1 (6)
Re { Z R"'is;—i}

1=0

)

a = tan~!

Averaging Eq. (5) over the pdf in Eq. (4) gives, upon simplification,

p(R[s) = /” p(RlS,¢c)p(¢c) do.

-7
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Since

N-1 N-1 N-1 N-1
Z Ri_isy_;| cos @ =Re {Z R;,_,-s:_,-} ; Z Ry_isy_;| sina =Im {Z Rk_,-s;_i} (8)
i=0 i=0 i=0 =0

Eq. (7) further simplifies to

1 1 1 = . .
p(R[s) = mm eXp { ~5 5 Z [le—il + |se_il ]

i=0

1 N-1 2 N-1 2
x I oy (R.e {Z Rk_,-s,';_,.} + paﬁ) + (Im {Z Rk_.-s;_,.}> 9)
n i=0 i=0

Note from Eq. (1) that for MPSK, |si|? is constant for all transmitted phases 3,,. Thus, since Iy(x) is a monotonic
function of its argument, maximizing p(R|s) over s is equivalent to finding

o o o o (i) )

N-1 2 N-1 2 N-1
max Z; Ri_isi_; + po? = max Z; Ri_ist_;| +2p02 Re {2; Rk_.-si_,-} (10)
1= 1= =
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This, using Eq. (1), results in the decision rule

choose ¢k, dk-1,..., bx-N41 if

i=0

where $k, 43):-1,-.»,4‘51:—N+1 is a particular sequence of the
transmitted phases 8,,. In Eq. (11), the first term in-
side the braces represents the component of the decision
metric associated with noncoherent (differential) detec-
tion [2], i.e., total lack of knowledge of the uniformly dis-
tributed channel phase #. The second term inside the
braces represents the component of the decision metric
for ideal coherent detection, i.e., complete knowledge of
the channel phase . Thus, the partially coherent decision
metric is a linear combination of the coherent and non-
coherent decision metrics with the weighting of the two
terms in proportion to the product of the tracking loop
SNR and the channel noise variance. Note that for any
nonzero value of p, this decision rule is unique because the
second term inside the braces in Eq. (11) is unique but not
the first term. For p = 0, which corresponds to differen-
tially coherent detection, there is a phase ambiguity since
the addition of an arbltrary ﬁxed phase, say ¢4, to all N
estimated phases ¢k,¢k 1yeee ,45;; N+1 results in the same
decision for ¢. In {2], the authors observed that by letting
¢ = ¢r—n+1 and differentially encoding the input phases
at the transmitter,

O = dp—1+ Aoy (12)

where now A¢; denotes the input data phase correspond-
ing to the kth transmission interval and ¢, the differen-
tially encoded version of it, the decision rule can turn into
one in which the phase ambiguity is resolved. From now
on, assume p # 0 and thus that there is no formal require-
ment for differentially encoding the data phase symbols.

Figure 1 is an illustration in complex form of a re-
ceiver implemented on the basis of Eq. (11). Note that
this receiver requires knowledge of the loop SNR p, the
signal power P, and the noise variance oZ. The accuracy
of this knowledge, which must be obta.med by measure-
ment, will have an impact on the ultimate performance
of this receiver. Later, in Subsection E, the authors in-
vestigate the sensitivity of the receiver to a mismatch be-
tween the true loop SNR and the value supplied to the
receiver implementation in Fig. 1. In the next section,
except in Section IILE, it is assumed that the receiver

N-1 .
Z Rk..;e'”"-'

2pcr {Z Ri_ie=i%*- ‘} is maximum (11)

has perfect knowledge of p, and thus should outperform a
conventional bit-by-bit correlation receiver which does not
make use of this knowledge. The following sections deter-
mine how much the optimum partially coherent sequence
receiver outperforms the conventional bit-by-bit correla-
tion receiver.

lil. Bit Error Probability Performance

To obtain a simple upper bound on the average bit error
probability, Py, of the proposed N-bit detection scheme,
use a union bound analogous to that used for upper bound-
ing the performance of error correction coded systems.
In particular, the upper bound on P; is the sum of the
pairwise error probabilities associated with each N-bit er-
ror sequence. Each pairwise error probability is then ei-
ther evaluated directly or itself upper bounded. Math-
ematically speaking, let ¢ = (dk,Px-1,...,0k-N41) de
note the sequence of N transmitted information phases
and ¢-— (¢k,¢;; N N+1) be the corresponding se-
quence of detected phases. Let u be the sequence of
b = Nlog, M information bits that produces ¢ at the
transmitter and let G be the sequence of b bits that results
from the detection of ¢ Then, since MPSK is a symmetric
signalling set, i.e., it satisfies a uniform error probability
(UEP) criterion, one gets an upper bound on the bit error
probability,

Pu(60) S Friog T 20w ) Pr (> 0l 6,6} (13

$=¢

where the decision statistic n is defined from Eqs. (10) and
(11) by?

N-1 p 2 2
Ri_ ~Fbr-i + 14

2 Note that when compared with Eq. (11), 7 of Eq. (14) includes the
additional constant (po2 /v/2P)2. This, however, has no eflect on
the decision-making process and thus one can use the convenient
form of Eq. (14) with no loss in generality.
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and the corresponding error statistic 7 is identical to ity that 3) is incorrectly chosen when indeed ¢ was
Eq. (14) with each ¢, replaced by ¢;. In Eq. (13), w(u,a)  sent. Note that the bound in Eq. (13) is computed for
denotes the Hamming distance between u and &, ¢ is a fixed carrier phase error, ¢., which accounts for the
any input sequence (e.g., the null sequence (0,0,...,0) = notational dependence of Pr{f >n| ¢,é.} and thus
0), and Pr {7 > n| ¢,¢.} denotes the pairwise probabil- Py(¢.) on ¢..

A. Evaluation of the Pairwise Error Probability

To compute Pr {5j > n| ¢,¢.}, the approach taken in [2] is used for evaluating the performance of multiple symbol
differentially coherent detection of MPSK. In particular, letting n = ]zl|2 and 5 = |z2|2 [see Eq. (14) and the statement
below it for the definitions of z; and z], then [3]

Prii>nl 6,6} =5 [1- QB VA +Q(VaVE) 2 f(a.b) (15)

where Q(z,y) is the Marcum Q function [4] and

bl _ 1 S+ Sy —2)¢]v/515, cos(t91—02+1/)i S1 -5, 16
T 2N ? (16)
‘ : L= le] V1- kel
where the + sign and — sign correspond to & and a, respectively, and
/4 ’ 2 P P 2
- —jde| — P __
SI_P!N+2E,/NDE P(N +E,/N0Ncos¢c+(2E,/No) )
p 2 2 p p \?
= -isc| =p |15 jde
Ss PIHZ’E,/NOC (i I*+ 5N, B {6e7%<} + (QE’/NO) )
11— N,
N, =zl -7l = N—Tf’-
&= = (21— 7)) (22— %) " = —; v=argf =argé
= I, 1 1){z22— 22 =N = arg{ = arg
0, = arg 71 = arg Nel¢e + d i Oy =arg 77 = arg { fef% + d (17)
2E,/No 2E, /Ny
and
N-1
§= ej(¢u-i~¢k-.)0 (18)
i=0

which is a normalized time cross correlation between s and §. Also, E, /Ny = PT /Ny denotes the symbol energy-to-noise
spectral density ratio and is related to the bit energy-to-noise spectral density ratio Ey/No by E,/Ng = (Ep/Ng)log, M.
Substituting Eq. (17) into Eq. (16) results, after considerable simplification, in
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{i} = {N [H ¥ (ﬁ) et o (N?l— 61°) <E'5N°)2(N— |6|cosu)] }

/ 2 1 p
N2 - |§]° + \/N2_|5|2 (Ea/NO)(Ncos¢c—|6|cos(¢c+u)):| (19)

E,
ﬂ:Z—M

Now some special cases of practical interest are considered.

B. Case 1: Binary PSK With Two-Symbol Observation and Detection (M= 2, N = 2)

In this case, E, /Ny = Ep/Ny. There are M? — 1 = 3 possible error sequences each of length 2. The pertinent results
related to the evaluation of Eqs. (18) and (19) are

¢k —bx Pro1—Gr-1 O

0 T 0
T 0 0
m T -2

For the first two error sequences, Eq. (19) evaluates to

_5 | p L(_ e Y
b= o, |12 (Eb/No)c°s¢°+ 1 (Eb/No) ]

_E (17 s \?
T |4 (Eb/No) ] (20)

For the third error sequence, both a and b approach infinity (the ratio a/b, however, approaches unity) as § approaches
—2. Thus, one must evaluate the pairwise error probability Eq. (15) separately for this case. It is straightforward to

show that
. 1 b a
Jim f(a,b) = 3 erfc (\/;—- \/;) (21)

b—o0
afb—1

Furthermore, in the general case where § — —N, Eq. (21) evaluates to

. 1 [ Eb
621111\, f(a,b) = 3 erfe ( va—o cos ¢c> (22)

which for N = 2 and M = 2 becomes

_ 1 [2E,
51-1.T2 fla,b) = 3 erfc ( o cosch) (23)
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Finally, noting that the Hamming distance w(u,i) is equal to 1 for the first two error sequences and is equal to 2 for
the third sequence, substituting Eqs. (23) and (15) combined with Eqgs. (19) and (20) into the expression for bit error
probability in Eq. (13) gives

1 p \*| B P 1 e\ 1 2E;
5 <—E5/No) :l,_]%. [2-{- (_—_E'b/No) cos ¢ + 3 (—-———Eb/NG) ]) +3 erfc ( Tocos%) (24)

Finally, the upper bound on average bit error probability Py is obtained by averaging the upper bound in Eq. (24) over
the pdf in Eq. (4). Figures 2 and 3 are plots of this upper bound on average probability versus Ej/Ny in decibels for
values of p = 7 dB and 10 dB, respectively. For the purpose of comparison, the exact results (i.e., not an upper bound)
for the conventional ideal coherent metric operating in a noisy carrier synchronization environment are

P, = /;r % erfc (\ / % cos ¢’c) p(¢c)dé. (25)

where p(4.) is given by Eq. (4). Even with only one additional observation symbol interval, considerable savings in
Ey/Ny can be achieved at a fixed error probability, particularly in the region of the knee of the curve where the system
begins approaching its irreducible error probability® asymptote (error floor).

Py(éo) < f <%

C. Case 2: Binary PSK with N-Symbol Observation and Detection (M = 2, N arbitrary)

For N arbitrary, 6 takes on values —(N — 2i);i = 0,1,2,..., N — 1. The number of error sequences corresponding
N

to each of these values of § is binomially distributed, i.e., there are ( ; ) sequences that yield a value § = —(N — 2i).

Furthermore, the Hamming weight associated with each of the (j:{) sequences that yield a value § = —(N - 2i) is

w(u,a) = N —i. Finally then, using the above in Eqs. (19) and (22) and substituting the results in Eq. (13), the
conditional bit error probability is upper bounded by

N=-1
Py < 1 [N-lz- exfe (,/N%cosqsc) +Y (fv) (N —i)f(a.-,b.-)]

1=1

=%erfc (\/—;%cowic) +NZ.1<N:1)f(ai,bi) (26)

i=1

where

(2} {] [P () =)

31t is well known [1] that conventional PSK systems exhibit an irreducible error probability (i.e., a finite error probability in the limit
as Ey,/Ny approaches infinity) when a noisy carrier synchronization reference with fized power is used as a demodulation signal. This is
observed by examining a curve of P, versus E,/No with loop SNR, p, held fixed. The value of this irreducible error probability is given
by [1] Pylirr = f:/z p(dc)ddc. Note that in practice, as the observation length increases, one should decrease the loop bandwidth of the

phase-locked loop (PLL), which results in an increase in the loop SNR. Also, as the bit SNR increases, the loop SNR (for fixed modulation
index) increases and thus the error floor decreases.

2
I4 1 p
+ (Eb/NU) cosge + (2E,,/No>
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The upper bound on unconditional average bit error probability is now obtained by averaging Eq. (26) over the pdf in
Eq. (4). The numerical results are illustrated in Figs. 2 and 3 for values of N =4, 6, and 8. As N gets large, the curves
appear to approach an asymptote. This asymptotic behavior is analytically evaluated as follows:

For large N, the first term in Eq. (26) when integrated over the pdf in Eq. (4) approaches the irreducible error
probability Ps|;,, = :/2 p(éc)dd.. Also, the dominant term in the summation term of Eq. (26) correspondstoi = N—1,

ie., § = N — 2. Thus, for large N, the second term of Eq. (26) approaches f(an_1,bn-1) where

{bN'l}e%{Njﬂ\/(T\le_)} (28)

aN-1

Since from Eq. (28), /bn-1 >> /bn-1 — /N1, then using the asymptotic form of Eq. (15) for a and b large (see
Appendix A of [5]), namely,

f(a,b) = Lot vb—a (29)
2 2
The value f (an-1,bn-1) is obtained as
1 E
flan-1,by-1) 2 5 erfe { Tv%} (30)

independent of ¢.. Finally then, for large N, the asymptotic behavior of the average bit error probability is approximately

upper bounded by
P, < -1- erfc ﬂ + 2/ p(¢c)d¢c (31)
2 V No x/2

namely, the sum of the bit error probability for ideal coherent detection and the error floor. Equation (31) is in very close
agreement with the curves for N = 8 in Figs. 2 and 3.

D. Case 3: Quaternary PSK With Two-Symbol Observation and Detection (M= 4, N = 2)

In this case, E,/No = 2E;/No. There are now a total of M* — 1 = 15 possible error sequences each of length 2. Of
these, only eight produce distinct combinations of |§] and v. These are tabulated below:

Error . -

sequence C35€ b — ¢k Gr-1— Gk-1 |4 v
1,2,34 1 =03r/2,n/2 0,7,7/2,3x/2 O 0
5,6 2 0,7/2 x/2,0 V2 /4
7.8 3 0,37/2 37/2,0 V2 —r/4
9,10 4 T/2,m /2 V2 3r/4
11,12 5 ™, 37/2 3r/2,m V2 -3n/4
13 6 /2 /2 2 /2
14 7 In/2 In/2 2  —x/2
15 8 .1 T 2 .
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The corresponding values of a and b for each of the first five cases which correspond to || # 2 are given as follows:

[ P 1 r N LT p
_2+ <2Eb/No) €08 ¢c+z (2Eb/No) ] * .2+ (2Eb/N0) €08 ¢c]}

{

(-l )
(-2 {[+( )=
([ (aate) oo o3 (sztm) ) <

( )

(cos ¢, + sin du)] }

27 .

25, /N, (cos ¢, — sin 45,,)] }

)

7 ()
7 (sz) oo ined]

7 ()

V2 +
——Ti[\/i -

V2

(3 cos d. —sin ¢,,)] } (32)

For cases 6 and 7, the following is analogous to Eq. (22):

hm f(a b) = erfc (, / NE, (cos ¢, % sin ¢c)> (33)
2Ny

which for N = 2 and M = 4 becomes

JEszf(a’b) = -21- erfc (\ / %E} (cos ¢, % sin ¢c)> (34)

Finally, for case 8, Eq. (22) is used to obtain

llm f(a b) = —erf (‘/ivﬂcosd)c) (35)
0

Evaluating the Hamming distances for the 15 error sequences and substituting the above results into the expression for
the bit error probability bound in Eq. (13) gives

Py(¢c) S% {6f (a1,b1) + 2f (az,b2) + 2f (a3, b3) + 4f (as,bs) + 4 (as,bs)}

+ % { erfc (‘ / % (cos ¢ + sin ¢C)> + erfc (‘/% (cos ¢, — sin d’c)) + erfc (‘/% cosch)} (36)
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Figures 4 and 5 are comparable to Figs. 2 and 3 for the M = 4 (QPSK) case. The analytical exact result corresponding
to the ideal coherent metric operating in a noisy carrier synchronization environment is now [1]

= Larte (\/%(cos be + sin m)) peodse+ [  erfe (\/%(cos be — sin m)) P(é)dd.  (37)

Analysis and plots for larger values of N are not included here, but they would show further improvement as was true

for the binary case.

E. Performance Sensitivity to Mismatch
in Loop SNR

Here the authors investigate the sensitivity of the aver-
age bit error probability (in terms of its upper bound) of
the MLSE receiver to a mismatch between the true loop
SNR, p, and the estimate of it, p, supplied to the imple-
mentation of Fig. 1. In particular, the authors evaluate,
for the special cases of Sections III.B and III.C, the upper
bound

A< / " P (de: P)p(de)doe (38)

where Py, (é.;p) is given by the upper bound in Eq. (24)

or Eq. (26) with p replaced by 5 = p[1+(;3—p)/p]é
p(1+¢) and p(¢.) is as given by Eq. (4). Figures 6 and
7 are illustrations of Eq. (38) for M = 2,p = 10 dB, and
N = 2 and 8, respectively, with fractional mismatch ¢ as
a parameter. One observes that even with mismatches as
much as 50 percent (¢ = %0.5), there is negligible effect
on the error probability performance. Thus, the authors

conclude that the MLSE receiver is quite insensitive to
mismatch in the loop SNR.

IV. Conclusions

By making use of the known (or estimated) value of
loop SNR in the decision metric, it is possible to im-
prove the error probability performance of a partially co-
herent MPSK system relative to that corresponding to
the commonly used ideal coherent decision rule. Using
a maximum-likelihood approach, an optimum decision
metric was derived and shown to take the form of a
weighted sum of the ideal coherent decision metric (i.e.,
correlation) and the noncoherent decision metric previ-
ously shown to be optimum for differential detection of
MPSK. The performance of a receiver based on this op-
timum decision rule improves with the increasing length
of the observation interval (data symbol sequence length).
Furthermore, the performance is quite insensitive to mis-
match between the estimate of loop SNR (e.g., obtained
from measurement) fed to the decision metric relative and
its true value.
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Flg. 1. Direct implementation of a recelver for multiple symbol detection of partlally coherent MPSK.
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Fig. 2. Upper bound on average bit error probabllity versus E, /N,
in decibels for MLSE with Nas a parameter; M= 2 and p =7 dB.
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Fig. 4. Upper bound on average bit error probability versus E, /N,
Iin declbels for MLSE and comparison with exact performance of

ideal coherent metric; M= 4, N=2,and p=13dB.
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Fig. 5. Upper bound on average bit error probability versus E;/N,
in decibels for MLSE and comparison with exact performance of
Ideal coherent metric; M= 4, N=2,and p =16 dB.
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Flg. 6. Upper bound on average bit error probability versus E,/N, Flg. 7. Upper bound on average blt error probabliity versus E,/N,
In decibels for MLSE In the presence of loop SNR mismatch; M= 2, In declibels for MLSE in the presence of loop SNR mismatch; M= 2,
N=2,and p=10. N=8,and p=10.

230



