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The design of a spacecraft-monitoring system based on a Neyman–Pearson detec-
tion criterion is discussed. Each noncatastrophic state of the spacecraft is indicated
by the transmission of a specific signal to the ground station. Complete failure
of the spacecraft is indicated by the transmission of no signal. The set of signals
chosen to represent the spacecraft states consists of a group of orthogonally spaced
(in frequency) carriers each with unknown (random) phase. Receiver structures
derived from maximum-likelihood considerations are proposed that provide suit-
able performance in the presence of frequency uncertainty (due to Doppler) and
frequency rate uncertainty (due to oscillator drift). Numerical results are obtained
from a combination of analysis and simulation and indicate the trade-offs among the
various receiver structures between performance and implementation complexity.

I. Introduction

The design of an optimum transmitter–receiver system for monitoring the operational status (state)
of an orbiting spacecraft is best handled by applying the principles of maximum-likelihood detection
used in hypothesis testing problems. In particular, each state of the spacecraft, e.g., spacecraft is fine,
spacecraft has failed, spacecraft needs immediate attention, etc., is assigned a hypothesis and, based on
an appropriately defined performance criterion, the receiver should be designed to minimize the power-
to-noise ratio (or energy-to-noise ratio when fixing observation time) required to faithfully detect the
hypothesis currently in effect. It is important to emphasize that the problem at issue here is one of
detection of a hypothesis representing the state of a spacecraft (currently five states are being considered
as representative of the operational scenario) as opposed to detection of (decisions made on) data, which is
customarily associated with communication-type problems. While the two are indeed related in principle,
e.g., for a binary data communication system, the polarity of each bit can be assigned to one of two
hypotheses whereupon the data decision becomes a hypothesis testing problem, the measures used to
define the fidelity of the two types of systems are quite different. At this point, it is of value to explore
these differences in more detail.

In a data communication wherein one of M(≥ 2) messages is to be communicated, the important
measure of performance is average probability of error as a function of signal energy-to-noise ratio. In
this scenario, wherein each message is represented by a signal to be transmitted over the channel, the
signals are typically assigned equal energy, and more importantly, they are assumed to occur with equal
a priori probability. Stated in terms of a hypothesis testing problem, each hypothesis to be tested by
the receiver has equal a priori probability, namely, 1/M , and this information is known to the receiver.
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Furthermore, the costs associated with making decision errors are typically the same regardless of the
type of error made. For example, in a binary communication system sending 0’s and 1’s message data,
the decision that a “0” was sent when in reality a “1” was sent is equally as costly as deciding that a
“1” was sent when in reality a “0” was sent. Because of this, the notion of cost usually does not enter
into the performance criterion selected for characterizing a data communication system, i.e., the average
error probability does not reflect the costs associated with each of the types of error committed.

By contrast, in a hypothesis testing problem of the type described above for monitoring and detecting
the state of a spacecraft, the notion of cost is particularly appropriate. For example, the cost of an
error in deciding that the spacecraft is fine when indeed it has failed is much larger than the cost of
an error in deciding that it needs immediate help when indeed it might only need help at a later time.
Also, the probabilities associated with the hypotheses that represent the various spacecraft states are,
in general, quite unequal, e.g., the probability of complete spacecraft failure is significantly less than
the probability that it might need some particular form of help. Furthermore, these a priori hypothesis
probabilities might not be known to the receiver and, if they are, one can only estimate (approximate)
their values from reliability studies performed on the spacecraft. Because of the above differences, it is
readily apparent that a performance criterion such as minimizing the average probability of error (an
optimum receiver would then be one that achieved this minimum average error probability with the
smallest energy-to-noise ratio) is not appropriate to the spacecraft-state monitoring problem.

The next natural question to ask is: What is an appropriate performance criterion, and can it be
formulated in terms of the principles of likelihood detection that are used as the basis of optimum data
detection? The answer to this question can be partitioned into several possibilities depending on the
amount of information made available to the receiver. If a reasonable set of a priori hypothesis probabilities
is available and if an appropriate cost matrix (the ijth element of which is the cost associated with an
error in deciding upon hypothesis Hj when in reality Hi is true) can be assigned, then the best criterion
to apply is the so-called minimum risk or Bayes criterion, wherein one attempts to minimize the risk that
is defined as the average (statistical) cost. This criterion is well documented for two hypotheses (states)
and also documented but in less detail for more than two hypotheses. It is to be emphasized that in the
situation where the a priori probabilities are all equal and the costs of all error types are equal (typically
the costs associated with correct decisions are set equal to zero), then the Bayes criterion reduces to the
maximum-likelihood criterion, which forms the basis of the minimum average-error probability criterion
applied in data communication problems. Even if the a priori probabilities are not equal but the costs
still are, then the Bayes criterion reduces to the maximum a posteriori (MAP) criterion, which still results
in the minimization of average error probability.

In a less restrictive situation, where the cost matrix is known to the receiver but the a priori hypothesis
probabilities are not, then a so-called min–max (or max–min) criterion can be applied, which is tanta-
mount to minimizing the risk for a worst-case set of a priori probabilities, that is finding the maximum
(over all choices of a priori probabilities) of the minimum risk found by applying the Bayes criterion.
Depending on the relation between the actual a priori probabilities at issue and the worst-case set from
the max–min criterion, such a design could conceivably be quite pessimistic. Nevertheless, it does provide
a lower bound on the performance of the system, i.e., in the presence of the true a priori probabilities,
the system will perform better than that predicted by application of the above worst-case set.

Finally, if both the a priori probabilities and the cost matrix are unknown to the receiver, then a
so-called Neyman–Pearson criterion is often applied, in which one maximizes the probability of correct
detection for a given probability of false alarm. More often than not, this criterion is used in the two-
hypothesis case since there the notions of correct detection and false alarm are well defined in terms
of the signal-present versus signal-absent concept. While it is possible to extend this criterion to more
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than two hypotheses,1 the literature completely avoids this discussion. The primary reason for this is
as follows: While the notion of false alarm can still be meaningfully defined, i.e., deciding on any of the
other hypotheses corresponding to a signal present when indeed a signal is absent (spacecraft is dead),
the notion of correct detection is somewhat ambiguous since there are now many possible signal-present
hypotheses to decide upon; hence, there are many correct detection probabilities—one associated with
each of the signal-present hypotheses.

In summary, as far as the choice of a decision criterion is concerned, it is our belief that the minimum
average-cost (Bayes) criterion is most appropriate to the problem at hand. Even though the a priori
probability and cost information may not be exact, it is our belief that it is better to include it in the
selection of a decision criterion (and thus a receiver architecture) rather than to ignore it entirely. It
is clear, of course, that one will have to examine the sensitivity of such a design to the accuracy of the
a priori probability and cost estimates supplied.

Regardless of which of the above criteria is selected, the optimum receiver structure that results will
be independent of the correlation properties of the signals that represent the various spacecraft states.
(Of course, the performance of the receiver will indeed depend on the signal correlation properties, and
thus a second consideration in the design of an optimum system (transmitter–receiver) is to choose that
signal set which optimizes the system performance for the given structure, determined from the decision
criteria applied.) On the other hand, the specific implementation of the optimum receiver structure
depends heavily on the amount of information known about the parameters that characterize the received
signals, e.g., their phase, carrier frequency, etc. For example, if all signal parameters (e.g., carrier phase,
frequency, etc.) are known, then the optimum receiver takes the form of some type of coherent receiver
that may or may not include a priori probability and cost information, depending on the decision criterion
adopted. At the other extreme, in the absence of any specific knowledge about the signal parameters,
e.g., the carrier phase is assumed to be uniformly distributed in the interval (−π, π), then the optimum
receiver is a form of noncoherent receiver in that no attempt is made to estimate the carrier phase.
While this may at first seem counter-intuitive, particularly to those whose minds are focused on the data
communication problem, it must be understood that here the estimate of the phase must be performed
over the same interval of time (or a shorter time dictated by signal dynamics) over which the signal
must be detected, namely, the observation interval, whereas in the data communication case, the phase
estimation time (which is related to the reciprocal of the bandwidth of, say, a carrier tracking loop) is
large when compared to the signal-detection observation time interval, i.e., the bit interval. That is, the
phase estimate is determined from an observation interval much longer than that used in making the
data decision. One interesting, but strictly coincidental, situation occurs for the special case when the
only unknown signal parameter is carrier phase. Here the noncoherent receiver and “pseudocoherent”
receiver (i.e., obtain the maximum-likelihood phase estimate and then use that to perform “coherent”
data detection) yield identical performance [1]. In all other instances, e.g., when, in addition, carrier
frequency is uncertain due to Doppler, phase instabilities, etc., the pseudocoherent approach (based on
first finding the best estimates of the unknown parameters and then using these in the detection process)
is inferior (achieves a smaller detection probability for a fixed false alarm probability) to the noncoherent
approach, wherein the parameters are assumed completely unknown. A caveat should be made here in
that the above discussion assumes that all unknown parameters are constant over the observation time
interval. When this assumption is violated, as would be the case in a realistic scenario, then neither
the noncoherent nor the pseudocoherent approach is optimum any longer and it is possible that, under
these circumstances, in the presence of some particular parameter variation scenarios, the latter might
outperform the former. Such a conclusion will not result, however, from analysis (the model becomes too
complex) but will ultimately have to be determined from a complete simulation of the system that takes
into account the actual parameter variations that characterize the system. Finally, a compromise between

1 In the spacecraft-monitoring problem, one of the hypotheses (corresponding to complete spacecraft failure) still corresponds
to signal absent; however, the presence of several different spacecraft states necessitates several different signal-present
hypotheses, each characterized by its own unique signal.
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totally known and totally unknown parameter information, e.g., the carrier phase is characterized by a
known probability density function, yields a form of partially coherent receiver.

It is important to stress here that application of the likelihood function principles to the problem at
hand does not suggest any other form of receiver, such as coherent binary phase-shift keying (BPSK)
or differential phase-shift keying (DPSK). While one can indeed propose a solution to the spacecraft-
monitoring problem by specifying each signal in the form of a binary waveform and then applying the
notion of differential detection (together with differential encoding at the transmitter) to design a receiver,
such a proposal is an ad hoc solution to the problem at hand since differential detection is only optimum
in the context of a data communication problem (minimize average-error probability) with an observation
of two-bit intervals during which the carrier phase is assumed to be constant and unknown.

We begin the technical discussion of the article with a consideration of the Neyman–Pearson criterion
as applied to multiple (more than two) hypothesis testing. The resulting test shall then form the basis of
several receiver structures that are suggested as possible solutions to the spacecraft-monitoring problem
when indeed the a priori state probabilities are assumed to be unknown.

II. A Neyman–Pearson Test for M Hypotheses

Consider a multiple hypothesis test in which the received signal r(t) is characterized as follows:

r(t) =
{

n(t); H0

si(t) + n(t); Hi, i = 1, 2, . . . ,M − 1 (1)

where n(t) denotes the additive channel Gaussian noise and si(t), i = 1, 2, . . . ,M − 1 denotes the signals
assigned to the noncatastrophic (other than complete failure) spacecraft states. Assuming that the noise-
only condition (null hypothesis H0) is indeed true, then deciding in favor of si(t) + n(t) (hypothesis
Hi, i = 1, 2, . . . ,M −1) results in a false alarm. Since all of these false alarm conditions come about from
the same conditional hypothesis (namely, H0), it is logical to define the false alarm probability PFA by

PFA =
M−1∑
i=1

Pr {Hi|H0} (2)

Characterizing r(t) in terms of a vector observable r corresponding to the coefficients in its Karhunen–
Loeve expansion (a special case of which could be the sampling expansion) and denoting by Ri,
i = 0, 1, . . . ,M − 1 the set of disjoint regions in r-space corresponding to choosing in favor of Hi,
i = 1, 2, . . . ,M − 1, then Eq. (2) can be expressed as

PFA =
M−1∑
i=1

∫
Ri

p (r |H0 ) dr = 1−
∫
R0

p (r |H0 ) dr (3)

where p (r |H0 ) is the conditional probability density function (pdf) of the vector observable r given the
null hypothesis H0.

Assuming that Hi is indeed true, then deciding in favor of si(t) + n(t) results in a correct decision.
We denote the probability of this event by

PDi = Pr {Hi |Hi } =
∫
Ri

p (r |Hi ) dr, i = 1, 2, . . . ,M − 1 (4)
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In a two-hypothesis problem, i.e., M = 2, where there is only one correct detection probability, namely,
PD1 = Pr {H1 |H1 }

4= PD, the Neyman–Pearson test is derived from the criterion of maximizing PD
subject to a constraint on PFA. Note that this is meaningful and can be achieved independently of
the knowledge of the a priori probabilities of H0 and H1. While in the M hypothesis problem it is
still meaningful to constrain false alarm probability, the presence of a set of M − 1 correct detection
probabilities, as in Eq. (4), presents many possibilities for the maximization part of the criterion. What
one truly would like to do in theM -hypothesis case is to maximize the average correct detection probability
(or, equivalently, to minimize the average missed detection probability) subject to a constraint on PFA. In
order to accomplish this, one needs knowledge of the a priori probabilities of the M −1 signal hypotheses
(to allow computation of the average correct detection probability), which is contrary to the basic tenet of
the Neyman–Pearson philosophy, namely, to specify a test that is independent of this knowledge. To arrive
at a test that is simple and implementable, we shall choose to maximize the sum of the correct detection
probabilities of Eq. (4), which is tantamount to maximizing the average correct detection probability
assuming equal a priori probabilities for the M − 1 signal hypotheses. Then, setting M = 2 will result in
the well-known two-hypothesis Neyman–Pearson test, as mentioned above.

The above criterion can be formulated mathematically using the concept of LaGrange multipliers.
For notational simplicity, let pi (r) = p {r|Hi} , i = 0, 1, 2, . . . ,M − 1. Then, the Neyman–Pearson test
becomes the following: Choose the M decision regions Ri, i = 0, 1, 2, . . . ,M − 1 so as to minimize

F = 1−
M−1∑
i=1

PDi + λPFA = 1−
M−1∑
i=1

∫
Ri

pi(r)dr + λ
M−1∑
i=1

∫
Ri

p0(r)dr

= 1−
M−1∑
i=1

∫
Ri

(pi(r)− λp0(r)) dr (5)

where λ is a LaGrange multiplier to be determined. Thus, for a given observation r, we examine all the
values of i for which pi (r)− λp0 (r) > 0 and then choose that value of i, say i∗, which yields the largest
of these positive values of pi (r) − λp0 (r). Then, r is assigned to the decision region Ri∗ , i.e., based on
observation of r, we decide in favor of hypothesis Hi∗ . Since the decision regions are disjoint, then for
any particular value of r, the contribution to the integral

∫
Ri

(pi (r)− λp0 (r)) dr comes only from one of
the terms in the summation on i, namely i∗. In terms of a likelihood ratio test, the above can be stated
as

If
pi(r)
p0(r)

> λ, then choose hypothesis Hi∗ corresponding to i∗ = max
i

−1 pi(r)
p0(r)

.

Otherwise (i.e., if
pi(r)
p0(r)

≤ λ for all i = 1, 2, . . . ,M − 1), choose the hypothesis H0.


(6)

In Decision Rule (6), the notation “max−1

i
f(i)” means “the value of i that maximizes f(i).” The LaGrange

multiplier λ (which from the above test turns out to be the decision threshold) is chosen to satisfy the
given constraint on false alarm probability, which can be determined from

PFA = 1−
∫
R0

p0 (r) dr (7)
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where p0 (r) is independent of any of the transmitted signals, si(t), . . . , i = 1, 2, . . . ,M − 1. Note that
Decision Rule (6) not only distinguishes between signal absent and signal present, but also decides on
the most likely signal when indeed the latter is true. Returning now to the continuous time notation as
originally introduced in Eq. (1) and also used throughout [1], Decision Rule (6) becomes

If
p (r(t) |Hi )
p (r(t) |H0 )

> λ, then choose Hi∗ corresponding to i∗ = max
i

−1 p (r(t) |Hi )
p (r(t) |H0 )

.

If
p (r(t) |Hi )
p (r(t) |H0 )

≤ λ for all i = 1, 2, . . . ,M − 1, choose H0.


(8)

For the two-hypothesis case (M = 2), Decision Rule (8) simplifies to

If Λ (r(t))
∆=
p (r(t) |H1 )
p (r(t) |H0 )

> λ, then choose H1;

If Λ (r(t)) ≤ λ, then choose H0,

 (9)

where Λ (r(t)) is referred to as the likelihood ratio.

III. Average- and Maximum-Likelihood Receivers Based on the M-Hypothesis
Neyman–Pearson Test

In [1], average- and maximum-likelihood receivers were derived and presented for a variety of scenarios
corresponding to the amount of parameter information, e.g., carrier phase, carrier frequency, etc., available
for the signal. In all cases, the results were obtained only for the two-hypothesis case and as such related
to the test for the presence or absence of a single signal. As discussed in the introduction, the spacecraft-
monitoring problem corresponds to an M -hypothesis (typically a four-signal and one-null hypothesis, or
M = 5) test, and thus it is of interest to reexamine the structure and performance of the receivers in [1]
in light of the additional signal hypotheses.

As discussed in [1], the evaluation of the numerator of the likelihood ratio Λ (r(t)) for a signal with
unknown parameters requires that one first determine the pdf of the received signal under hypothesis
H1, conditioned on the vector of unknown parameters, and then average over the joint pdf of these
parameters. Letting ααα denote this random parameter vector (which, as mentioned above, would typically
include carrier phase, carrier frequency, and possibly other frequency derivatives), then the likelihood
ratio is computed from

Λ (r(t)) =

∫
a
p (r(t) |H1 , ααα) p(ααα)dααα

p (r(t) |H0 )
(10)

This is referred to as the average-likelihood ratio (ALR) approach and is optimum in the context of
the Neyman–Pearson criterion previously discussed. Ordinarily, the unknown random parameters are
independent random variables, and thus the joint pdf p(ααα) becomes a product of the individual pdf’s
characterizing each parameter; hence, the multidimensional integral in Eq. (10) becomes a product of
integrals.

An alternate approach is to compute the numerator of the likelihood function by again first determining
the pdf of the received signal under hypothesis H1 conditioned on the vector of unknown parameters,
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but by then replacing the random parameters with suitable estimates of these parameters rather than
averaging over their joint pdf. One such set of estimates is the maximum-likelihood (ML) estimates and
leads to the maximum-likelihood ratio (MLR) approach, which is mathematically characterized by

Λ̂ (r(t)) =
p (r(t) |H1, α̂ααML )
p (r(t) |H0 )

(11)

where α̂ααML is the ML estimate of the parameter vector ααα. Note that under no circumstances is Λ̂ (r(t))
ever equal to Λ (r(t)) and, except in some very specialized cases, the ALR and the MLR philosophies
do not result in the same likelihood-ratio (LR) test. One case where they do result in the same LR test
(as pointed out in [1]) occurs for a signal that is an unmodulated sinusoidal tone (carrier), all of whose
parameters are known except for its phase, which is assumed to be uniformly distributed in the interval
(−π, π).

In a more general context, structures derived from replacing the unknown parameters in the pdf of
the received signal under hypothesis H1 conditioned on the vector of unknown parameters with estimates
of them are referred to as estimator–correlator structures. The reason for this is that the form of these
structures involves a correlation of the received signal plus noise, r(t), with a suitable estimate of the
transmitted signal followed by comparison with a threshold determined from the specified false alarm
probability. In fact, it was shown almost three decades ago by Kailath [2] that receiver structures derived
from an ALR test always have an equivalent formulation (leading to an equivalent likelihood ratio test)
in terms of an estimator–correlator structure, provided that the appropriate signal estimator is used.2 In
this context, it was shown that the correct signal estimator to use in the estimator–correlator structure
is the minimum mean-square estimator (MMSE) based on observation of the received signal up to the
present time. Since the MMSE estimator of the signal up to the present time is not equal to the signal
estimate obtained using ML estimates of the signal parameters obtained from the full observation interval,
it is unlikely that the two will yield equivalent-likelihood ratio tests. Equivalently, the ALR (which is
equivalent to the estimator–correlator with the MMSE signal estimator) and the MLR approaches will,
in general, produce receivers with different performances. As mentioned above, only in very special cases
will the ALR and MLR approaches result in equivalent LR tests. Thus, in most circumstances, estimator–
correlator receivers using the ML parameter estimates to arrive at the signal estimator, i.e., the MLR
approach, will result in suboptimum performance relative to the ALR approach.

A. ALR and MLR Structures

In generalizing the ALR and MLR two-hypothesis receivers to M hypothesis structures, we ob-
serve from Decision Rule (8) that the optimum test still involves comparison of a likelihood ratio,

Λi (r(t))
∆= p (r(t) |Hi ) /p (r(t) |H0 ) (which now depends on which signal hypothesis is being considered),

with a threshold. The specific structure of these receivers depends on the form of the M − 1 signals
representing the signal-plus-noise hypotheses. In line with the signal form assumed in [1], namely, a
fixed amplitude sinusoid with either unknown phase and known frequency or both unknown phase and
unknown frequency, we shall assume for the M -hypothesis case a set of M − 1 sinusoids (at frequen-
cies fc,1, fc,2, . . . , fc,M−1) with the same unknown parameters. Since the best performance with such a
signaling set is achieved when the signals are equal energy and orthogonal, we shall make this further

2 A short summary of the results in [2] as they apply to the two-hypothesis signal detection problem is presented in
Appendix A. Examples are given for the cases of sinusoidal carrier with known frequency and unknown phase and for
sinusoidal carrier with unknown phase and unknown frequency. Note that Kailath refers to what we call an average-
likelihood ratio test as a generalized-likelihood ratio test.
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assumption here.3 Note, however, that the structures of the optimum ALR and MLR receivers do not
require this orthogonality constraint. Without going into great detail, we summarize here the results for
the specific cases treated in [1]. The reader is referred to [1] for more detail on the two-hypothesis case.

1. Sinusoidal Carriers With Unknown Phase and Known Frequency—ALR and MLR.
The optimum ALR or MLR receiver computes for each of the M −1 transmitted frequencies the envelope

Li =
√
L2
ci + L2

si

Lci
4=

∫ T

0

r(t)
√

2 cos 2πfcit dt

Lsi
4=

∫ T

0

r(t)
√

2 sin 2πfcit dt, i = 1, 2, . . . ,M − 1


(12)

The decision rule in both cases is

If L2
i > γ for any i, choose hypothesis Hi (or equivalently si(t)) corresponding to max

i
L2
i .

Otherwise (L2
i ≤ γ for all i = 1, 2, . . . ,M − 1), choose hypothesis H0 (corresponding to no

signal sent).

In the MLR case, it is understood that the unknown carrier phase is to be replaced by its ML estimate
for each of the conditional likelihood ratios, so that the decision rule is determined from a comparison of
the set Λ̂i(r(t)) = p(r(t)|Hi, θ̂iML)/p(r(t)|H0), i = 1, 2, . . . ,M − 1 with a threshold. Note that the ML
phase estimate now depends on the hypothesis Hi. A receiver that implements the above decision rule is
illustrated in Fig. 1.

2. Sinusoidal Carriers With Unknown Phase and Unknown Frequency—ALR. Assuming a
frequency uncertainty region of ±B/2 around each of the possible transmitted tones, then the optimum
ALR receiver computes for each of the M − 1 transmitted frequencies the quantity4

Yi
4=

∫ fci+B/2

fci−B/2
I0

(
2
√
P

N0
L(f)

)
df, i = 1, 2, . . . ,M − 1 (13)

where L(f) is defined analogously to Eq. (12) by

3 The current proposal for a spacecraft-monitoring system assumes a signaling set composed of pairs of sinusoidal tones
symmetrically placed around a carrier. These tones are generated by modulating a fixed carrier with a set of subcarriers.
It is shown in Appendix B that, by proper selection of the subcarrier frequency spacing, such a signaling set can be made
to satisfy the orthogonality constraint.

4 We further assume that the nominal carrier frequencies of the tones are chosen sufficiently far apart so that the frequency
uncertainty bands around each are nonoverlapping.
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Fig. 1.  ALR detector of M – 1 sinusoidal tones with known frequency
and unknown phase in additive white Gaussian noise (AWGN).
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√
L2
c(f) + L2

s(f)

Lc(f) 4=
∫ T

0

r(t)
√

2 cos 2πft dt

Ls(f) 4=
∫ T

0

r(t)
√

2 sin 2πft dt


(14)

The decision rule is

If Yi > γ for any i, choose hypothesis Hi (or equivalently si(t)) corresponding to max
i
Yi.

Otherwise (Yi ≤ γ for all i = 1, 2, . . . ,M − 1), choose hypothesis H0 (corresponding to no
signal sent).
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Since Eq. (13) is overly demanding to implement, one discretizes each of the M −1 frequency uncertainty
intervals into G = B/T−1 = BT subintervals, to each of which is associated a candidate frequency
fci,j , i = 1, 2, . . . ,M − 1, j = 0, 1, . . . , G − 1 located at its center. Such a discretization results in
orthogonal envelope detector outputs. As such, the integration over the continuous uncertainty regions in
Eq. (13) is approximated by a discrete (Riemann) sum and, hence, the approximate statistic to be used
in the decision rule is

Yi ∼=
G−1∑
j=0

I0

(
2
√
P

N0
L(fci,j)

)
, i = 1, 2, . . . ,M − 1 (15)

A receiver that implements the above decision rule is illustrated in Fig. 2.
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3. Sinusoidal Carriers With Unknown Phase and Unknown Frequency—MLR. Again
assuming disjoint frequency uncertainty regions of ±B/2 around each of the possible transmitted tones,
then the optimum MLR receiver computes for each of the M − 1 transmitted frequencies the quantity

Yi = max
f

L(f), fci −
B

2
≤ f ≤ fci +

B

2
(16)

where L(f) is defined in Eq. (14). The decision rule is the same as that following Eq. (14), namely,

If Yi > γ for any i, choose hypothesis Hi (or equivalently si(t)) corresponding to max
i
Yi.

Otherwise (Yi ≤ γ for all i = 1, 2, . . . ,M − 1), choose hypothesis H0 (corresponding to no
signal sent).

This rule results in a spectral maximum form of receiver. Again because of the excessive demand placed
on the implementation by the need to evaluate Eq. (16) over a continuum of frequencies, we again quantize
each of the frequency uncertainty regions into G = BT subintervals, each with an associate candidate
frequency fci,j , i = 1, 2, . . . ,M − 1, j = 0, 1, . . . , G − 1 located at its center. As such, the frequency
continuous test statistic of Eq. (16) can be approximated by the discrete form

Yi = max
j
L (fci,j) (17)

A receiver that implements the above decision rule is illustrated in Fig. 3.

Before going on to discuss the performance of these various structures as well as others that account
for higher-order phase derivatives, e.g., frequency rate, we digress to reemphasize a point made in the
introduction, namely, that from a signal detection (as opposed to data communication) point of view,
the optimum (based on likelihood ratio considerations) receiver in the presence of unknown parameters
is determined by averaging over the statistics of these parameters rather than by trying to estimate
them with, for example, ML estimation. Structures that evolve from such considerations are noncoherent
in nature. Even if one employs a structure that first estimates these parameters and then performs
a pseudocoherent detection based on these parameter estimates, such as that suggested by the MLR
approach, it is important to emphasize the fact that this approach requires that the estimation and
the detection operations take place over the same entire observation interval. Any deviation from these
considerations leads to a suboptimum receiver.

The reason for stressing the above points is that from time to time it has been suggested that a con-
ventional coherent (actually pseudocoherent) BPSK receiver might be suitable for solving the spacecraft-
monitoring problem. In particular, it has been suggested that the signals representing the hypotheses
Hi, i = 1, 2, . . . ,M − 1 be selected as a set of orthogonal bit streams at a rate of 1/Tb and that the
unknown phase be tracked at the receiver by a carrier tracking loop, e.g., a Costas loop, to provide the
necessary pseudocoherent demodulation reference signal. To put this proposal to rest once and for all,
we discuss in the next section the detection performance of such a scheme and what system parameter
requirements, e.g., carrier loop bandwidth, would be needed to make it operable in a region akin to that
of the ALR and MLR structures.

B. Signal Detection Using Pseudocoherent BPSK and Orthogonal Bit Streams

Consider an orthogonal signaling set described by

si(t) =
√

2Pmi(t) cos (ωct+ θ) , i = 1, 2, . . . ,M − 1 (18)
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Fig. 3.  MLR detection of M – 1 sinusoidal tones with unknown frequency and unknown phase in AWGN.
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where

mi(t) =
K∑
k=1

cikp (t− nTb), i = 1, 2, . . . ,M − 1 (19)

with p(t) a unit amplitude rectangular pulse of duration Tb, and the binary vectors ci = [ci1, ci2, . . . , ciK ]T

of length KTb are orthogonal, i.e.,

cccTi cccj =
{

1, i = j
0, i 6= j

(20)

The signals in Eq. (18) are assumed to represent the various noncatastrophic spacecraft states. Also, the
observation time T for making a signal-present versus signal-absent determination is now equal to KTb.

The receiver first derives a demodulation reference from a carrier tracking loop and then performs
a matched-filter (correlation) detection of each of the possible transmitted waveforms. Analogous to

12



the type of decision rule previously derived for an M -hypothesis Neyman–Pearson test, if any of these
matched outputs exceeds a threshold, then hypothesis Hi is chosen corresponding to the largest matched-
filter output. If none of the matched-filter outputs exceeds the threshold, then the null hypothesis H0 is
chosen. An implementation of such a receiver is illustrated in Fig. 4.

1

T b k T b

(k + 1)T b ( )dt•
Z 1

Z
 2

Z M – 1

>

<

k 1

K

k 1

K

k 1

K

c1

c2

cM – 1

r (t )

2 cos (2  f c 
 t  +  )

Fig. 4.  Pseudocoherent receiver for signal detection with orthogonal BPSK waveforms.

The matched-filter outputs Zi, i = 1, 2, . . . ,M − 1 are Gaussian random variables described by

Zi|Hi = K
√
P cosφc +

K∑
k=1

cikNk

Zj |Hi =
K∑
k=1

cjkNk, j = 1, 2, . . . ,M − 1, j 6= i


(21)

under hypothesis Hi, i 6= 0 and

Zj |H0 =
K∑
k=1

cjkNk, j = 1, 2, . . . ,M − 1 (22)

under hypothesis H0. In Eqs. (21) and (22), Nk are independent zero-mean Gaussian random variables
with variance σ2 = N0/2Tb representing the integrate-and-dump (I&D) output noise components in each
of the K-bit intervals. Also, φc

4= θ − θ̂ denotes the carrier loop phase error, and the overbar denotes
statistical average.

Under hypothesis H0, the Zj ’s are uncorrelated (because of the orthogonality of the data sequences)
and, hence, independent (because they are Gaussian), i.e.,

E
{(
Zk − Zk

) (
Zl − Zl

)
|H0

}
=

{
Kσ2 4= σ2

N , k = l
0, k 6= l

(23)
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Thus, the false alarm probability becomes

PFA = 1− Pr {Z1, Z2, . . . , ZM−1 ≤ γ |H0 } = 1−
[
1
2

erfc
(
− γ√

2σN

)]M−1

= 1−
[
1− 1

2
erfc

(
γ√
2σN

)]M−1

(24)

where γ is the detection threshold.

Assuming now that si(t) was transmitted (hypothesis Hi is in fact true), then using Eq. (21), the
probability of detection, PD, is evaluated as

PD = Pr {Zi > γ;Z1, Z2, . . . , Zi−1, Zi+1, . . . , ZM−1 ≤ Zi |Hi }

=
∫ ∞
γ

1√
2πσ2

N

exp

−
(
Zi −K

√
P cosφ

)
2σ2

N


[
1
2

erfc
(
− Zi√

2σN

)]M−2

dZi (25)

Eliminating the threshold between Eqs. (24) and (25), the receiver operating characteristic (ROC) be-
comes, after simplification,

PD =
1√
π

∫ ∞
η

exp
{
−Y 2

} [
1− 1

2
erfc

(
Y +

√
PT

N0
cosφ

)]M−2

dY

η = erfc−1
{

2
[
1− (1− PFA)1/(M−1)

]}
−

√
PT

N0
cosφ


(26)

For M = 2 (a two-hypothesis test), Eq. (26) reduces to

PD =
1
2

erfc η =
1
2

erfc

[
erfc−1 {2PFA} −

√
PT

N0
cosφ

]
(27)

Note that both Eqs. (26) and (27) do not explicitly depend on the bit time Tb or the number of bits K
in the observation interval T , i.e., the length of the orthogonal sequences. Rather, what is important in
the signal detection problem is the total energy PT in the observation.

To evaluate Eq. (26) or Eq. (27) numerically, we must relate the carrier tracking loop degradation
factor cosφ to the parameters of the loop itself, such as loop SNR. For a carrier tracking loop with
single-sided loop bandwidth BL, the loop SNR is defined as ρ = P/N0BL. While this definition of loop
bandwidth is exact for a phase-locked loop (PLL), for a suppressed-carrier loop such as a Costas loop,
the definition should include the so-called “squaring loss,” which is a factor less than unity and as such
reduces the effective loop SNR. To keep matters simple, however, we shall ignore this difference and
assume a PLL for carrier tracking. For such a loop, it is well-known [3] that the cosφ degradation factor
is given by
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cosφ =
I1(ρ)
I0(ρ)

=
I1

(
PT

N0

1
BLT

)
I0

(
PT

N0

1
BLT

) (28)

where In (x) is the nth-order modified Bessel function of the first kind. Substituting Eq. (28) into
Eq. (26) or Eq. (27) allows one to compute the detection probability, PD, as a function of detection
SNR, d2 = 2PT/N0 (in dB) for fixed values of false alarm probability, PFA, and observation time T ,
with loop bandwidth, BL, as a parameter. Figure 5 presents such a plot for a two-hypothesis test with
PFA = 10−2 and T = 1000 s. For comparison purposes, we present the comparable results for the
optimum noncoherent ALR scheme, namely (see Eq. (18) of [1]),

PD = Q
(
d,

√
−2 lnPFA

)
(29)

where Q (α, β) is Marcum’s Q-function defined by

Q (α, β) =
∫ ∞
β

z exp
(
−z

2 + α2

2

)
I0 (αz) dz (30)

By inspection of the results in Fig. 5, we observe that, because of the large observation time, an imprac-
tically small loop bandwidth (e.g., BL = 0.002 Hz) would be required to satisfy the PT/N0 requirement
necessary to achieve the performance comparable to the optimum noncoherent ALR detector. The intu-
itive reason for this can be gleaned from the optimum noncoherent MLR detector (whose performance
is almost as good as that of the ALR), wherein the ML (open loop) estimate of the phase is obtained
from the received signal over the entire observation interval. To obtain a phase estimate with a closed-loop
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Fig. 5.   Detection performance of the pseudocoherent PSK system using
orthogonal sequences to represent the system states (hypotheses).
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device with comparable accuracy, the loop bandwidth would have to be on the order of the reciprocal of
the observation interval, which for T = 1000 s would require a loop bandwidth on the order of 0.001 Hz.

It is clear then that application of a pseudocoherent PSK system, which is commonly used and quite
effective for communicating digital data, is not appropriate to the signal detection problem of interest
here, where the detection threshold is set by the need to maintain a low false alarm probability. Although,
for simplicity, the numerical example considered here was for a two-hypothesis case (M = 2), evaluation of
Eq. (27) combined with Eq. (28) would similarly yield a performance requiring impractical loop parameters
when compared with the appropriate multiple-hypothesis performance of the optimum ALR scheme.

C. Performance of the ALR and MLR Structures

The detection performance of the frequency discrete ALR receiver in Fig. 2 cannot be obtained in closed
form due to its highly complex nonlinear structure. Despite its complexity, however, it is important to
obtain the performance of this receiver since it serves as a benchmark against which the performance of
any other simpler-to-implement structures (including those derived from MLR theory) can be compared.
Thus, to obtain this performance, we shall resort to results obtained from computer simulations. In
constructing the simulation for the signal-plus-noise hypotheses, a decision must be made regarding the
selection of the true received frequency of the input signal. In making this selection, it is important
to understand that spacing the frequencies fci,j , j = 0, 1, 2, . . . , G − 1 for each of the signal hypotheses
Hi, i = 1, 2, . . . ,M−1 by 1/T guarantees independence of the noise components that appear at the output
of each of the spectral estimate channels. However, orthogonality of the signal components of these same
outputs depends on the true value of the received frequency relative to the discretized frequencies assumed
for implementation of the receiver. That is, if the true received frequency happens to fall on one of the
fci,j ’s, then a signal component will appear only in the corresponding spectral estimate channel, i.e., all
other channels will contain noise only. On the other hand, if the true received frequency falls somewhere
between two of the fci,j ’s, then we have loss of orthogonality in that a spillover of signal energy occurs in
the neighboring spectral estimates. The worst-case spillover would occur when the true received frequency
is midway between two of the fci,j ’s. (If a fast Fourier transform (FFT) implementation is used, then the
worst-case degradation can be ameliorated by zero padding to interpolate between the frequency samples.)
In view of the above, we shall present both best-case and worst-case performance results corresponding,
respectively, to selecting the true received frequency for the simulation identical to one of the fci,j ’s and
midway between two of the fci,j ’s.

Figure 6 is a plot of miss probability PM = 1 − PD versus P/N0 in dB-Hz for an observation time
T = 1000 s, a frequency uncertainty region ±B/2 = ±1000 Hz (thus G = BT = 2 × 106), a false alarm
probability PFA = 2 × 10−4, and M = 5 (four signal-plus-noise states representing specific spacecraft
conditions and one noise-only state representing spacecraft failure). These values have been suggested as
being typical of the spacecraft-monitoring application. Also shown in this figure are the corresponding
results for the MLR receiver of Fig. 3, which can be obtained from a straightforward generalization of
the analytical results in [1] to the case of M > 2. We observe from a comparison of the ALR and MLR
results that the latter is inferior to the former by a P/N0 amount on the order of 1 dB-Hz for either the
best- or worst-case situation. In each case, the difference between best and worst performance is about
2 dB-Hz.

D. Low SNR Approximation of the ALR Structure

With reference to Eq. (15), we observe that to implement the optimum ALR structure derived from
the assumptions of unknown carrier phase and unknown carrier frequency (uncertainty about the nom-
inal carrier), one must build a receiver containing G envelope detectors and Bessel function nonlinear-
ities. Although theoretically possible, the complexity of such a receiver for the spacecraft-monitoring
application, where the frequency uncertainty interval, B, is on the order of 2 kHz and the observation
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time interval, T , is on the order of 1000 s, yielding G = BT = 2× 106, is simply too great. As such, we
seek an alternate approach that combines this large bank of noncoherent processors into perhaps a single
noncoherent processor, thus greatly reducing the implementation burden.

One such approach is obtained by approximating the I0(x) Bessel function by its small argument
equivalent. In particular, for small values of x, we have I0(x) ∼= 1 + 0.25x2. Of course, one could simply
make this approximation for the Bessel functions in the discrete frequency form of the decision statistic as
given by Eq. (15), which would suggest the low SNR ALR receiver of Fig. 7 (also see Figs. 7 through 11 of
[4]). While this approach is useful in computing the approximate detection performance of the receiver (as
we shall see shortly), unfortunately it only reduces the complexity per channel (by eliminating the need
for the square root and Bessel function nonlinearities) but does not reduce the complexity in terms of the
number of parallel channels needed. On the other hand, making the above Bessel function approximation
in the continuous frequency form of the decision statistic as given by Eq. (13) together with Eq. (14)
results in

Yi ∼=
∫ fci+B/2

fci−B/2

[
1 +

P

N2
0

(
L2
c(f) + L2

s(f)
)]
df

= B +
P

N2
0

∫ fci+B/2

fci−B/2

(
L2
c(f) + L2

s(f)
)
df, i = 1, 2, . . . ,M − 1 (31)

Substituting for L2
c(f) and L2

s(f) from Eq. (14) gives
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Fig. 7.  Low SNR approximation to the ALR detection of M – 1 sinusoidal tones with
unknown frequency and unknown phase in AWGN.

•

•

Yi ∼= B +
2P
N2

0

∫ fci+B/2

fci−B/2

∫ T

0

∫ T

0

r(t)r(τ) cos 2πft cos 2πfτ dt dτ df

+
2P
N2

0

∫ fci+B/2

fci−B/2

∫ T

0

∫ T

0

r(t)r(τ) sin 2πft sin 2πfτ dt dτ df

= B +
2P
N2

0

∫ T

0

∫ T

0

r(t)r(τ)

(∫ fci+B/2

fci−B/2
cos 2πf(t− τ)df

)
dt dτ (32)

Shifting the integration on f to the interval (−B/2, B/2), and then performing this integration, Eq. (32)
evaluates to
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Yi ∼= B +
P

N2
0

∫ T

0

∫ T

0

r(t)r(τ) cos 2πfci(t− τ)
B sin [πB (t− τ)]

πB (t− τ) dt dτ

= B +
P

N2
0

∫ T

0

r(t) cos 2πfcit

(∫ T

0

r(τ) cos 2πfciτ
B sin [πB (t− τ)]

πB (t− τ) dτ

)
dt

+
P

N2
0

∫ T

0

r(t) sin 2πfcit

(∫ T

0

r(τ) sin 2πfciτ
B sin [πB (t− τ)]

πB (t− τ) dτ

)
dt (33)

For B >> 1/T , i.e., a large BT product, as is the case of interest here, we can interpret the integrals on
τ as the output of a unit amplitude rectangular lowpass filter of bandwidth B excited by the in-phase (I)
and quadrature-phase (Q) demodulated (at frequency fci) input. Strictly speaking, this interpretation is
only valid in the limit as T →∞. Denoting these filtered outputs by yc(t) and ys(t), we obtain a simple
form for Eq. (33), namely,

Yi ∼= B +
P

N2
0

[∫ T

0

(r(t) cos 2πfcit) yc(t)dt +
∫ T

0

(r(t) sin 2πfcit) ys (t)dt

]
(34)

which has the physical interpretation illustrated in Fig. 8(a). Note that this implementation has the
advantage of replacing for each hypothesis an entire bank of G noncoherent processors with a single
square-and-integrate processing. Since the wideband noise at the inputs to the rectangular filters in
Fig. 8(a) can be separated into an in-band component (one whose energy lies in the interval (−B/2, B/2))
and a wide out-of-band component (one whose energy lies outside of (−B/2, B/2)), then for B >> 1/T , in
so far as the T -sec I&D outputs are concerned, the product of the filter outputs and the wide out-of-band
components can be ignored relative to the product of the filter outputs and the in-band components. As
such, another approximate form of Eq. (33) is

Yi ∼= B +
P

N2
0

[∫ T

0

y2
s(t)dt +

∫ T

0

y2
c (t)dt

]
(35)

which has the implementation of Fig. 8(b). It should be noted that, for any finite T , Eq. (34) will always
yield better performance than Eq. (35); however, in the limit as T → ∞, the two become equivalent.
Since both Eqs. (34) and (35) are approximations to the true low SNR ALR statistic, Eq. (35) is the
preferable one to use. Furthermore, as we shall soon see, in so far as detection performance is concerned,
the rectangular filters of bandwidth B in Fig. 8(b) are only consequential in determining the number of
independent samples (BT ) contained in the observation time interval. That is, the performance will not
explicitly depend on B or T individually, but rather on the product G = BT .

The performance of the low SNR approximation to the ALR illustrated in Fig. 7 (which also applies
to the implementations in Fig. 8) can be approximately computed by applying a Gaussian assumption
to the Yi’s. In particular, using the small argument approximation to the I0(x) function in Eq. (15), we
have that

Yi ∼=
G−1∑
j=0

(
1 +

P

N2
0

L2(fci,j)
)
4= G+ Zi, i = 1, 2, . . . ,M − 1 (36)
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Assuming that the transmitted signal is a sinusoid with random phase and frequency identically equal
to one of the quantized frequencies of Eq. (36), then the mean and variance of Zi under signal-plus-noise
hypothesis (Hi) and noise only hypothesis (H0) can be shown to be

E {Zi}
4= Z̄ =


PT

N0

(
PT

N0
+G

)
, Hi

PT

N0
G, H0

var {Zi}
4= σ2

Z =


(
PT

N0

)2 (
2PT
N0

+G

)
, Hi(

PT

N0

)2

G, H0

(37)

From the decision rule following Eq. (14), the false alarm probability is determined from the probability
that all M − 1 Yi’s are below the threshold γ under H0. Equivalently, absorbing the constant G in
Eq. (36) into the decision threshold and noting that the Yi’s are independent and, for large G, can be
approximated as Gaussian, then analogously to Eq. (24), PFA is determined from
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PFA = 1− Pr {Y1, Y2, . . . , YM−1 ≤ γ |H0 } = 1−
[
1− 1

2
erfc

(
γ′ − Z̄

∣∣
H0√

2 σZ |H0

)]M−1

(38)

where γ′ 4= γ − G and Z̄
∣∣
H0
, σZ |H0 are determined from Eq. (37). Similarly, since under the signal-

plus-noise hypothesis only one of the Yi’s contains the signal, then analogously to Eq. (25), the detection
probability is given by

PD = Pr {Yi > γ;Y1, Y2, . . . , Yi−1, Yi+1, . . . , YM−1 ≤ Yi|Hi}

=
∫ ∞
γ′

1√
2π σ2

Z |Hi
exp

−
(
Zi − Z̄

∣∣
Hi

)2

2 σ2
Z |Hi


[
1− 1

2
erfc

(
Zi −Z̄

∣∣
H0√

2 σZ |H0

)]M−2

dZi (39)

where, in addition to the above, Z̄
∣∣
Hi
, σZ |Hi are determined from Eq. (37). Eliminating the normalized

threshold between Eqs. (38) and (39) and making use of the moments in Eq. (37), the ROC for the low
SNR ALR receiver is approximately (based on a Gaussian model for the Yi’s) given by

PD =
1√
π

σZ |H0

σZ |Hi

∫ ∞
η

exp

−
(
Y
√

2 σZ |H0
+ Z̄

∣∣
H0
− Z̄

∣∣
Hi

)2

2 σ2
Z |Hi


[
1− 1

2
erfc Y

]M−2

dY

=
1√
π

√
G

2PT/N0 +G

∫ ∞
η

exp

{
−

(
G

2PT/N0 +G

) (
Y − PT/N0√

2G

)2
} [

1− 1
2

erfc Y
]M−2

dY

η
4= erfc−1

{
2

[
1− (1− PFA)

1
M−1

]}
(40a)

For G >> PT/N0 and PFA << 1 (the cases of interest here), Eq. (40a) simplifies to

PD =
1√
π

∫ ∞
η

exp

{
−

(
Y − PT/N0√

2G

)2
} [

1− 1
2

erfc Y
]M−2

dY

η
4= erfc−1

{(
1

M − 1

)
2PFA

}


(40b)

Furthermore, for the two-hypothesis problem, i.e., M = 2, Eq. (40a) simplifies to

PD =
1
2

erfc

[√
G

2PT/N0 +G

(
erfc−1 (2PFA)− PT/N0√

2G

)]
∼=

1
2

erfc
[
erfc−1 (2PFA)− PT/N0√

2G

]
(41)
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Figure 9 is a plot of miss probability PM = 1 − PD as determined from Eqs. (40) and (41) versus
P/N0 in dB-Hz for the same parameters as in Fig. 6. The performance curves for the full-band receiver
were obtained numerically from Eq. (40a) and the exact form of Eq. (41). For M = 2, these results
were verified using the simulation technique described in Appendix C and are also illustrated in Fig. 9.
Comparing Fig. 9 with the ALR results in Fig. 7, we observe the huge penalty in performance paid for
the simplicity of implementation afforded by the low SNR approximation.
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Fig. 9.  The performance of squaring receiver structures.
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E. ALR and MLR Structures for Sinusoidal Carriers With Unknown Phase, Frequency,
and Frequency Rate

Assume now that, in addition to the uncertainty in phase and frequency of the transmitted sinusoidal
carrier considered in Section III.A, there also exists an uncertainty in frequency rate corresponding to the
presence of oscillator drift. If this drift is modeled as a linear variation in frequency over the observation
interval, i.e., a constant but unknown frequency rate uniformly distributed in the interval ±Ḃ/2, then,
following the ALR approach, it is straightforward to show that, analogously to Eq. (13), the optimum
receiver computes for each of the M − 1 transmitted frequencies the quantity

Yi
4=

∫ Ḃ/2

−Ḃ/2

∫ fci+B/2

fci−B/2
I0

(
2
√
P

N0
L(f, ḟ)

)
dfdḟ , i = 1, 2, . . . ,M − 1 (42)
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where

L(f, ḟ) =
√
L2
c(f, ḟ) + L2

s(f, ḟ)

Lc(f, ḟ) 4=
∫ T

0

r(t)
√

2 cos
[
2π

(
ft+

1
2
ḟ t2

)]
dt

Ls(f, ḟ) 4=
∫ T

0

r(t)
√

2 sin
[
2π

(
ft+

1
2
ḟ t2

)]
dt


(43)

The decision rule is still the same as that following Eq. (14). Since Eq. (42) is even more overly demanding
to implement than was Eq. (13) because of the additional integration on ḟ , then once again we must resort
to discretization of the frequency and frequency rate uncertainty intervals, resulting in the approximate
decision variables

Yi
4=
G−1∑
j=0

F−1∑
l=0

I0

(
2
√
P

N0
L(fci,j , ḟl)

)
, i = 1, 2, . . . ,M − 1 (44)

where F 4= ḂT 2/2.5 An illustration of an ALR receiver that employs this decision statistic is illustrated
in Fig. 10.

In the presence of linear frequency drift, the optimum MLR receiver would compute for each of the
M − 1 transmitted frequencies the quantity

Yi = max
f,ḟ

L(f, ḟ), fci −
B

2
≤ f ≤ fci +

B

2
, − Ḃ

2
≤ ḟ ≤ Ḃ

2
(45)

and then apply the decision rule following Eq. (16). In discretized form, Eq. (45) would become [analogous
to Eq. (17)]

Yi = max
j,l

L(fci,j , ḟl) (46)

F. Low SNR Approximation of the ALR Structure

As in Section III.D, one can approximate the zero-order modified Bessel function in Eq. (44) by the
first two terms in its power series. When this is done, then using Eq. (43), it is straightforward to show
that, analogously to Eq. (33), one obtains

5 The value of F , i.e., the quantization of the ḟ uncertainty, is determined from approximate orthogonality considerations
(see Appendix D).
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Fig. 10.  The channel i ALR detector for detection of M – 1 sinusoidal tones with unknown phase, frequency,
and frequency rate in AWGN.
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0

∫ T

0

r(t) cos 2πfcit


∫ T

0

r(τ) cos 2πfciτ
B sin [πB (t− τ)]

πB (t− τ)

Ḃ sin

[
πḂ

2
(
t2 − τ2

)]
πḂ

2
(
t2 − τ2

) dτ

 dt

+
P

N2
0

∫ T

0

r(t) sin 2πfcit


∫ T

0

r(τ) sin 2πfciτ
B sin [πB (t− τ)]

πB (t− τ)

Ḃ sin

[
πḂ

2
(
t2 − τ2

)]
πḂ

2
(
t2 − τ2

) dτ

 dt (47)

Unfortunately, Eq. (47) does not lend itself to an easy interpretation in terms of an implementation.
However, if (Ḃ/2)T < B/2 (i.e., the maximum frequency change due to drift is within the initial baseband
frequency uncertainty interval), then over the observation interval, the sin y/y term involving Ḃ in Eq. (47)
is much slower varying than the sinx/x term involving B and, to a first-order approximation, the former
can be treated as a constant with respect to the time duration of the latter. As such, the implementations
of Figs. 8(a) and 8(b) are still appropriate for the low SNR approximation to the ALR in the presence of
linear frequency drift. Also invoking the Gaussian approximation to the statistics of Eq. (47), then to a
first-order approximation, the detection performance is still given by Eqs. (40) and (41).
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G. Improved Simple Receiver Structures for Signals With Bounded Frequency Drift

While the square-and-integrate receivers of Fig. 8 have the advantage that their simple structure and
performance are approximately invariant to the presence of frequency drift, as previously mentioned, they
pay a large penalty in performance when compared with the true optimum ALR schemes.6 In an effort to
improve upon this situation, we shall suggest a modification of the simple square-and-integrate receiver of
Fig. 8(b) by exploiting the fact that, in the case of interest here,

(
Ḃ/2

)
T << B/2, i.e., the drift over the

observation interval is only a small fraction of the total initial frequency uncertainty band. In particular,
typical spacecraft oscillators have a maximum one-sided drift rate on the order of 25 Hz in 1000 s, and
thus for an observation time of T = 1000 s,

(
Ḃ/2

)
T = 25 Hz, which is quite small compared with the

assumed baseband frequency uncertainty interval of B/2 = 1000 Hz.

Consider dividing the total baseband frequency-uncertainty band B/2 Hz into K subbands of width
(Ḃ/2)T Hz each, i.e., K = (B/2)/(Ḃ/2)T , which for our ongoing example yields K = 1000/25 = 40.
A motivation for doing this can be obtained by examining the behavior of the ALR structure of Fig. 2
when the input frequency drifts and is discussed following the end of this paragraph. The received signal
in each of these subbands is squared-and-integrated in the manner of Fig. 8(b).7 The maximum of these
squared-and-integrated values (energies) is selected and compared to a threshold set by the requirement
on false alarm probability. A receiver implementation based on M channels of the type described above
(see Fig. 11) will be referred to herein as a subband squaring receiver, as contrasted with a full-band
squaring receiver, which would incorporate M channels of the type illustrated in Fig. 8(b).
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Fig. 11.  The channel i noncoherent processor for the subband receiver.
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6 While is is true that the performances of the optimum ALR and MLR structures derived in Sections III.A.2 and III.A.3
and illustrated in Figs. 2 and 3 will degrade in the presence of drift approaching that of the simple receivers of Fig. 8, this
will be less true for the optimum ALR and MLR structures derived in the presence of drift as described by the decision
statistics in Section III.F.

7 From an implementation point of view, the received signal is passed through a bank of disjoint subband bandpass filters,
each of which can be implemented alternately as an I–Q demodulation with the carrier frequency at the center of the
subband, followed by a baseband rectangular filter of width (Ḃ/2)T = B/2K.
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The construction of the subband squaring receiver can be motivated by reexamining the basic building
block of the ALR receiver in Fig. 2, namely, the envelope detector. In particular, rewriting the squared
envelope of the ijth detector as

L2 (fci,j) =

[∫ T

0

r(t)
√

2 cos 2πfci,jt dt

]2

+

[∫ T

0

r(t)
√

2 sin 2πfci,jt dt

]2

=

∣∣∣∣∣
∫ T

0

r(t)
√

2e−j2πfci,jt dt

∣∣∣∣∣
2

=
∣∣∣∣∫ ∞
−∞

r(t)p(t)
√

2e−j2πfci,jt dt
∣∣∣∣2

where p(t) is a unit amplitude rectangular pulse in the interval 0 ≤ t ≤ T , shows that L2(fci,j) can be
interpreted as the energy component of the windowed signal r(t)p(t) at frequency fci,j over an effective
bandwidth of 1/T Hz (the result of frequency domain spreading due to the finite duration of the time
window p(t)). Thus, each envelope detector in Fig. 2 measures the energy in a narrow frequency band
within the uncertainty band of interest. Since the center frequencies of adjacent envelope detectors are
separated by 1/T Hz, it is clear that the ith detector in Fig. 2 consists of a bank of narrowband filters that
completely covers the frequency uncertainty region associated with the ith signal. For a square window
function, the frequency response of each filter is of the form sinx/x, implying orthogonal outputs when
the center frequencies are separated by 1/T Hz. Thus, the filter bank generates the maximum number of
independent samples, BT , consistent with a bandwidth of B Hz and integration time of T s.

The MLR algorithm selects the largest energy component within the ith filter bank as the test statistic
Yi, as illustrated in Fig. 3. For the ALR algorithm, however, the energy components collected at each
frequency are further processed by taking the square root, applying a scale factor, and computing the
Bessel function I0(x) of the resulting scaled envelope. Following this, the results are summed to obtain
the test statistic Yi. Although the MLR structure is suboptimum, its performance is only slightly worse
than that of the ALR algorithm for this application. Both the ALR and MLR structures are predicated
on the assumption that the signal remains constant in frequency, which further implies that it remains
within the passband of the same filter (channel) through the entire observation interval, ensuring the
greatest possible SNR at the output of that filter. Equivalently, in terms of a changing input frequency,
a maximum signal drift of less than 1/T Hz over the T -second observation is implied.

If the maximum frequency drift exceeds 1/T Hz during the observation, then the signal moves from one
filter to the next, possibly spanning a large number of filters (channels) over the observation interval. In
that case, no single filter contains all of the signal energy, which is now distributed among many adjacent
filters. However, if the starting frequency and maximum drift rate were known, then the signal energy
could still be recovered by combining (summing) the outputs of all filters spanned by the signal. Since
the actual starting frequency is not known, this suggests using a filter bank with filter bandwidths large
enough to accommodate the drifting signal. Thus, analogously to the ALR approach, we partition the
uncertainty region into K = BT/N (where N is an integer chosen in accordance with the maximum drift
rate) filters, each of bandwidth N/T Hz, instead of BT filters of bandwidth 1/T Hz, as was done for the
discrete version of the ALR with no frequency drift. The outputs of each subband filter are squared and
integrated as shown in Fig. 11. Next, if we were to parallel the development of the ALR structure, we
would take the square root of the outputs of each of these larger bandwidth (subband) filters, scale them,
compute the Bessel function I0(x) of the resulting scaled envelopes, and sum to obtain the test statistic.
We shall consider instead selecting the largest subband filter output within the ith detector as the test
statistic for the corresponding ith hypothesis, analogous to what is done in the MLR structure.

For the system parameters of interest, the subband squaring receiver achieves a dramatic performance
improvement over the full-band squaring receiver, primarily due to the reduced noise power in the sub-
bands (each has only 1/K of the total noise power) degraded somewhat by occasional errors in selecting
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the correct subband. Assuming a value of K = 40, an illustration of this performance improvement is
superimposed on the full-band squaring receiver results in Fig. 9. The curve labeled K = 1 near the
subband performance curves represents the performance of a full-band receiver with uncertainty band-
width B = 50 Hz, and is used to illustrate the small amount of degradation due to choosing among 40
subbands. Note that the additional degradation caused by choosing between five hypotheses instead of
two is negligibly small for this case. The subband performance curves were computed using Eqs. (52)
and (55) (to be derived shortly), and the two-hypothesis case (M = 2) was verified using the simulation
described in Appendix C. Comparing these results with those obtained for the full-band receiver, we
observe a dramatic improvement in performance that is on the order of 7 dB. The analysis used to obtain
these results assumes that the tones start at the boundary between subbands and drift (at no greater
rate than their maximum rate) to the boundary of the adjacent subband in either the positive or negative
direction from their starting points. As such, the received tone remains within a given subband over the
entire observation interval. The details of the analysis are as follows.

The detection performance of the subband squaring receiver is obtained using a Gaussian approxi-
mation analogous to that employed for the full-band squaring receiver. In particular, since each of the
K subband processors in Fig. 11 is implemented as in Fig. 8(b) but with lowpass rectangular filters that
are 1/Kth the bandwidth, then the processor outputs Yik

4= G/K +Z1k, k = 1, 2, . . . ,K can be modeled
as independent Gaussian random variables with means and variances of Z1k, as in Eq. (37) but with G
replaced by G/K. Assuming first the two-hypothesis case, the probability of false alarm, PFA, is equal
to the probability that any of the K subband processor outputs exceeds the threshold under H0. Equiva-
lently, PFA is equal to one minus the probability that none of the subband processor outputs exceeds the
threshold under H0, which is the same as one minus the probability that the maximum of the subband
processor outputs does not exceed the threshold under H0. Thus, analogously to Eq. (38),

PFA = 1− Pr {Y1 ≤ γ |H0 } = 1−
[
1− 1

2
erfc

(
γ′′ − Z̄

∣∣
H0√

2 σZ |H0

)]K
(48)

where γ′′ = γ −G/K, and from the above discussion,

Z̄
∣∣
H0

=
(
PT

N0

) (
G

K

)

σZ |H0
=

(
PT

N0

) √
G

K


(49)

The missed detection probability, PM , is the probability that the maximum of the subband processor
outputs does not exceed the threshold underH1, which, from the above, is equivalent to the the probability
that none of the subband processor outputs exceeds the threshold under H1. Thus, the correct detection
probability, PD = 1− PM , is given by

PD = 1− Pr {Y1 ≤ γ |H1 }

= 1−
[
1− 1

2
erfc

(
γ′′ − Z̄

∣∣
H1√

2 σZ |H1

)] [
1− 1

2
erfc

(
γ′′ − Z̄

∣∣
H0√

2 σZ |H0

)]K−1

(50)

where now
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Z̄
∣∣
H1

=
(
PT

N0

) (
PT

N0
+
G

K

)

σZ |H1
=

(
PT

N0

) √
2PT
N0

+
G

K


(51)

Note that Eq. (50) differs in form from Eq. (39) since here a correct detection occurs if any of the
subband processor outputs exceeds the threshold, not necessarily only the one that contains the signal.
In detecting among many hypotheses, as in Eq. (39), a correct detection only occurs if the particular full-
band processor output that contains the signal exceeds the threshold. Eliminating the threshold between
Eqs. (48) and (50) and making use of the moments in Eqs. (49) and (51) gives the two-hypothesis ROC
as

PD = 1− [1− PFA](K−1)/K

×
[
1− 1

2
erfc

{√
G/K

2PT/N0 +G/K

(
erfc−1

(
2

[
1− (1− PFA)1/K

])
− PT/N0√

2G/K

)}]
(52)

For K = 1, i.e., the full-band squaring receiver, Eq. (52) reduces to Eq. (41) as it should.

For the M -hypothesis case, the probability of false alarm, PFA, is given by

PFA = 1− Pr {Y1, Y2, . . . , YM−1 ≤ γ |H0 } = 1−
[
1− 1

2
erfc

(
γ′′ − Z̄

∣∣
H0√

2 σZ |H0

)]K(M−1)

(53)

where Z̄
∣∣
H0

and σZ |H0
are as defined in Eq. (49). Similarly to Eq. (39), the probability of detection, PD,

is given by

PD = Pr {Yi > γ;Y1, Y2, . . . , Yi−1, Yi+1, . . . , YM−1 ≤ Yi |Hi } (54)

which, by eliminating the threshold, can be shown to be evaluated in terms of PFA as
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PD =
1√
π

√
G/K
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η

exp
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dY
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η
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−Y 2
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η
4= erfc−1
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[
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1
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

(55)

For K = 1, i.e., the full-band squaring receiver, Eq. (55) reduces to Eq. (40a) as it should.

A further improvement in performance can be obtained by designing a receiver that attempts to remove
the linear drift component of the received signal, thus enabling one to significantly reduce the size of the
frequency subbands. This process, which shall be referred to as drift matching, constitutes replacing the
correlating signals in Fig. 11 with ones that also contain test values of the linear drift distributed over the
range corresponding to its maximum positive and negative values. The resulting drift-matching squaring
receiver illustrated in Fig. 12 can now be motivated from the ALR with frequency drift (see Fig. 10), just
as the subband squaring receiver was motivated by the structure of the ALR without drift (see Fig. 2).
The key idea here is to select channel bandwidths, i.e., the value of K in the input lowpass rectangular
filters, wide enough to encompass the signal after a linear drift component has been removed. Thus, the
minimum channel bandwidth is ultimately determined by the residual quadratic and higher-order terms
in the frequency trajectory. In contrast to Fig. 11, the subband no longer need include the frequency
variation corresponding to the maximum linear frequency drift over the observation interval. This receiver
structure is quite similar to the maximum-likelihood estimator of frequency and frequency rate described
earlier in [7].

To obtain the ROC of Fig. 12, we proceed as follows. Letting J denote the number of test values of
ḟ per test value of f , then the false alarm and detection probabilities are given by Eqs. (48) and (50),
respectively, with K replaced by KJ . The moments of the decision variables under the noise-only and
signal-plus-noise hypotheses are still given by Eqs. (49) and (51), respectively, keeping in mind, however,
that the value of K to be used in these equations is significantly larger than that previously used for the
subband receiver of Fig. 11. Finally, eliminating the unknown detection threshold between Eqs. (48) and
(50) results in the following ROC for the two-hypothesis case:

PD = 1− [1− PFA](KJ−1)/KJ

×
[
1− 1

2
erfc

{√
G/K

2PT/N0 +G/K

(
erfc−1

(
2

[
1− (1− PFA)1/KJ

])
− PT/N0√

2G/K

)}]
(56)

For J = 1, Eq. (56) reduces to Eq. (52) as it should.
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For the M hypothesis case, the probability of false alarm is once again given by Eq. (53) with K
replaced by KJ , and the probability of detection is still given by Eq. (54). Eliminating the threshold
between the two probabilities gives an ROC analogous to Eq. (55), namely,
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(57)
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The performance of the receiver in Fig. 12, as described by Eqs. (56) and (57), is superimposed on the
results of Fig. 9. Values of (K,J) corresponding to (500, 25), (1000, 50), and (2000, 100) were assumed to
characterize the performance of the drift-matching subband squaring receiver. Difficulties in computing
the large number of test statistics required for this structure prevented verification by means of computer
simulations. Note that J is determined from the maximum total (positive and negative) drift ḂT , the
maximum total (positive and negative) frequency uncertainty B, and K by J = 2KḂT/B, where we have
assumed that the subbands of width B/K within the total drift ḂT overlap by B/2K. Comparing these
results with those obtained for the subband receiver of Fig. 11, we see another dramatic improvement in
performance. As before, performance for M = 5 (four signals) is only slightly worse than for M = 2 (the
single-tone case).

IV. Bayes (Minimum Average Cost) Test for M Hypotheses

As discussed in the introduction, when the a priori probabilities and costs associated with the various
hypotheses are unequal, then the appropriate test to apply to the detection problem is the Bayes test,
wherein the average cost (risk) is minimized. We now present a mathematical model for a Bayesian
detection of M hypotheses and then derive a receiver structure that implements the resulting decision
criterion.

Let Cij denote the cost of deciding hypothesis Hi when in fact Hj is true. Let P (Hj) denote the a
priori probability of Hj . Then, the average cost is given by

C̄ =
M−1∑
i=0

M−1∑
j=0

CijP (Hj)P (Hi |Hj ) (58)

where, as previously denoted, P (Hi |Hj ) is the probability of hypothesis Hi when in fact Hj is true and
is defined analogously to Eq. (4) as

Pr {Hi |Hj } =
∫
Ri

p (r |Hj ) dr, i, j = 1, 2, . . . ,M − 1 (59)

Following the approach in [5], we can rewrite C̄ in the form8

C̄ =
M−1∑
i=0

P (Hi)Cii +
M−1∑
i=0

∫
Ri

M−1∑
j=0
j 6=i

P (Hj) (Cij − Cjj)p (r |Hj ) dr (60)

Defining the arguments of the integrals by

Ii (r)
4=
M−1∑
j=0
j 6=i

P (Hj) (Cij − Cjj) p (r |Hj ) (61)

then, since the first term of Eq. (60) is constant and thus independent of the decision rule, to minimize
C̄, one should

8 Actually, VanTrees [5] writes this form only for M = 3. However, the extension to arbitrary M is straightforward.
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Choose the hypothesis Hi∗ such that i∗ = min
i

−1Ii (r) (62)

Alternately, defining the likelihood ratios

Λi (r) =
p (r |Hi )
p (r |H0 )

, i = 1, 2, . . . ,M − 1

Λ0 (r) = 1

 (63)

then dividing Ii (r) by p (r |H0 ) (a positive quantity), we get

Ωi(r)
4=

Ii(r)
p(r |H0 )

=
M−1∑
j=0
j 6=i

wij︷ ︸︸ ︷
P (Hj) (Cij − Cjj)Λj (r) , i = 1, 2, . . . ,M − 1 (64)

which results in the equivalent decision rule:

Choose the hypothesis Hi∗ such that i∗ = min
i

−1Ωi (r) (65)

Note that Eq. (64), which represents the transformation from the likelihood functions to the decision
variables, is a linear weighting and can thus be written in matrix form as

Ω = WΛ (66)

where

Ω = [Ω0 (r) ,Ω1 (r) ,Ω2 (r) , . . . ,ΩM−1 (r)]T

Λ = [1,Λ1 (r) ,Λ2 (r) , . . . ,ΛM−1 (r)]T

 (67)

and the weighting matrix W is given by

W = {wij}

wii = 0

wij = P (Hi) (Cij − Cii)


(68)

i.e., a square M ×M matrix with zeros along the diagonal. Quite often the cost of making a correct
decision is assumed to be zero and, thus, the off-diagonal weights in Eq. (68) simplify to

wij = P (Hi)Cij (69)
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For the M -hypothesis testing problem under consideration in this article, the likelihood ratios defined in
Eq. (63) have already been computed previously [1]. For example, for a set of M − 1 sinusoidal signals
with unknown phase and known frequency (as investigated in Section III.A.2),

Λi (r) = Λi (r(t)) = exp
(
−PT
N0

)
I0

(
2
√
P

N0
Lci

)
, i = 1, 2, . . . ,M − 1

Λ0 (r) = Λ0 (r(t)) = 1

 (70)

where the envelope Lci is defined in Eq. (12). Using Eq. (66) in Eq. (64) together with Decision Rule (65)
suggests the receiver illustrated in Fig. 13.
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Fig. 13.  The Bayesian detector for detection of M – 1 sinusoidal tones with unknown phase and
known frequency in AWGN.
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Appendix A

On the Estimator–Correlator Representation
of Average-Likelihood Ratios

I. Introduction

In the study of detection problems involving signals (deterministic or random) corrupted by additive
Gaussian noise, it is well-known that a likelihood ratio test is optimum in the sense of maximizing the
probability of detection PD for a given false alarm probability PFA (the so-called Neyman–Pearson cri-
terion). When the randomness of the signal is in the form of one or more unknown parameters, e.g.,
a sinusoidal carrier with unknown phase, frequency, etc., then the likelihood ratio mentioned above is
obtained by statistically averaging over the unknown parameters, which implies knowledge of their prob-
ability density functions (pdf’s), resulting in a so-called average-likelihood ratio test. Receiver structures
based on such average-likelihood ratio tests for various signals of practical interest are well documented
in the literature and result in optimum detection performance in accordance with the above definition of
optimality.

It is often intuitively satisfying to view the average-likelihood ratio mentioned above in the form of
an estimator–correlator processor. In particular, one first estimates the random signal, s(t), and then
correlates this estimated signal, ŝ(t), with the received signal, r(t), over the duration of the observation, T .
The average-likelihood ratio (actually the natural logarithm of this ratio) is then obtained by subtracting
from this correlation

∫ T
0
r(t)ŝ(t)dt, an appropriate bias term proportional to the energy in the signal

estimate, i.e., (1/2)
∫ T
0
ŝ2(t)dt. The equivalence between the traditional form of the average-likelihood

ratio (namely, the ratio of the pdf’s of r(t) under the two-hypothesis signal present (H1) and signal absent
(H0)) and the estimator–correlator form was established many years ago by Kailath [2]. In particular,
he showed that the appropriate signal estimator to use for ŝ(t) was the conditional mean of r(t), given
observations up to the instant t and assuming the signal-present hypothesis (H1). It is important to
emphasize at this point that the traditional and the estimator–correlator forms of the average-likelihood
ratio are exactly equivalent (and thus would produce identical receiver performances.)

The primary motivation for introducing the estimator–correlator philosophy is to allow engineering
approximations of this form of optimum receiver with other, perhaps simpler to implement, signal es-
timators. With rare exceptions, such approximate estimator–correlator receivers will yield suboptimum
performance relative to the true average-likelihood structure.1

In the case where the signal randomness is described by a vector of unknown parameters (such as the
sinusoidal carrier with unknown phase, frequency, etc.), it is tempting to use for the estimate of the signal
a sinusoidal carrier whose phase, frequency, etc., are replaced by the maximum-likelihood estimates of
these random parameters. These maximum-likelihood estimates are obtained from suitable processing
of the received signal over the entire observation interval of T s and, thus, differ considerably from the
optimum conditional mean estimator described above, which is obtained as a continuous function of time
t throughout the observation interval. It is to be emphasized that such a form of signal estimator when
used with an estimator–correlator structure will never result in the true average-likelihood ratio. What
is interesting, and strictly a coincidence, is the fact that for the case of a sinusoidal carrier with known
frequency but unknown (random) phase [assumed to be uniformly distributed in the interval (−π, π)],
an estimator–correlator using as a signal estimate the same sinusoidal carrier with a phase equal to

1 At best, these other estimator–correlator structures based upon signal estimators other than the specific one described
above will perform equally to the true optimum structure.
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the maximum-likelihood estimate of phase, θ̂ML, results in optimum receiver performance. That is, even
though this approximate estimator–correlator structure does not achieve the true average-likelihood ratio,
it does result in an equivalent average-likelihood ratio test, i.e., a comparison of the likelihood ratio with
a threshold determined from the given false alarm probability. It is to be emphasized again that this is
strictly a coincidence, and one should not mislead oneself into thinking that it can be extended to the
case where other signal parameters are unknown. For example, if both signal carrier phase and frequency
are unknown and random, then an estimator–correlator structure using as a signal estimator this same
carrier with phase and frequency equal to the maximum-likelihood estimates of these parameters produces
neither the true average-likelihood ratio nor an equivalent average-likelihood ratio test. More specifically,
such an approximate estimator–correlator structure will have suboptimum performance relative to that
based on the true average-likelihood ratio.

At this point, we turn to a mathematical formulation of some of the above statements, using as
examples the case where the signal is a sinusoidal carrier with unknown phase and frequency parameters.

II. Mathematical Model

We begin by considering the following canonical detection problem. Given an observation {r(t), 0 ≤ t
≤ T ≤ ∞}, determine which of the following hypotheses is true:

H1 : r(t) = s(t) + n(t)

H0 : r(t) = n(t)

 (A-1)

where s(t) denotes the signal (deterministic or random) and n(t) denotes the additive white Gaussian
noise.2 The traditional likelihood function approach is to compute the likelihood ratio (LR), Λ, namely,

Λ 4=
p (r(t) |H1 )
p (r(t) |H0 )

(A-2)

and compare this quantity to a threshold, γ, resulting in the likelihood ratio test

Λ

H1

>
≤
H0

γ (A-3)

In [2], it is shown that the LR defined in Eq. (A-2) can be expressed in a form that implies an estimator–
correlator type of detector, namely,

Λ = exp

{∫ T

0

r(t)ŝ(t)dt− 1
2

∫ T

0

ŝ2(t)dt

}
(A-4)

where

2 For our purposes, the additive noise will be taken to be white Gaussian although the formulation given in [1] allows for a
much more general statistical noise model.
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ŝ(t) 4= E {r(τ) |τ ≤ t,H1 } (A-5)

It is well-known that ŝ(t) is the least-squares estimate (not necessarily linear) of s(t) given noisy data
{s(τ) + n(τ), τ < t} up to time t. If H1 is not the true hypothesis, then ŝ(t) of Eq. (A-5) is not the
least-squares estimate of s(t); it may be called a pseudoestimate of s(t).

Since the natural logarithm is a monotonic function of its argument, then an equivalent LR test to
Eq. (A-3) is

λ

H1

>
≤
H0

γ γ
4= ln Γ, λ

4= ln Λ (A-6)

or using Eq. (A-4),

∫ T

0

r(t)ŝ(t)dt− 1
2

∫ T

0

ŝ2(t)dt

H1

>
≤
H0

γ (A-7a)

or equivalently,

∫ T

0

r(t)ŝ(t)dt

H1

>
≤
H0

γ′ (A-7b)

where the energy term has been combined with the original threshold γ to form a new threshold γ′.
Figure A-1 is a graphical illustration of Eq. (A-7b). The specific implementation of the block labeled
signal estimation depends on the statistical characterization of the signal s(t). We shall illustrate this
evaluation for two cases of interest, namely, s(t) equal to a sinusoidal carrier with known frequency and
unknown phase, and s(t) equal to a sinusoidal carrier with unknown frequency and unknown phase. In
both cases, the signal amplitude (which may be time varying over the observation) is assumed to be
known. Before proceeding with these specific evaluations, we first derive an expression for the estimator
of Eq. (A-5) that is valid for an arbitrary characterization of s(t).

H i
>
<

H 0
r (t )

( )dt•0

T

SIGNAL
ESTIMATION

H 1 OR H 0
s (t )

Fig.  A-1.  The estimator–correlator form of the optimum receiver.

•

By definition, the conditional mean specified in Eq. (A-5) is given by
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ŝ(t) 4=
∫
s(t)p (s(t) |r(τ); τ ≤ t ) ds(t) (A-8)

where r(τ) = s(τ) + n(τ). Using Bayes’ rule, namely,

p (s(t) |r(τ); τ ≤ t ) =
p (r(τ); τ ≤ t |s(t) ) p (s(t))

p (r(τ); τ ≤ t)

=
p (r(τ); τ ≤ t |s(t) ) p (s(t))∫

p (r(τ); τ ≤ t |s(t) ) p (s(t)) ds(t)
(A-9)

we can rewrite Eq. (A-8) as

ŝ(t) 4=
∫
s(t)p (r(τ), τ ≤ t |s(t) ) p (s(t)) ds(t)∫
p (r(τ), τ ≤ t |s(t) ) p (s(t)) ds(t)

(A-10)

A. Sinusoidal Signal With Known Frequency and Unknown Phase

Consider a signal of the form

s(t) = A(t) cos (ωt+ θ) (A-11)

where A(t) is a known deterministic signal amplitude that is “slowly varying” compared with the known
frequency ω, and θ is a random phase assumed to be uniformly distributed in the interval (−π, π). Note
that since θ is constant (with time) over the duration of the observation, then conditioning on s(t) in
Eq. (A-10) is equivalent to conditioning on θ, which in turn implies conditioning on s(t) for all the past,
i.e., s(t), τ ≤ t. Thus,

p (r(τ), τ ≤ t |s(t) ) = p (r(τ), τ ≤ t |s(τ), τ ≤ t ) (A-12)

Since our observation interval is assumed to be (0, T ), then for our purposes, the infinite past τ ≤ t can
be replaced by 0 ≤ τ ≤ t. Since r(t) corresponds to the addition of white Gaussian noise, n(t), to the
signal in Eq. (A-11), then using Eq. (A-12), we get

p (r(τ), τ ≤ t |s(t) ) = C exp
(
− 1
N0

∫ t

0

(r(τ)− s(τ))2 dτ
)

= C exp
(
− 1
N0

∫ t

0

r2(τ)dτ
)

exp
(

2
N0

∫ t

0

r(τ)s(τ)dτ
)

exp
(
− 1
N0

∫ t

0

s2(τ)dτ
)

(A-13)

where N0 is the single-sided noise spectral density in W/Hz. The first of the three exponential terms in
Eq. (A-13) is independent of the signal s(t) and thus will cancel when used in both the numerator and
denominator of Eq. (A-10). The third exponential term of Eq. (A-13) approximately (for the assumed
slow variation of A(t)) evaluates to
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exp
(
− 1
N0

∫ t

0

s2(τ)dτ
)
∼= exp

(
−

∫ t
0
A2(τ)dτ
2N0

)
(A-14)

which again will be common to both the numerator and denominator of Eq. (A-10) and hence will also
cancel. Finally, the middle exponential term of Eq. (A-13) becomes

exp
(

2
N0

∫ t

0

r(τ)s(τ)dτ
)

= exp
(

2
N0

[
cos θ

∫ t

0

r(τ)A(τ) cosωτdτ − sin θ
∫ t

0

r(τ)A(τ) sinωτdτ
])

= exp {V (t) cos (θ − φ(t))} (A-15)

where

Vc(t)
4=

∫ t

0

r(τ)A(τ) cosωτdτ

Vs(t)
4=

∫ t

0

r(τ)A(τ) sinωτdτ

V (t) 4=
√
V 2
c (t) + V 2

s (t)

φ(t) 4= − tan−1 Vs(t)
Vc(t)



(A-16)

Since p(s(t))ds(t) = pθ(θ)dθ, then in view of the above, the denominator of Eq. (A-10) becomes

∫
p (r(τ), τ ≤ t |s(t) ) p (s(t)) ds(t) = C′(t)

∫
exp {V (t) cos (θ − φ(t))} p(θ)dθ (A-17)

where C ′(t) includes the first and third exponential terms of Eq. (A-13). Averaging over the uniform
distribution of θ, i.e., p(θ) = 1/2π,−π ≤ θ ≤ π, we get the final result

∫
p (r(τ), τ ≤ t |s(t) ) p (s(t)) ds(t) = C ′(t)I0 (V (t)) (A-18)

where I0(x) is the modified zero-order Bessel function of the first kind with argument x. Similarly, the
numerator of Eq. (A-10) evaluates to

∫
s(t)p (r(τ), τ ≤ t |s(t) ) p (s(t)) ds(t) = C ′(t)

∫
A(t) cos (ωt+ θ) exp {V (t) cos (θ − φ(t))} p(θ)dθ (A-19)

Again employing the uniform distribution on θ, we get
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C ′(t)
∫
A(t) cos (ωt+ θ) exp {V (t) cos (θ − φ(t))} p(θ)dθ =

C ′(t)A(t) cos (ωt+ φ(t))

=I1(V (t))︷ ︸︸ ︷
1
2π

∫ π

−π
cos (θ − φ(t)) exp {V (t) cos (θ − φ(t))} dθ

− C ′(t)A(t) sin (ωt+ φ(t))
1
2π

∫ π

−π
sin (θ − φ(t)) exp {V (t) cos (θ − φ(t))} dθ︸ ︷︷ ︸

=0

(A-20)

Finally, then,

∫
s(t)p (r(τ), τ ≤ t |s(t) ) p (s(t)) ds(t) = C ′(t)A(t) cos (ωt+ φ(t)) I1 (V (t)) (A-21)

where I1(x) is the modified first-order Bessel function of the first kind with argument x. Taking the ratio
of Eq. (A-18) to Eq. (A-21) gives the signal estimator in accordance with Eq. (A-10), namely,

ŝ(t) = A(t)
I1 (V (t))
I0 (V (t))

cos (ωt+ φ(t)) (A-22)

An illustration of the implementation of ŝ(t) in Eq. (A-22) integrated into the estimator–correlator receiver
is illustrated in Fig. A-2.

If, instead of the estimator–correlator, one were to use the traditional average-likelihood function
approach as described by Eq. (A-2), then for the case at hand, Eq. (A-2) would become

Λ 4=

∫ π
−π p (r(t) |H1, θ ) p(θ)dθ

p (r(t) |H0, θ )
(A-23)

which for the uniform distribution on θ and the signal of Eq. (A-11) gives the well-known result (see [1]
for example)

λ = ln Λ = ln I0 (V (T ))− 1
4

∫ T

0

A2(t)dt (A-24)

When the second term in Eq. (A-24) is absorbed into the detection threshold, we obtain the classical
noncoherent detector illustrated in Fig. A-3, which is based on the LR test

ln I0 (V (T ))

H1

>
≤
H0

γ′′ γ′′ = γ +
1
4

∫ T

0

A2(t)dt (A-25)

Clearly, the receiver of Fig. A-3(a), obtained by averaging out the phase in the numerator of the likeli-
hood ratio, is less complex than its estimator–correlator counterpart of Fig. A-2 and is, thus, the preferred
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Fig. A-2.  The estimator–correlator form of the optimum receiver with signal estimator
for a sinusoidal carrier with known frequency and unknown phase.
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Fig. A-3.  Noncoherent detectors for a sinusoidal carrier with known frequency and unknown phase:  (a) obtained by
averaging out the phase in the numerator of the likelihood ratio and (b) a further simplified alternate form.
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implementation. In fact, in terms of a likelihood ratio test, Fig. A-3(a) can be further simplified to
Fig. A-3(b) by noting that the ln I0(x) function is monotonic in its argument x, and thus Eq. (A-25) can
be rewritten as

V (T )

H1

>
≤
H0

ξ (A-26)

where ξ is yet another normalized threshold.

For the signal in Eq. (A-11), the maximum-likelihood estimate of θ based on the entire observation
interval 0 ≤ t ≤ T is given by θ̂ML = φ(T ), where φ(t) is defined in Eq. (A-16). This is easily seen from
Eq. (A-15) by noting that, for t = T , the exponential is maximized by making the argument of the cosine
function equal to zero. Replacing θ by θ̂ML in Eq. (A-11) and using this result as an estimate of the
signal in the estimator–correlator structure of Fig. A-1 results in the following correlator output:

∫ T

0

r(t)ŝ(t)dt =
∫ T

0

r(t)A(t) cos
(
ωt+ θ̂ML

)
dt

= cos θ̂ML

Vc(T )︷ ︸︸ ︷∫ T

0

r(t)A(t) cosωtdt− sin θ̂ML

Vs(T )︷ ︸︸ ︷∫ T

0

r(t)A(t) sinωtdt

=
Vc(T )
V (T )

Vc(T )− −Vs(T )
V (T )

Vs(T ) =
V 2
c (T ) + V 2

s (T )
V (T )

= V (T ) (A-27)

Thus, although the correlator output is not equal to the average-likelihood ratio as in Eq. (A-25), in view
of Eq. (A-26), it does, however, result in an optimum-likelihood test. This receiver structure is illustrated
in Fig. A-4.

B. Sinusoidal Signal With Unknown Frequency and Unknown Phase

Consider a signal of the form in Eq. (A-11) where now the frequency f = ω/2π is also unknown
and assumed to be uniformly distributed in the interval (fc −B/2, fc +B/2). Again, since θ and f are
constant (with time) over the duration of the observation, then conditioning on s(t) in Eq. (A-10) is
equivalent to conditioning on θ and f , which in turn implies conditioning on s(t) for all the past, i.e.,
s(t), τ ≤ t, as in Eq. (A-12). Proceeding as before, we arrive at an expression identical to Eq. (A-18),
which we now express as

exp
(

2
N0

∫ t

0

r(τ)s(τ)dτ
)

= exp
(

2
N0

[
cos θ

∫ t

0

r(τ)A(τ) cos 2πfτdτ − sin θ
∫ t

0

r(τ)A(τ) sin 2πfτdτ
])

= exp {V (t, f) cos (θ − φ(t, f))} (A-28)

where
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Fig. A-4.  The maximum-likelihood phase estimator and pseudocoherent
detector of a sinusoidal carrier with known frequency and unknown phase.
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Vc(t, f) 4=
∫ t

0

r(τ)A(τ) cos 2πfτdτ

Vs(t, f) 4=
∫ t

0

r(τ)A(τ) sin 2πfτdτ

V (t, f) 4=
√
V 2
c (t, f) + V 2

s (t, f)

φ(t, f) 4= − tan−1 Vs(t, f)
Vc(t, f)



(A-29)

and we have specifically introduced into the notation the dependence on the unknown parameter f . First
averaging over the unknown phase as before and then over the unknown frequency gives [analogously to
Eq. (A-18)]

∫
p (r(τ), τ ≤ t |s(t) ) p (s(t)) ds(t) = C ′(t)

1
B

∫ fc+B/2

fc−B/2
I0 (V (t, f)) df (A-30)

Similarly, the numerator of Eq. (A-10) evaluates to

∫
p (r(τ), τ ≤ t |s(t) ) p (s(t)) ds(t) = C ′(t)A(t)

1
B

∫ fc+B/2

fc−B/2
cos (2πft+ φ(t, f)) I1 (V (t, f)) df (A-31)
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Taking the ratio of Eq. (A-30) to Eq. (A-31) gives the signal estimator in accordance with Eq. (A-10),
namely,

ŝ(t) = A(t)

∫ fc+B/2
fc−B/2 cos (2πft+ φ(t, f)) I1 (V (t, f)) df∫ fc+B/2

fc−B/2 I0 (V (t, f)) df
(A-32)

The estimator in Eq. (A-32) can be approximated by replacing the continuous integrations over f by
discrete sums evaluated at frequencies separated by 1/T , resulting in a bank of G = BT correlators (see
Fig. A-5).
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Fig. A-5.  The estimator–correlator form of the optimum receiver with signal estimator for a
sinusoidal carrier with unknown frequency and unknown phase.
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If, instead of the estimator–correlator, one were to use the traditional average-likelihood function
approach as described by Eq. (A-2), then for the case at hand, Eq. (A-2) would become

Λ 4=

∫ fc+B/2
fc−B/2

∫ π
−π p (r(t) |H1, θ ) p(θ)p(f)dθdf

p (r(t) |H0, θ )
(A-33)

which, for the uniform distributions on θ and f and the signal of Eq. (A-11), gives the result [1]

λ = ln Λ = ln

[
1
B

∫ fc+B/2

fc−B/2
I0 (V (T, f)) df

]
− 1

4

∫ T

0

A2(t)dt (A-34)

which again can be approximated with a bank of G = BT correlators.

In terms of a likelihood ratio test, the logarithm in Eq. (A-34) can be ignored (since it is a monotonic
of its argument); however, the Bessel function nonlinearity cannot. Also, as before, the second term in
Eq. (A-34) can be absorbed into the detection threshold. The resulting structure is illustrated in Fig. A-6.

Finally, we point out that replacing θ and f by their maximum-likelihood estimates θ̂ML and f̂ML and
using the result as a signal estimator in the estimator–correlator structure of Fig. A-1 results neither in
the average-likelihood ratio nor an equivalent-likelihood ratio test.
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Fig. A-6.  The average-likelihood  (noncoherent) detector for detection of a sinusoidal tone with
unknown frequency and unknown phase.
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Appendix B

On the Orthogonality of a Set of Subcarrier
Modulated Sinusoidal Carriers

Consider a signaling set generated by product modulating a fixed sinusoidal carrier with a set of
subcarriers. In mathematical terms, the signals are characterized by1

si(t) = A sin (ωct+ θc) sin (ωscit+ θsci)

=
A

2
cos


 ω+

i︷ ︸︸ ︷
ωc + ωsci

 t+

θ+
i︷ ︸︸ ︷

θc + θsci

 +
A

2
cos


 ω−

i︷ ︸︸ ︷
ωc − ωsci

 t+

θ−
i︷ ︸︸ ︷

θc − θsci

 , i = 1, 2, . . . ,M − 1

(B-1)

It was shown in [1] that for any i, θ+i and θ−i (reduced modulo 2π) are independent when θc and θsci are
independent and each uniformly distributed in (−π, π). Consider the signal correlation

∫ T
0
si(t)sj(t)dt,

which, using Eq. (B-1), becomes

∫ T

0

si(t)sj(t)dt =
A2

4

[∫ T

0

cos
(
ω+
i t+ θ+i

)
cos

(
ω+
j t+ θ+j

)
dt

+
∫ T

0

cos
(
ω+
i t+ θ+i

)
cos

(
ω−j t+ θ−j

)
dt

+
∫ T

0

cos
(
ω−i t+ θ−i

)
cos

(
ω+
j t+ θ+j

)
dt

+
∫ T

0

cos
(
ω−i t+ θ−i

)
cos

(
ω−j t+ θ−j

)
dt

]
(B-2)

Ignoring the sum frequency terms, we get

1 In reality, the subcarriers would be square waves. However, since we only consider the first upper and lower side bands of
the modulated carrier, we can equivalently consider sinusoidal subcarriers.
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∫ T

0

si(t)sj(t)dt =
A2

8

[∫ T

0

cos
((
ωsci − ωscj

)
t+ θ+i − θ+j

)
dt

+
∫ T

0

cos
((
ωsci + ωscj

)
t+ θ+i + θ−j

)
dt

+
∫ T

0

cos
((
−ωsci − ωscj

)
t+ θ−i − θ+j

)
dt

+
∫ T

0

cos
((
−ωsci + ωscj

)
t+ θ−i − θ−j

)
dt

]
(B-3)

Thus, if the spacing between subcarrier frequencies is an integer multiple of the reciprocal of the obser-
vation time, i.e., fsci − fscj = m/T , then the first and fourth terms in Eq. (B-3) are zero. Furthermore,
if fsci + fscj >> 1/T for all i and j, as is typically the case, then the second and third terms of Eq. (B-3)
are also zero, in which case the signaling set is orthogonal.

Appendix C

Computer Simulation Using the DETECT.FOR Program

All simulations started by generating Gaussian random samples at the output of the integrate-and-
dump device (for the ALR and MLR detectors) or at the output of the lowpass filter (for the subband
receiver) using theoretically computed mean and standard deviation values. These samples were then
processed as required by each particular algorithm, and the output statistics were computed and checked,
when possible, against the theoretical predictions. When the simulation required generating samples for
extremely large values of G or G×F (in the range of many millions and even billions), these samples were
generated using Gaussian statistics extrapolated from smaller batches—in the range of 50,000 to 60,000.

I. ALR Detection With Unknown Frequency and Zero Frequency Drift

The simulation was run for B = 2000 Hz, T = 1000 s (G = 2 × 106), PFA = 2 × 10−4, and −18.0
≤ P/N0 ≤ 10.0 dB-Hz. Both the best case (true received frequency falling on one of the bin frequencies)
and the worst case (true received frequency falling midway between two bin frequencies) were simulated.
The number of trials was set to 60,000. Since we were unable to generate samples for G = 2 × 106 or
larger, the first and second moments at the output of the summing device were computed usingG = 40 for
both the H0 and H1 hypotheses and then extrapolated to G = 2× 106. Figure 6 summarizes simulation
results in terms of probability of miss, PM = 1 − PD, versus P/N0. The theoretical performance of the
MLR scheme is included in this figure for comparison purposes.

The MLR detector with unknown frequency was also simulated, and the results matched almost exactly
the theoretical predictions.
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II. ALR Detection With Unknown Frequency and Nonzero Frequency Drift

Here the conditions were as in case 1, but with the addition of an extra dimension to compensate
frequency drift. This extra dimension had F = 25, 000 bins. Only the best case (zero frequency offset
and zero frequency drift) was simulated. Again extrapolation was used with the Gaussian assumption to
generate samples for G× F = 5× 1010 bins. Two simulation points at PFA = 2× 10−4 were obtained at
P/N0 = −14 and P/N0 = −12 dB-Hz (each point took 60 hours to compute). These two data points are
included in Fig. 6.

The simulation program for the ALR scheme allows for any frequency offset and frequency drift values.
However, we did not run a full-scale simulation for G × F = 5 × 1010 because it would require about
730 years of computation time on a 133-MHz Pentium computer! We feel that even a supercomputer
could not handle such a big job. So for the time being, all performance curves for large G and G × F
values are obtained as previously mentioned, by extrapolating to these large values assuming Gaussian
statistics.

III. Subband Receiver

The simulation was run assuming B = 2000 Hz, T = 1000 s, and a subdivision of the total frequency
span from 1 to 2000 subbands. Also included was the frequency drift matching case with 50 frequency
drift bins covering a ±25 mHz/s range. Again, probabilities of false alarm and detection were computed
by running 60,000 trials for each SNR point in the region of −12.0 ≤ P/N0 ≤ 6.0 dB-Hz. Figure
9 summarizes these simulation results.

Appendix D

On the Orthogonality of Chirp Signals

In this appendix, we consider the envelope of the correlation function of chirp signals and determine
the conditions for their approximate orthogonality.

Consider a received signal of the form

r(t) =
√

2P cos
[
2π

(
fct+

1
2
ḟct

2 + θ

)]
+ n(t) (D-1)

whose signal component is in the form of a chirp signal. To implement the ALR receiver, we must first
form the I and Q correlations, Lc(f, ḟ), Ls(f, ḟ), and then form the signal envelope, L(f, ḟ), all of which
are defined in Eq. (43) of the main text. Substituting Eq. (D-1) into Eq. (43) of the main text and
ignoring the noise components gives

Lc

(
f, ḟ

)
=
√
PCcc

(
∆f,∆ḟ

)
cos θ −

√
PCsc

(
∆f,∆ḟ

)
sin θ

Ls

(
f, ḟ

)
=
√
PCcs

(
∆f,∆ḟ

)
cos θ −

√
PCss

(
∆f,∆ḟ

)
sin θ

 (D-2)

48



where (ignoring double harmonic terms)

Ccc

(
∆f,∆ḟ

)
=

∫ T

0

cos
[
2π

(
∆ft+

1
2
∆ḟ t2

)]
dt = Css

(
∆f,∆ḟ

)

Csc

(
∆f,∆ḟ

)
=

∫ T

0

sin
[
2π

(
∆ft+

1
2
∆ḟ t2

)]
dt = −Ccs

(
∆f,∆ḟ

)


(D-3)

and

∆f 4= fc − f

∆ḟ 4= ḟc − ḟ

 (D-4)

Forming the squared envelope from the I and Q components in Eq. (D-2) gives

L2
(
f, ḟ

)
4= L2

c

(
f, ḟ

)
+ L2

s

(
f, ḟ

)
= P

[
C2
cc

(
∆f,∆ḟ

)
+ C2

sc

(
∆f,∆ḟ

)]
(D-5)

Using Eqs. (7.4.38) and (7.4.39) of [6], we obtain

Ccc

(
∆f,∆ḟ

)
= T

√
1

2∆ḟT 2

cos

(
π (∆fT )2

∆ḟT 2

) C
√

2∆ḟT 2 +

√
2 (∆fT )2

∆ḟT 2

− C
√

2 (∆fT )2

∆ḟT 2



+ sin

(
π (∆fT )2

∆ḟT 2

) S
√

2∆ḟT 2 +

√
2 (∆fT )2

∆ḟT 2

− S
√

2 (∆fT )2

∆ḟT 2

 (D-6a)

and

Csc

(
∆f,∆ḟ

)
= T

√
1

2∆ḟT 2

cos

(
π (∆fT )2

∆ḟT 2

) S
√

2∆ḟT 2 +

√
2 (∆fT )2

∆ḟT 2

− S
√

2 (∆fT )2

∆ḟT 2



− sin

(
π (∆fT )2

∆ḟT 2

) C
√

2∆ḟT 2 +

√
2 (∆fT )2

∆ḟT 2

− C
√

2 (∆fT )2

∆ḟT 2

 (D-6b)

where C(x) and S(x) are the Fresnel integrals defined by [6]

C(x) =
∫ x

0

cos
(π

2
y2

)
dy

S(x) =
∫ x

0

sin
(π

2
y2

)
dy


(D-7)
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Substituting Eqs. (D-6a) and (D-6b) into Eq. (D-5) results after simplification in

L2
(
f, ḟ

)
=
PT 2

2

(
1

∆ḟT 2

) 
C

√
2∆ḟT 2 +

√
2 (∆fT )2

∆ḟT 2

− C
√

2 (∆fT )2

∆ḟT 2

2

+

S
√

2∆ḟT 2 +

√
2 (∆fT )2

∆ḟT 2

− S
√

2 (∆fT )2

∆ḟT 2

2
 (D-8)

Noting that C(0) = S(0) = 0, then for ∆f = 0, Eq. (D-8) simplifies to

L2
(
f, ḟ

)∣∣∣ ∆f=0 =
PT 2

2

(
1

∆ḟT 2

) {
C2

(√
2∆ḟT 2

)
+ S2

(√
2∆ḟT 2

)}
(D-9)

which, in the further limiting case of ∆ḟ = 0, gives

L2
(
f, ḟ

) ∣∣∣∆f=0,∆ḟ=0 = PT 2 (D-10)

in agreement with the results in Eq. (13) of [1]. Further noting that

lim
x→∞

C(x) = lim
x→∞

S(x) =
1
2

(D-11)

we see that for sufficiently large ∆ḟ , the squared envelope of Eq. (D-9) vanishes. The question to be
addressed is how large must ∆ḟ be in order for the squared envelope of Eq. (D-9) to approximately vanish,
which determines the minimum spacing between quantized values of ḟ for approximate orthogonality.

Figure D-1 is a plot of L2(f, ḟ) |∆f=0 /PT
2 versus

√
2∆ḟT 2, which is in the form of

[
C2 (x) + S2 (x)

]
/x2

as obtained from Eq. (D-9). As can be seen from this illustration, the squared envelope is small for

x =
√

2∆ḟT 2 ≥ 2. Thus, approximate orthogonality is achieved by spacing the frequency rates an
amount equal to ∆ḟ = 2/T 2, which yields a total number of quantized values in the uncertainty interval

Ḃ of F = Ḃ/
(
2/T 2

)
= ḂT 2/2. Using Eq. (D-8), we see that for

√
2∆ḟT 2 = 2 (the value used for the

ALR), the normalized squared envelope (i.e., the correlation coefficient) for ∆f = 1/T and ∆f = 2/T
is smaller than its value for ∆f = 0 (see Table D-1). Thus, the orthogonality assumption is even more
justified.
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Table D-1. Correlation coefficient

values for
√

2∆ḟT 2 = 2 and
several values of ∆f .

∆f L2 = PT 2

0 0.089

1/T 0.027

2/T 0.0015
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