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An H∞ Controller With Wind Disturbance Rejection
Properties for the DSS-13 Antenna

W. Gawronski
Communications Ground Systems Section

The feed-forward and linear quadratic Gaussian (LQG) controllers significantly
reduced the servo error at higher rate tracking. However, the servo error due to wind
disturbances acting on the antenna structure is still significant. This error cannot be
reduced by the feed-forward controller and is only moderately reduced by the LQG
controller. The H∞ controller design approach gives the possibility of addressing
the problems of command following and disturbance rejection. The H∞ controller
that was designed for the DSS-13 antenna improves the tracking performance of
the existing LQG controller and significantly reduces the servo error due to wind
disturbances. The antenna model, as well as the wind model, were obtained from
the field tests rather than from analysis, which increases confidence in the simulation
results.

I. Introduction

The baseline servo configuration of the DSS-13 antenna includes the proportional and integral (PI)
controller. This controller was upgraded recently with the addition of the feed-forward (FF) loop (see
[1]) and of the linear quadratic Gaussian (LQG) controller (see [2] and [3]). The basic purpose of the
FF controller is to reduce tracking error at high rates. It is used for rates ranging from 0.1 to 4 deg/s.
However, the FF controller excites flexible deformation of the antenna if the command accelerations are
excessive. On the other hand, the LQG controller not only reduces the tracking error at higher rates but
also suppresses antenna vibrations even for significant command accelerations.

A significant portion of the tracking error is generated by the antenna vibrations excited by wind
gusts. Although the pointing error caused by the wind-induced antenna dynamics is a concern, there
was not a direct effort to design a controller that would reduce the action of wind disturbances. The
addition of the FF controller neither improves nor weakens the wind disturbance rejection properties of
the baseline PI controller. The LQG controller improves tracking, but its disturbance rejection properties
were not addressed in the design process, and therefore, they are rather moderate. The H∞ controller
has the inherent possibility of customizing its properties so that its tracking and the disturbance rejection
properties are addressed simultaneously. In this article, the design of the H∞ controller is presented. The
design results are illustrated with the simulation results of command following (e.g., step input) and with
the tracking simulations in a 50-km/h wind.
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II. The H∞ Controller Structure

The closed-loop system architecture is shown in Fig. 1, where G is the transfer function of a plant, K
is the transfer function of a controller, w is the exogenous input (commands and disturbances), u is the
actuator input, z is the regulated output (at which performance is evaluated), and y is the sensed output.

Fig. 1.  The closed-loop system configuration.
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A. Problem Definition

The H∞ control problem consists of determining the controller K such that the H∞ norm of the
closed-loop transfer function Gzw, from w to z, is minimized over all realizable controllers K; that is, one
has to find realizable K such that

||Gzw(K)||∞ (1)

is minimal. The plant transfer function G(s) and the controller transfer function K(s) are such that

(
z(s)
y(s)

)
= G(s)

(
w(s)
u(s)

)

u(s) = K(s)y(s)

 (2)

In the related state–space equations

ẋ = Ax+B1w +B2u

z = C1x+D12u

y = C2x+D21w


(3)

(A,B2) is stabilizable and (A,C2) is detectable. We will design a so-called central H∞ controller, for
which the conditions

DT
12 [C1 D12] = [0 I]

D21

[
BT1 DT

21

]
= [0 I]

 (4a)

are satisfied. Additionally, the matrices
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[
A− jωI B2

C1 D12

]
[
A− jωI B1

C2 D21

]


(4b)

have full column rank (see [4] and [5]). Let Gzw be the transfer function of the closed-loop system from
w to z. Then there exists an admissible controller such that ||Gzw|| < ρ, where ρ is the smallest number
such that the following four conditions hold:

(1) S∞c ≥ 0 solves the following central Riccati equation:

S∞cA+ATS∞c + CT1 C1 − S∞c
(
B2B

T
2 − ρ−2B1B

T
1

)
S∞c = 0 (5a)

(2) S∞e ≥ 0 solves the following central Riccati equation:

S∞eA
T +AS∞e +B1B

T
1 − S∞e

(
CT2 C2 − ρ−2CT1 C1

)
S∞e = 0 (5b)

(3) The inequality

λmax(S∞cS∞e) < ρ2 (5c)

holds, where λmax(X) is the largest eigenvalue of X.

(4) The Hamiltonian matrices

[
A ρ−2B1B

T
1 −B2B

T
2

−CT1 C1 −AT
]

[
AT ρ−2CT1 C1 − CT2 C2

−B1B
T
1 −A

] (5d)

do not have eigenvalues on the jω axis.

With the above conditions satisfied, the controller realization (A∞, B∞, C∞), from input y to output
u, is given as

A∞ = A+ ρ−2B1B
T
1 S∞c +B2kc + keC2

B∞ = − kc

C∞ = ke


(6a)

where
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kc = −BT2 Sc

ke = − SoS∞eCT2

So =
(
I − ρ−2S∞eS∞c

)−1


(6b)

The gain kc is called the controller gain, while the gain ke is the filter (estimator) gain. Note that the form
of the solution is similar to the LQG solution. However, the LQG gains are determined independently,
while the H∞ gains are coupled through Inequality (5c) and the component So. The size of the controller
is equal to the size of the plant.

Balanced coordinates are used for the controller design. An H∞ controller is balanced if the related
solutions of Eqs. 5(a) and 5(b) are equal and diagonal, i.e., if

S∞c = S∞e = M∞

M∞ = diag (µ∞1, µ∞2, . . . , µ∞N )

 (7)

µ∞1 ≥ µ∞2 ≥ · · · ≥ µ∞N > 0, where µ∞i is the ith H∞ characteristic (or singular) value.

The transformation R∞ to this representation is determined as follows: Let

P∞c = S1/2
∞c

P∞e = S1/2
∞e

 (8a)

denote N∞ = P∞cP∞e, and let

N∞ = V∞M∞U
T
∞ (8b)

be the singular value decomposition of N∞. For the transformation R∞,

R∞ = P∞eU∞M
−1/2
∞ = P−1

∞cV∞M
1/2
∞ (9)

of the state x such that x = R∞x, the representation (R−1
∞ AR∞, R

−1
∞ B1, R

−1
∞ B2, C1R∞, C2R∞) is H∞

balanced.

B. Closed-Loop System Equations

The state–space equations of the open-loop system follow from Eq. (3):
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ẋ = Ax+B1w +B2u

z = C1x+D12u

y = C2x+D21w

u = kcx̂


(10a)

and the state–space equations of the central H∞ controller are as follows (see [4] and [5]):

˙̂x =
(
A+ keC2 + ρ−2B1B

T
1 S∞c +B2kc

)
x̂− key (10b)

where

kc = −BT2 S∞c

ke = − SoS∞eCT2

So =
(
I − ρ−2S∞eS∞c

)−1


(11)

Defining a new state variable xTo = [xT eT ], where e = x − x̂, one obtains the closed-loop state–space
equations

ẋo = Aoxo +Bow

z = Coxo

 (12a)

where

Ao =
[

A+B2kc −B2kc
−ρ−2B1B

T
1 S∞c A+ keC2 + ρ−2B1B

T
1 S∞c

]
(12b)

Bo =
[

B1

B1 − kcD21

]
(12c)

Co = [C1 +D12kc −D12kc] (12d)

The block diagram of the closed-loop system is shown in Fig. 2.
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Fig. 2.  The H∞ closed-loop system.
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For the balanced H∞ system, one obtains from Eq. (11)

kc = −BT2 M∞

ke = − SoM∞CT2

So =
(
I − ρ−2M2

∞
)−1


(13a)

or, denoting kc = [kc1, . . . , kcn], kTe = [kTe1, . . . , k
T
en], B

T
2 = [BT21, . . . , B

T
2n], and C2 = [C21, . . . , C2n], then

6



kci = − µ∞iBT2i

kei = − µ∞isoiC21

soi =
ρ2

ρ2 − µ2
∞i


(13b)

C. The Tracking H∞ Controller

The tracking controller performance depends not only on the plant parameters, but also on the tracking
command profile (its rate, acceleration, etc.). One important requirement for tracking systems is to
maintain zero steady-state error. This requirement can be satisfied by upgrading the plant with an
integrator. An H∞ tracking controller with an integral upgrade is presented in Fig. 3.
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Fig. 3.  The H∞ tracking controller with an integral upgrade.
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D. Choosing the H∞ Controller Structure To Be Identical With the LQG Controller

Comparing the H∞ controller structure, as in Fig. 3, with the LQG controller structure, as in [2] and
[6], one can see that they are identical except for an additional feedback with the gain ρ−2B1B

T
1 S∞c in

the H∞ controller (shown as a dashed line in Figs. 2 and 3). This gain can be avoided in order to keep the
same structure of the control software. This is done by assuming very large ρ. For the following reason,
this should not dramatically change the closed-loop system performance: It can be seen from Eq. (13b)
that the estimator gain (kei) depends on ρ and that ke1 → ∞ as ρ → µ∞1, but the increase of the gain
ke1 will not greatly improve the system performance. Denote ε1 = ρ2 − µ2

∞1, and as ε1 approaches zero,
the performance, measured by ||Gzw||∞, improves negligibly, although the gain increase is of the order
ε−2
1 .

E. Wind Filter Shaping

In [7], the wind filter was determined from the wind field data. Its state–space model has to be added
to the loop model, and the complexity of the plant increases. However, if the rate loop model is in the
balanced representation, the filter addition can be simplified, as shown in the Appendix, by appropriate
scaling of the input matrix B of the rate loop model. The scaling factors are the filter gains at the natural
frequencies of the antenna.

III. Simulation Results

The controllers for the azimuth and elevation axes were simulated separately. In these simulations,
the antenna model, [3], as well as the wind model, [7], were obtained from the field tests rather than from
analysis. The data-based model increases confidence in the simulation results.

A. The Azimuth Axis Controller

The PI controller performance has been described in [8]. The LQG design, as in [2] and [3], is already
implemented at the DSS-13 antenna. Its proportional gain is kp = 12, and the integral gain is ki = 10.
The tracking performances of both controllers are evaluated with their transfer functions in Fig. 4. The
plots show significantly improved tracking performance of the LQG controller (the bandwidths are 0.08
and 1.2 Hz for the PI and LQG controllers, respectively). The wind gust simulation results are shown
in Table 1. The wind disturbance rejection improvement of the LQG controller (or H∞ controller) with
respect to the PI controller is evaluated with the coefficient β, which is defined as the ratio of the rms
servo errors:

β =
σX
σPI

(14)

where σX is the rms servo error of either the LQG or H∞ controller and σPI is the rms error of the PI
controller.

The simulation shows that the LQG controller, when compared with the PI controller, significantly
improves antenna tracking performance and slightly improves the wind disturbance rejection properties
(the servo error in wind was reduced by 13 percent, i.e., β = 0.87). This result illustrates the need for a
new controller with the improved disturbance rejection properties.

Two designs of the H∞ controller are now discussed and compared with the performance of the PI and
LQG control system. The first H∞ controller design is such that it preserves the tracking part of the LQG
controller (hence its proportional gain is chosen to be the same as the LQG proportional gain, kp = 12,
and the integral gain is chosen to be the same as the LQG integral gain, ki = 10). However, the other
gains (kf and ke) were modified to improve the disturbance rejection properties. The simulation results
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Fig. 4.  Magnitudes of the azimuth transfer functions of the PI, LQG,

and first and second H∞ controllers.

10–3

10–2 10–1 100 101 102

10–2

10–1

100

101

FREQUENCY, Hz

A
Z

IM
U

T
H

 T
R

A
N

S
F

E
R

 F
U

N
C

T
IO

N
S

LQG

PI

H∞H∞H∞H∞H∞H∞
H∞H∞H∞H∞H∞H∞

Table 1. DSS-13 azimuth servo error in 50-km/h gusts.

RMS servo Performance, Bandwidth,
Controller

error, mdeg β Hz

PI 0.8 1 0.08

LQG 0.7 0.87 1.2

H1 0.4 0.50 2.0

H2 0.13 0.17 2.4

(the transfer functions in Fig. 4) show a slight tracking improvement of the H∞ controller in comparison
with the LQG controller (a 2-Hz bandwidth versus a 1.2-Hz bandwidth). The wind servo error (rms) has
been reduced significantly, from 0.8 to 0.4 mdeg (see Table 1).

The second H∞ design was intended to obtain the best wind disturbance rejection properties while
preserving the tracking properties. The H∞ design gave increased PI gains. This can be explained by
the fact that the large portion of the wind disturbances includes low-frequency spectra (below 1 Hz), and
this bandwidth is predominantly governed by the proportional and the integral gains. These gains were
increased to kp = 70 and ki = 40. The tracking performance is illustrated with the magnitude of the
transfer function in Fig. 4. The bandwidth of the second H∞ controller increased to 2.4 Hz. The azimuth
servo error due to wind gusts is shown in Fig. 5. This error decreased significantly, to 0.13 mdeg. It is a
6 times reduction in comparison with the PI controller.

9



Fig. 5.  The azimuth servo error due to wind gusts.
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B. Elevation Axis Controller Simulations

The structure of the elevation axis controller is the same as the azimuth axis controller. Again, we
tested two H∞ controller designs, one with the tracking part similar to the LQG controller and the second
with the enhanced tracking/disturbance properties. The results are summarized in Table 2. The tracking
performances of the elevation axis controllers are evaluated with their transfer functions in Fig. 6. It shows
the expanding bandwidth from the PI to the LQG, to the first H∞, and to the second H∞ controllers.
The disturbance rejection properties of the elevation LQG controller were compared with those of the
PI. These properties are better than those of the azimuth LQG controller; from Table 2, it can be seen
that the servo error due to 50-km/h wind gusts dropped over 3 times. Moreover, the servo error for the
first H∞ controller was 6 times smaller than that of the PI controller, and the second H∞ controller was
18 times smaller (see Fig. 7). At the same time, the bandwidth of the H∞ controllers expanded to 2.8 Hz.

Table 2. DSS-13 elevation servo error in 50-km/h gusts.

RMS servo Performance, Bandwidth,
Controller

error, mdeg β Hz

PI 7.5 1 0.08

LQG 2.2 0.30 2.2

H1 1.3 0.17 2.3

H2 0.4 0.06 2.8

IV. Conclusions

The new controllers for the DSS-13 antenna have been designed and analyzed. The design based on
the H∞ approach shows improved tracking performance. For example, the H∞ closed-loop bandwidth
increased significantly as compared with the LQG controller (not to mention the PI controller). More
importantly, the wind disturbance rejection properties improved, since the rms servo errors of the H∞
controller dropped significantly as compared with the rms errors of the PI and LQG controllers. The
improvement is achieved through the determination of the H∞ controller’s parameters. The presented
H∞ design preserves the existing LQG controller structure. Therefore, its implementation can be achieved
without structural modifications of the software, and no new hardware is necessary.
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Fig. 6.  Magnitudes of the elevation transfer functions of the PI, LQG, and

the first and second H∞ controllers.
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Fig. 7.  The elevation servo error due to wind gusts.
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The main concern is the robustness of the H∞ controller. Its performance was achieved by narrowing
its tolerance to the antenna parameter variations. The variations occur with the elevation angle changes.
An in-field robustness check will follow, and a compromise between robustness and performance will be
achieved.

Based on the current analysis, one can expect significant improvement in the suppression of wind
disturbances.
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Appendix

Wind Filter Implementation

It will be shown that the addition of a filter in the H∞ design is equivalent to the multiplication of
each row of the plant input matrix B by a constant. The ith constant is the filter gain at the ith natural
frequency of the structure.

I. Flexible Structure Properties

The antenna rate-loop model is in the H∞ balanced representation. Its transfer function G has the
state representation (A,B,C). In this case, the system matrix A(n×n) is block diagonally dominant [9],
with 2× 2 blocks on the diagonal, and B and C are divided into 2× nd and nd × 2 blocks (nd = n/2):

A ' diag(Ai)

B =


B1

B2
...

Bnd



C = [C1 C2 · · · Cnd ]


(A-1a)

where

Ai =
[
−ζiωi ωi
−ωi −ζiωi

]
(A-1b)

and ζi is the ith modal damping. Denote

Gi = Ci(jωI −Ai)−1Bi

G = C(jωI −A)−1B

 (A-2)

Then, for the above representation, one obtains

G '
nd∑
i=1

Gi (A-3)

and

G(ωi) ' Gi(ωi) (A-4)
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II. Closed-Loop Design

For the closed-loop design, the plant transfer function G includes two inputs, the exogenous input w
(that includes commands and disturbances) and the actuator input u, and two outputs, the regulated
output z (at which performance is evaluated) and the sensed output y. The transfer function of a
controller is K. Denote Gf the transfer function of the input filter; then the transfer function Gfzw from
w to z with the input filter is

Gfzw = GzwGf (A-5)

III. Frequency Weighting for the H∞ Controller

Frequency weighting of the exogenous inputs and regulated outputs is a standard procedure in the H∞
design for obtaining the required closed-loop properties (see, for example, [10]). In this case, a plant is
augmented with the input and/or output shaping filters, forming a new plant model that is consequently
used in the controller design. For wind disturbance modeling purposes, we consider the input shaping
only.

In this case, the norm ||Gfzw||∞ rather than ||Gzw||∞ is minimized. Let (Azw, Bzw, Czw) be the
H∞ state–space representation of Gzw and (Af , Bf , Cf ) be the state–space representation of Gf . Using
Eqs. (A-3) and (A-4), one obtains

||Gfzw||∞ = ||GzwGf ||∞ ' max
i
||GzwiGf (ωi)||∞ = αfi max

i
||Gzwi||∞ (A-6)

where

αfi = |Gf (ωi)| (A-7)

and ωi is the ith natural frequency. Thus, the weighting impacts the transfer functions only at the natural
frequencies of the structure.

In this case, Eq. (A-6) can be rewritten as follows:

||Gfzw||∞ = max
i
||αfiCzw(jωI −Azw)−1Bzw||∞ (A-8)

Thus,

||Gfzw||∞ ' ||Gzwo||∞ (A-9)

where

Gzwo = Czw(jωI −Azw)−1Bzwo (A-10a)

Bzwo = αfBzw (A-10b)
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or

Bzwoi = αfiBzwi (A-10c)

and

αf = diag(αfi), i = 1, 2, . . . , nd (A-10d)

Equations (A-9) and (A-10) show that the application of the input filter for theH∞ performance modeling
is equivalent to the scaling of the 2× nd blocks of input matrix Bzw with scalars αfi. The scalar αfi is
the magnitude of the filter transfer function at the resonant frequency ωi [see Eq. (A-7)].
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