TDA Progress Report 42-127 November 15, 1996

A Soft-Input Soft-Output Maximum A Posteriori
(MAP) Module to Decode Parallel and
Serial Concatenated Codes

S. Benedetto,? D. Divsalar,” G. Montorsi,® and F. Pollara®

Concatenated coding schemes with interleavers consist of a combination of two
simple constituent encoders and an interleaver. The parallel concatenation known
as “turbo code” has been shown to yield remarkable coding gains close to theoretical
limits, yet admitting a relatively simple iterative decoding technique. The recently
proposed serial concatenation of interleaved codes may offer performance superior
to that of turbo codes. In both coding schemes, the core of the iterative decoding
structure is a soft-input soft-output (SISO) module. In this article, we describe
the SISO module in a form that continuously updates the maximum a posteriori
(MAP) probabilities of input and output code symbols and show how to embed
it into iterative decoders for parallel and serially concatenated codes. Results are
focused on codes yielding very high coding gain for space applications.

[. Introduction

Concatenated coding schemes have been studied by Forney [1] as a class of codes whose probability
of error decreased exponentially at rates less than capacity, while decoding complexity increased only
algebraically. Initially motivated only by theoretical research interests, concatenated codes have since
then evolved as a standard for those applications where very high coding gains are needed, such as
(deep-)space applications.

The recent proposal of “turbo codes” [2], with their astonishing performance close to the theoretical
Shannon capacity limits, has once again shown the great potential of coding schemes formed by two
or more codes working in a concurrent way. Turbo codes are parallel concatenated convolutional codes
(PCCCs) in which the information bits are first encoded by a recursive systematic convolutional code
and then, after passing through an interleaver, are encoded by a second systematic convolutional encoder.
The code sequences are formed by the information bits, followed by the parity check bits generated by
both encoders. Using the same ingredients, namely convolutional encoders and interleavers, serially
concatenated convolutional codes (SCCCs) have been shown to yield performance comparable, and in
some cases superior, to turbo codes [5].

@ Politecnico di Torino, Torino, Italy.

b Communications Systems and Research Section.

Both concatenated coding schemes admit a suboptimum decoding process based on the iterations of the
maximum a posteriori (MAP) algorithm [12] applied to each constituent code. The purpose of this article
is to describe a soft-input soft-output module (denoted by SISO) that implements the MAP algorithm in
its basic form, the extension of it to additive MAP (log-MAP), which is indeed a dual-generalized Viterbi
algorithm with correction,! and finally extension to the continuous decoding of PCCC and SCCC. As
examples of applications, we will show the results obtained by decoding two low-rate codes, with very
high coding gain, aimed at deep-space applications.

II. Iterative Decoding of Parallel and Serial Concatenated Codes

In this section, we show the block diagram of parallel and serially concatenated codes, together with
their iterative decoders. It is not within the scope of this article to describe and analyze the decoding
algorithms. For them, the reader is directed to [2,4,6,7] (for PCCC) and [3,5,8] (for SCCC). Rather,
we aim at showing that both iterative decoding algorithms need a particular module, named soft-input,
soft-output (SISO), which implements operations strictly related to the MAP algorithm, and which will
be analyzed in detail in the next section.

A. Parallel Concatenated Codes

The block diagram of a PCCC is shown in Fig. 1 (the same construction also applies to block codes).
In the figure, a rate 1/3 PCCC is obtained using two rate 1/2 constituent codes (CCs) and an interleaver.
For each input information bit, the codeword sent to the channel is formed by the input bit, followed by
the parity check bits generated by the two encoders. In Fig. 1, the block diagram of the iterative decoder
is also shown. It is based on two modules denoted by “SISO,” one for each encoder, an interleaver, and a
deinterleaver performing the inverse permutation with respect to the interleaver. The input and output
reliabilities for each SISO module in Fig. 1 are described in Section V.

The SISO module is a four-port device, with two inputs and two outputs. A detailed description of its
operations is deferred to the next section. Here, it suffices to say that it accepts as inputs the probability
distributions of the information and code symbols labeling the edges of the code trellis, and forms as
outputs an update of these distributions based upon the code constraints. It can be seen from Fig. 1 that
the updated probabilities of the code symbols are never used by the decoding algorithm.

B. Serially Concatenated Codes

The block diagram of a SCCC is shown in Fig. 2 (the same construction also applies to block codes).
In the figure, a rate 1/3 SCCC is obtained using as an outer encoder a rate 1/2 encoder, and as an
inner encoder a rate 2/3 encoder. An interleaver permutes the output codewords of the outer code before
passing them to the inner code. In Fig. 2, the block diagram of the iterative decoder is also shown. It is
based on two modules denoted by “SISO,” one for each encoder, an interleaver, and a deinterleaver.

The SISO module is the same as described before. In this case, though, both updated probabilities of
the input and code symbols are used in the decoding procedure. The input and output reliabilities for
each SISO module in Fig. 2 are described in Section V.

C. Soft-Output algorithms

The SISO module is based on MAP algorithms. MAP algorithms have been known since the
early seventies [10-14]. The algorithms in [11-14] perform both forward and backward recursions
and, thus, require that the whole sequence be received before starting the decoding operations. As a

LA. J. Viterbi, “An Intuitive Justification and a Simplified Implementation of the MAP Decoder for Convolutional Codes,”
submitted to the JSAC issue on “Concatenated Coding Techniques and Iterative Decoding: Sailing Toward Channel
Capacity.”

@

ENCODER [— ™
1 TO CHANNEL

RATE=12 | g

NOT TRANSMITED

ENCODER [~——*
T »- 2 TO CHANNEL
RATE=12| o

(b)

FROM © (cl) n (c;0) FROM T (c;) n (c;0)
DEMOD —# L~ NOT USED DEMOD —™ —= NOT USED
SISO SISO
w (u;l) 1 ™ (U0) n (u;l) 2 T (U;0)
Ll -~ TC -

-l

/
}—» DECISION
A

TC_l

A

Fig. 1. Block diagram of a parallel concatenated convolutional code (PCCC): (a) a PCCC,
rate = 1/3 and (b) iterative decoding of a PCCC.

@

OUTER > » INNER ’
— | ENCODER TT ENCODER |—m TO CHANNEL
RATE = 1/2 - »| RATE = 2/3
(b)
FROM T (cl) n (c;0)
DEMOD —» - NOT USED
SISO
m @) | INNER [0 0.0 1 n (c;l) n (c,0)
o T -
SISO
m(Ul) [OUTER [4.0)| DECISION
0
T

Fig. 2. Serially concatenated convolutional code (SCCC): (a) an SCCC, rate = 1/3 and
(b) iterative decoding of an SCCC.

consequence, they can only be used in block-mode decoding. The memory requirement and computational
complexity grow linearly with the sequence length.

The algorithm in [10] requires only a forward recursion, so that it can be used in continuous-mode
decoding. However, its memory and computational complexity grow exponentially with the decoding de-
lay. Recently, a MAP symbol-by-symbol decoding algorithm conjugating the positive aspects of previous
algorithms, i.e., a fixed delay and linear memory and complexity growth with decoding delay, has been
proposed in [15].

All previously described algorithms are truly MAP algorithms. To reduce the computational com-
plexity, various forms of suboptimum soft-output algorithms have been proposed. Two approaches have
been taken. The first approach tries to modify the Viterbi algorithm. Forney considered “augmented
outputs” from the Viterbi algorithm [16]. These augmented outputs include the depth at which all paths
are merged, the difference in length between the best and the next-best paths at the point of merging,
and a given number of the most likely path sequences. The same concept of augmented output was
later generalized for various applications [17-21]. A different approach to the modification of the Viterbi
algorithm was followed in [22]. It consists of generating a reliability value for each bit of the hard-output
signal and is called the soft-output Viterbi algorithm (SOVA). In the binary case, the degradation of
SOVA with respect to MAP is small [23]; however, SOVA is not as effective in the nonbinary case. A
comparison of several suboptimum soft-output algorithms can be found in [24]. The second approach
consists of revisiting the original symbol MAP decoding algorithms [10,12] with the aim of simplifying
them to a form suitable for implementation [15,25-30].

[Il. The SISO Module
A. The Encoder

The decoding algorithm underlying the behavior of SISO works for codes admitting a trellis represen-
tation. It can be a time-invariant or time-varying trellis, and, thus, the algorithm can be used for both
block and convolutional codes. In the following, for simplicity of the exposition, we will refer to the case
of time-invariant convolutional codes.

In Fig. 3, we show a trellis encoder, characterized by the following quantities:?

(1) U = (Uk)pex is the sequences of input symbols, defined over a time index set K (finite
or infinite) and drawn from the alphabet

u:{ﬂla"'vﬁ'l\f{}

To the sequence of input symbols, we associate the sequence of a priori probability
distributions:

P(u; 1) = (Pe(ug; I))ker

21In the following, capital letters U, C, S, E will denote random variables and lower-case letters u, c, s, e their realizations.
The roman letter P[A] will denote the probability of the event A, whereas the letter P(a) (italic) will denote a function
of a. The subscript k£ will denote a discrete time, defined on the time index set K. Other subscripts, like 3, will refer to
elements of a finite set. Also, “()” will denote a time sequence, whereas “{}” will denote a finite set of elements.

where

Pk('l.l,k;f) é P[Uk = uk]

(2) C = (Cr)rex is the sequences of output, or code, symbols, defined over the same time
index set K, and drawn from the alphabet

C={e,....en,}

To the sequence of output symbols, we associate the sequence of a priori probability
distributions:

P(c;I) = (Pr(cr; I))kex

For simplicity of notation, we drop the dependency of uj and ¢, on k. Thus, Py (ug;)
and Py (c; I) will be denoted simply by Py (u;I) and Py(c; I), respectively.

INPUT TRELLIS OUTPUT
B >
U ENCODER C

Fig. 3. The trellis encoder.

B. The Trellis Section

The dynamics of a time-invariant convolutional code are completely specified by a single trellis section,
which describes the transitions (edges) between the states of the trellis at time instants k and &+ 1. A
trellis section is characterized by the following:

(1) A set of N states S = {s1,...,snx}. The state of the trellis at time k is Sy = s, with
se€S.

(2) A set of N x Ny edges obtained by the Cartesian product
E=8SxU= {61,...,€N><NI}

which represents all possible transitions between the trellis states.

The following functions are associated with each edge e € £ (see Fig. 4):

1) The starting state s°(e) (the projection of e onto S).
) The ending state s (e).
) The input symbol u(e) (the projection of e onto).
)

4) The output symbol c(e).

Fig. 4. An edge of the trellis section.

The relationship between these functions depends on the particular encoder. As an example, in the
case of systematic encoders, (s¥(e), c(e)) also identifies the edge since u(e) is uniquely determined by c(e).
In the following, we only assume that the pair (s°(e),u(e)) uniquely identifies the ending state s”(e);
this assumption is always verified, as it is equivalent to say that, given the initial trellis state, there is a
one-to-one correspondence between input sequences and state sequences, a property required for the code
to be uniquely decodable.

C. The SISO Algorithm

The SISO module is a four-port device that accepts at the input the sequences of probability distri-
butions

P(c;I) P(wl)
and outputs the sequences of probability distributions
P(c;0) P(w;0)

based on its inputs and on its knowledge of the trellis section (or code in general).

We assume first that the time index set K is finite, i.e., K = {1,...,n}. The algorithm by which the
SISO operates in evaluating the output distributions will be explained in two steps. In the first step, we
consider the following algorithm:

(1) At time k, the output probability distributions are computed as

Pu(c;0) = He Y Apa[s(e)] Pelule); 1) Pile(e); 1] By [s® (e)] (1)
e:c(e)=c

Py(w;0) = H, Y Ap-als®(e)]Pulule); 11 Ple(e): 1] By[s” (e)] (2)
exu(e)=u

(2) The quantities Ag(-) and By(-) are obtained through the forward and backward recur-
sions, respectively, as

Ae(s) = > Apals¥ (@) Pelule); I Pile(e); 1] k=1,...,n (3)
e:sE(e)=

Be(s)= Y Brpls®(e)|Pesr[u(e); [|Peialc(e);] k=n—1,...,0 (4)
e:sS(e)=

with initial values

1 s=S5
A = 0
o(s) { 0 otherwise (5)

Bu(s)= { "o5n (©)

0 otherwise

The quantities H., H, are normalization constants defined as follows:

H.— Zpk(c; 0)=1

H, — Zﬁk(u,O) =1

In the second step, from Egs. (1) and (2), it is apparent that the quantities Pg[c(e);] in the first
equation and Py[u(e); I] in the second do not depend on e, by definition of the summation indices, and
thus can be extracted from the summations. Thus, defining the new quantities

. A Pk<C;O
Pk(c, O) = Hc Pk(C;I

L A Pk(u;O)
Pu(w;0) = H Py(u; I)

where H. and H, are normalization constants such that

He— Y P(c;0)=1
H, — ZPk(u;O) =1

it can be easily verified that they can be obtained through the expressions

Pi(c;0) = H.H, > Apa[s®(e)] Pilule); 11 Bi[s” ()] (7)

e:c(e)=c

Py(uw;0) = HyH, Y Apa[s5(e)]|Pile(e); 1]By[s" (e)] (8)

e:u(e)=u

where the A’s and B’s satisfy the same recursions previously introduced in Eq. (3).

The new probability distributions Px(u;O) and Py(c; O) represent a smoothed version of the input
distributions Py(c;I) and Py (u;I), based on the code constraints and obtained using the probability
distributions of all symbols of the sequence but the kth ones, Py(c;I) and Pg(u;I). In the literature of
turbo decoding, Py(u;0) and Pg(c; O) would be called extrinsic information. They represent the added
value of the SISO module to the a priori distributions Py (u;) and Py(c; I). Basing the SISO algorithm
on Py(-;0) instead of on P(-; O) simplifies the block diagrams, and related software and hardware, of the
iterative schemes for decoding concatenated codes. For this reason, we will consider as an SISO algorithm
the one expressed by Eq. (7). The SISO module is then represented as in Fig. 5.

Previously proposed algorithms were not in a form suitable for working with a general trellis code.
Most of them assumed binary input symbols, some also assumed systematic codes, and none (not even the
original Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm) could cope with a trellis having parallel edges. As
can be noticed from all summations involved in the equations that define the SISO algorithm, we work on
trellis edges rather than on pairs of states, and this makes the algorithm completely general and capable
of coping with parallel edges and also with encoders with rates greater than one, like those encountered
in some concatenated schemes.

Pc;l) — | L - P(c;0)
SISO
PU;/) —] L P(u;0)

Fig. 5. The soft-input soft-output (SISO model).

D. Computation of Input and Output Bit Extrinsic Information

In this subsection, bit extrinsic information is derived from the symbol extrinsic information using
Egs. (7) and (8). Consider a rate k,/n, trellis encoder such that each input symbol U consists of k, bits
and each output symbol C' consists of n, bits. Assume

PuleD) = [Pes(es 1) (9)
ko
Po(u; 1) =] Prj(u/; 1) (10)

where ¢/ € {0,1} denotes the value of the jth bit C’,z of the output symbol Cy, = ¢; j = 1,...,n,,
and u?/ € {0,1} denotes the value of the jth bit U,Z of the input symbol U, = u; j = 1,...,k,. This
assumption is valid in an iterative decoding when bit interleavers rather than symbol interleavers are used.
One should be cautious when using Px(c; I) as a product for those encoders in a concatenated system

where the output C' in Fig. 3 is connected to a channel. For such cases, if, for an example, a nonbinary
input additive white Gaussian noise (AWGN) channel is used, this assumption usually is not needed (this
will be discussed shortly), and P (c; I) = Py(cly) = Pr(y|z(c))P(c)/P(y), where y is the complex received
sample(s) and x(c) is the transmitted nonbinary symbol(s). Then, for binary input memoryless channels,
Py (y|xz(c)) can be written as a product. After obtaining symbol probability distributions Py(c; O) and
Pi(¢;0) from Egs. (7) and (8) by using Egs. (2) and (4), it is easy then to show that the input and
output bit extrinsic information can be obtained as

Py j(¢;0)=Hy Y Pil(c;0) HP;” 1) (11)
Cj—cJ 1¢7

Ppj(w;0)=Hy > Pu(u;0) HP,“ u'; T) (12)
uUJ—u7 77&]

where H.; and H,; are normalization constants such that

H,; — Z Pk7j(cj;0)=1

ce{0,1}

H, — Z P j(u/;0) =1
ui €{0,1}

Equation (11) is not used for those encoders in a concatenated coded system connected to a channel. To
keep the expressions general, as is seen from Egs. (3), (4), and (12), Pyc(e);] is not represented as a
product.

Direct computation of the probability distribution of bits without first obtaining the probability distri-
bution of symbols is presented in [9]. In the following sections, for simplicity of notation, the probability
distribution of symbols rather than of bits is considered. The extension of the results to probability
distributions of bits based on the above derivations is straightforward.

IV. The Sliding-Window Soft-Input Soft-Output Module (SW-SISO)

As previous description should have made clear, the SISO algorithm requires that the whole sequence
has been received before starting the smoothing process. The reason is due to the backward recursion that
starts from the (supposed-known) final trellis state. As a consequence, its practical application is limited
to the case when the duration of the transmission is short (n small) or, for n long, when the received
sequence can be segmented into independent consecutive blocks, like for block codes or convolutional
codes with trellis termination. It cannot be used for continuous decoding of convolutional codes. This
constraint leads to a frame rigidity imposed on the system and also reduces the overall code rate.

A more flexible decoding strategy is offered by modifying the algorithm in such a way that the SISO
module operates on a fixed memory span and outputs the smoothed probability distributions after a given
delay, D. We call this new algorithm the sliding-window soft-input soft-output (SW-SISO) algorithm (and
module). We propose two versions of the SW-SISO that differ in the way they overcome the problem
of initializing the backward recursion without waiting for the entire sequence. From now on, we assume
that the time index set K is semi-infinite, i.e., K = {1,..., 00}, and that the initial state sg is known.

A. The First Version of the Sliding-Window SISO Algorithm (SW-SISO1)
The SW-SISO1 algorithm consists of the following steps:

(1) Initialize Ag according to Eq. (5).
(2) Forward recursion at time k: Compute the Ay through the forward recursion of Eq. (3).

(3) Initialization of the backward recursion (time k > D):

B (s) = Ay(s) Vs (13)

(4) Backward recursion: It is performed according to Eq. (4) from iterations i =1 to i = D

= > B P (O)Pilule); 1 Pele): 1] (14)
e:s5(e)=s
and
Bi_p(s) = BP) (s) Vs (15)

(5) The probability distributions at time k — D are computed as

Pi_p(c;0) = H.H, > Ap_p_1[s°(e)|Ps_plu(e); I|Bx_p|s” (e)] (16)
e:c(e)=c

Pop(u;0) = HH. Y Ax—p-a[s®(e)|Pe—ple(e); 1Bi—p[s"(e)] (17)
e:u(e)=u

B. The Second Simplified Version of the Sliding-Window SISO Algorithm (SW-SISO2)

A further simplification of the sliding-window SISO algorithm, which is similar to SW-SISO1 except
for the backward initial condition, that significantly reduces the memory requirements consists of the
following steps:

(1) Initialize Ay according to Eq. (5).

(2) Forward recursion at time k, k > D: Compute the Aj_p through the forward recursion

Ap_p(s) = Z Ap_p_1[°(e)]Pu_plu(e); I|Py_plc(e); I] k> D (18)

e:sF(e)=s

(3) Initialization of the backward recursion (time k& > D):

1
B9 (s) = 5 s (19)

10

(4) Backward recursion (time k& > D): It is performed according to Eq. (14) as before.

(5) The probability distributions at time k— D are computed according to Egs. (16) and (17)
as before.

C. Memory and Computational Complexity

1. Algorithm SW-SISO1. For a convolutional code with parameters (kg,no) and number of states
N, so that N; = 2% and Np = 2", the algorithm SW-SISO1 requires storage of N x D values of A’s and
D(N; + Ng) values of the input unconstrained probabilities Py (u;I) and Py (c; I). Moreover, to update
the A’s and B’s for each time instant, it needs to perform 2 x N x Ny multiplications and N additions of
N; numbers. To output the set of probability distributions at each time instant, we need a D-times long
backward recursion. Thus, overall the computational complexity requires the following:

(1) 2(D + 1) x N x Ny multiplications.
(2) (D+1) x N x (N; — 1) additions.

2. Algorithm SW-SISO2. This simplified version of the sliding-window SISO algorithm does
not require the storage of the N x D values of A’s, as they are updated with a delay of D steps. As
a consequence, only N values of A’s and D(N; 4+ Ng) values of the input unconstrained probabilities
Py (u; T) and Pg(c; I) need to be stored. The computational complexity is the same as that for the previous

version of the algorithm. However, since the initialization of the B recursion is less accurate, a larger
value of D may be necessary.

V. The Additive SISO Algorithm (A-SISO)

The sliding-window SISO algorithms solve the problems of continuously updating the probability
distributions, without requiring trellis terminations. Their computational complexity, however, is still
high when compared to other suboptimal algorithms like SOVA. This is due mainly to the fact that
they are multiplicative algorithms. In this section, we overcome this drawback by proposing the additive
version of the SISO algorithm. Clearly, the same procedure can be applied to its two sliding-window
versions, SW-SISO1 and SW-SISO2.

To convert the previous SISO algorithm from multiplicative to additive form, we exploit the monotonic-
ity of the logarithm function, and use for the quantities P(u;-), P(c;+), A, and B their natural logarithms,
according to the following definitions:

m(e;) = log[Py(c; 1))
m(u; I) = log[Py(u; 1))
m.(¢; 0) = log[Py(c; 0)]
m.(u; 0) = log[Py(c;)]
a(s) £ log[Ax(s)]

Bi(s) = log[By(s)]

11

With these definitions, the SISO algorithm defined by Egs. (7) and (8) and Egs. (3) and (4) becomes the
following: At time k, the output probability distributions are computed as

mr(c; O) = log Z exp{ar_1[s°(e)] + mrue); I] + Br[sE(e)]}| + he (20)
Lec(e)=c i

7k (u; O) = log Z exp{ozk_l[ss(e)} + mile(e); I + Br[sZ(e)]} | + hu (21)
| eru(e)=u |

where the quantities () and Si(-) are obtained through the forward and backward recursions, respec-
tively, as

ax(s) = log Z exp{ag_1[s%(e)] + mi[u(e); I + mgle(e); I} | k=1,...,n (22)

Br(s) = log Z exp{Brt1[sT(e)] + mpp1[w; 1) + mppafele); I} | sk=n—1,...,0 (23)

Le:sS(e)=s

with initial values

0 S = So
—oo otherwise

0 s=S,
—oo otherwise

The quantities h. and h,, are normalization constants needed to prevent excessive growth of the numerical
values of the a’s and G’s.

The problem in the previous recursions consists in the evaluation of the logarithm of a sum of expo-
nentials like3

a = log [Z exp{ai}] (24)

To evaluate a in Eq. (24), we can use two approximations, with increasing accuracy (and complexity).
The first approximation is

L
a =log [Z exp{ai}] ~ ay (25)

3 The notations in this part are modified for simplicity and do not coincide with the previous ones.

12

where we have defined

AN .
apy =maxa;, t=1,...,L
1

This approximation assumes that
apy >>a;, Ya; # apy

It is almost optimal for medium-high signal-to-noise ratios and leads to performance degradations of the
order of 0.5 to 0.7 dB for very low signal-to-noise ratios.

Using Eq. (25), the recursions of Egs. (22) and (23) become

ak(s) = e:sI}I‘jl(aj)(:s {an_1[s%(e)] + mlule); I] + mi[c(e); I} k=1,...,n (26)
Br(s) = max {Brs1s"(e)] + mppa[u(e); 1] + mppac(e); 1]} k=n—1,...,0 (27)

and the 7’s of Egs. (20) and (21) become

mr(c; O) = e:Icr(lg}ic {on—1[s%(€)] + mrlu(e); I] + Bi[s® ()]} + he (28)
7 (u; 0) = m{r(lg);ﬂ {an—1[s°(€)] + mrlc(e); I + Bu[s® (e)]} + ha (29)

When the accuracy of the previously proposed approximation is not sufficient, we can evaluate a in
Eq. (24) using the following recursive algorithm (already proposed in [26,31]):

a(l) = a1
a® = max(aY, a;) + log[1 + exp(—|a~1) — a; l=2,...,L
b l g p 9))

oD

S
Il

To evaluate a, the algorithm needs to perform (L — 1) times two kinds of operations: a comparison
between two numbers to find the maximum, and the computation of

log[l 4+ exp(—A)] A>0

The second operation can be implemented using a single-entry look-up table up to the desired accuracy
(in [26], eight values were shown to be enough to guarantee almost ideal performance). Therefore, a in

Eq. (24) can be written as a = aps + 8(ay, as, . ..,ar) = max*{a;}. The second term, &(ay,as,...,az),
K2

is called the correction term and can be computed using a look-up table, as discussed above. Now, if
desired, max can be replaced by max* in Eqgs. (26) through (29).

13

Clearly, the additive form of the SISO algorithm can be applied to both versions of the sliding-window
SISO algorithms described in the previous section, with straightforward modifications. In the following
section, dealing with examples of application, we will use the additive form of the second (simpler) sliding-
window algorithm, called the additive sliding-window SISO (ASW-SISO). An example of the additive
SISO algorithm working at bit level, which can also be used for punctured codes derived from a rate 1/2
code, is given in the Appendix.

VI. Applications of the ASW-SISO Module

In this section, we provide examples of applications of the ASW-SISO module embedded into the
iterative decoding schemes of the PCCCs and SCCCs previously shown in Figs. 1 and 2.

Consider, as a first example, a parallel concatenated convolutional code (turbo code or PCCC) obtained
using as constituent codes two equal rate 1/2 systematic, recursive, 16-state convolutional encoders with
generating matrix

1+ D+ D3+ D*

G0 = L ey pi

The interleaver length is N=16,384. The overall PCCC forms a very powerful code for possible use in
applications requiring reliable operation at very low signal-to-noise ratios, such as those in deep-space
communications systems.

The performance of the continuous iterative decoding algorithm applied to the concatenated code,
obtained by simulation using the ASW-SISO and the look-up table algorithms, is shown in Fig. 6, where
we plot the bit-error probability as a function of the number of iterations of the decoding algorithm
for various values of the bit signal-to-noise ratio, Ey/Ny. It can be seen that the decoding algorithm
converges down to an error probability of 10~° for signal-to-noise ratios of 0.2 dB with nine iterations.
Moreover, convergence is guaranteed also at signal-to-noise ratios as low as 0.05 dB, which is 0.55 dB
from the Shannon capacity limit.

10-1 = ‘\:~-‘~::~-~§\\ =
~ -~
~ ~ ~ ~— —_
. N N\ ~]
\\ \ \\ \\\ h ~
102 N R N o Ep/Ng = -0.05
\ N S o Ep/Ng=0.00 ————.
T \ N ~ EpNg=005 —— ——.
C ‘ \ ~ 0
= \ \ ~ EpNg=0.10 ——meemee.
2 \ » ~ 0
& 103 \ \ ~| EyNg=015
PR NEYNG =020 — - —- -
\ \ \ EYNg=025 —— —— —-
‘ \ ' Ep/Ng=0.35
104 \ \ \ Ep/Ng=045 ———— —.
' \ ' Ep/Ng = 0.50
\ 1 \\
\ ' \ “
10-5 LY |\ 1 . 1

L1 I Ll T Y R N R B
1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20
NUMBER OF ITERATIONS

Fig. 6. The convergence of turbo-decoding: bit error probability versus the number of
iterations using the ASW-SISO algorithm.

14

As a second example, we construct the serial concatenation of two convolutional codes (SCCCs) using
as an outer code the rate 1/2, 8-state nonrecursive encoder with generating matrix

GD)=[1+D+D* 1+ D]

and, as an inner code, the rate 1/2, 8-state recursive encoder with generating matrix

1+D+ D3
GD) = [1’ W}

The resulting SCCC has rate 1/4. The interleaver length has been chosen to ensure a decoding delay in
terms of input information bits equal to 16,384.

The performance of the concatenated code, obtained by simulation as before, is shown in Fig. 7, where
we plot the bit-error probability as a function of the number of iterations of the decoding algorithm
for various values of the bit signal-to-noise ratio, Ej/Np. It can be seen that the decoding algorithm
converges down to an error probability of 107° for signal-to-noise ratios of 0.10 dB with nine iterations.
Moreover, convergence also is guaranteed at signal-to-noise ratios as low as —0.10 dB, which is 0.71 dB
from the capacity limit.

T o
= 1073 1= Epng =-0.25 —
Ep/Ng=-0.20 -----

| | | | | | | | :1 | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NUMBER OF ITERATIONS

Fig. 7. Convergence of iterative decoding for a serial
concatenated code: bit error rate probability versus number
of iterations using the ASW-SISO algorithm.

As a third, and final, example, we compare the performance of a PCCC and an SCCC with the same
rate and complexity. The concatenated code rate is 1/3, the CCs are four-state recursive encoders (rates
1/2 4 1/2 for the PCCCs and rates 1/2 + 2/3 for the SCCCs), and the decoding delays in terms of input
bits are equal to 16,384. In Fig. 8, we report the bit-error probability versus the signal-to-noise ratio for
six and nine decoding iterations. As the curves show, the PCCC outperforms the SCCC for high values
of the bit-error probabilities. Below 10~° (for nine iterations), the SCCC behaves significantly better
and does not present the “foor” behavior typical of PCCCs. In particular, at 10~%, the SCCC has an
advantage of 0.5 dB with nine iterations.

15

E------ PCCC ——
107 ST 6 sccC ----

102

10-3

Pp(e)

104

10-5

10-6

Ep/Ng, dB

Fig. 8. Comparison of two rate 1/3 PCCC and SCCC. The
curves refer to six and nine iterations of the decoding
algorithm and to an equal input decoding delay of 16,384.

VIl. Conclusions

Algorithms that estimate the maximum a posteriori (MAP) probabilities of the information sequence
for trellis codes have been synthetically illustrated. Iterative decoding schemes for both parallel and
serially concatenated codes need as a key component a module that implements the MAP algorithm. A
very general module, called SISO, has been described, which works on the edges of the code trellis section
and is able to cope with all possible encoders. While the optimum MAP algorithm is intrinsically block
oriented, we have proposed a sliding-window modification of it that allows continuous decoding of the
received stream. Some examples of application have been worked out concerning very powerful parallel
and serially concatenated codes especially suitable for deep-space communications systems.

Acknowledgments

The research in this article has been partially supported by NATO under Re-
search Grant CRG 951208. Sergio Benedetto and Guido Montorsi also acknowledge
the support of the Italian National Research Council (CNR) under Progetto Final-
izzato Trasporti (Prometheus) and of the Ministero dell’Universitd e della Ricerca
Scientifica e Tecnologica (MURST) (Progetto 40% Comunicazioni con Mezzi Mo-
bili).

References

[1] G. D. Forney, Jr., Concatenated Codes, Cambridge, Massachusetts: Massachu-
setts Institute of Technology, 1966.

16

2]

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes,” Proceedings of ICC’93, Geneva,
Switzerland, pp. 1064-1070, May 1993.

S. Benedetto and G. Montorsi, “Iterative Decoding of Serially Concatenated
Convolutional Codes,” Electronics Letters, vol. 32, no. 13, pp. 1186-1188, June
1996.

D. Divsalar and F. Pollara, “Turbo Codes for PCS Applications,” Proceedings of
IEEE ICC"95, Seattle, Washington, pp. 54-59, June 1995.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial Concatenation
of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding,”
The Telecommunications and Data Acquisition Progress Report 42-126, April-
June 1996, Jet Propulsion Laboratory, Pasadena, California, pp. 1-26, August
15, 1996.

http://tda.jpl.nasa.gov/tda/progress_report/42-126 /126D.pdf

J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary Block and
Convolutional Codes,” IEEE Transactions on Information Theory, vol. 43, no. 2,
pp- 429-445, March 1996.

P. Robertson, “Illuminating the Structure of Decoders for Parallel Concatenated
Recursive Systematic (Turbo) Codes,” Proceedings of Globecom’9/, San Fran-
cisco, California, pp. 1298-1303, December 1994.

J. Y. Couleaud, “High Gain Coding Schemes for Space Communications,”
ENSICA Final Year Report, University of South Australia, The Levels, Aus-
tralia, September 1995.

http://www.itr.unisa.edu.au/ steven/turbo/jyc.ps.gz

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “A Soft-Input Soft-
Output MAP Module for Iterative Decoding of Concatenated Codes,” to appear
in IEEE Communications Letters, January 1997.

K. Abend and B. D. Fritchman, “Statistical Detection for Communication Chan-
nels With Intersymbol Interference,” Proceedings of the IEEE, vol. 58, no, 5,
pp. 779-785, May 1970.

R. W. Chang and J. C. Hancock, “On Receiver Structures for Channels Having
Memory,” IEEE Transactions on Information Theory, vol. IT-12, pp. 463-468,
October 1966.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate,” IEEE Transactions on Information
Theory, vol. 1T-20, pp. 284-287, March 1974.

P. L. McAdam, L. Welch, and C. Weber, “Map Bit Decoding of Convolutional
Codes,” Abstracts of Papers, ISIT 72, Asilomar, California, p. 91, January 1972.

C. R. Hartmann and L. D. Rudolph, “An Optimum Symbol-by-Symbol Decoding
Rule for Linear Codes,” IEEE Transactions on Information Theory, vol. IT-22,
pp. 514-517, September 1976.

B. Vucetic and Y. Li, “A Survey of Soft-Output Algorithms,” Proceedings of
ISITA’94, Sydney, Australia, pp. 863-867 November 1994.

G. D. Forney, Jr., “The Viterbi Algorithm,” IFEE Transactions on Information
Theory, vol. IT-61, no. 3, pp. 268-278, March 1973.

17

[17]

[18]

[19]

[20]

H. Yamamoto and K. Itoh, “Viterbi Decoding Algorithm for Convolutional Codes
With Repeat Request,” IFEE Transactions on Information Theory, vol. IT-26,
no. 5, pp. 540-547, September 1980.

T. Hashimoto, “A List-Type Reduced-Constraint Generalization of the Viterbi
Algorithm,” IEEE Transactions on Information Theory, vol. 1T-33, no. 6,
pp- 866-876, November 1987.

R. H. Deng and D. J. Costello, “High Rate Concatenated Coding Systems Using
Bandwidth Efficient Trellis Inner Codes,” IEEE Transactions on Communica-
tions, vol. COM-37, no. 5, pp. 420—427, May 1989.

N. Seshadri and C-E. W. Sundberg, “Generalized Viterbi Algorithms for Error
Detection With Convolutional Codes,” Proceedings of GLOBECOM’89, vol. 3,
Dallas, Texas, pp. 43.3.1-43.3.5, November 1989.

T. Schaub and J. W. Modestino, “An Erasure Declaring Viterbi Decoder and Its
Applications to Concatenated Coding Systems,” Proceedings of ICC’86, Toronto,
Canada, pp. 1612-1616, June 1986,.

J. Hagenauer and P. Hoeher, “A Viterbi Algorithm With Soft-Decision Outputs
and Its Applications,” Proceedings of GLOBECOM’89, Dallas, Texas, pp. 47.1.1-
47.1.7, November 1989.

P. Hoeher, “TCM on Frequency-Selective Fading Channels: A Comparison
of Soft-Output Probabilistic Equalizers,” Proceedings of GLOBECOM’90, San
Diego, California, pp. 401.4.1-401.4.6, December 1990.

U. Hansson, “Theoretical Treatment of ML Sequence Detection With a Con-
catenated Receiver,” Technical Report 1851, School of Electrical and Computer
Engineering, Chalmers University of Technology, Goéteborg, Sweden, 1994.

S. S. Pietrobon and A. S. Barbulescu, “A Simplification of the Modified Bahl Al-
gorithm for Systematic Convolutional Codes,” Proceedings of ISITA’94, Sydney,
Australia, pp. 1073-1077, November 1994.

P. Robertson, E. Villebrun, and P. Hoeher, “A Comparison of Optimal and Sub-
Optimal MAP Decoding Algorithms Operating in the Log Domain,” Proceedings
of ICC"95, Seattle, Washington, pp. 1009-1013, June 1995.

P. Jung, “Novel Low Complexity Decoder for Turbo Codes,” Electronics Letters,
vol. 31, no. 2, pp. 86-87, January 1995.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Algorithm for Contin-
uous Decoding of Turbo Codes,” Flectronics Letters, vol. 32, no. 4, pp. 314-315,
February 1996.

L. Papke, P. Robertson, and E. Villebrum, “Improved Decoding With the SOVA
in a Parallel Concatenated (Turbo-Code) Scheme,” Proceedings of IEEE 1CC’96,
Dallas, Texas, pp. 102-106, June 1996.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-Output Decod-
ing Algorithms for Continuous Decoding of Parallel Concatenated Convolutional
Codes,” Proceedings of IEEE ICC’96, Dallas, Texas, pp. 112-117, June 1996.

S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-Output Decoding
Algorithms in Iterative Decoding of Turbo Codes,” The Telecommunications and
Data Acquisition Progress Report 42-12/4, October—December 1995, Jet Propul-
sion Laboratory, Pasadena, California, pp. 63-87, February 15, 1996.
http://tda.jpl.nasa.gov/tda/progress_report/42-124/124G.pdf

18

Appendix
An Example of the Additive SISO Algorithm Working at Bit Level

This appendix describes the SISO algorithm used in the example of serial concatenation of two rate
1/2 convolutional codes. Consider a rate 1/2 convolutional code. Let Uy be the input bit and C; , and
(5,1 the output bits of the convolutional code at time k, taking values {0,1}. Therefore, on the trellis
edges at time k we have uy(e),c1 k(e), cok(e). In the following, for simplicity of notation, we drop the
subscript & for the input and output bits. Define the reliability of a bit Z taking values {0,1} at time k
as

WAE 1og—jj} =2 =15 - my[Z = 0]

The second argument in the brackets, shown by a dot, may represent I, the input, or O, the output, to
the SISO. We use the following identity:

L
a=log [Z] = max{ai} +8(ar,..,ar) £ max*{a;}
i=1 ! !
where 6(aq,...,ar) is the correction term, as discussed in Section V, that can be computed using a

look-up table. We defined the “max*” operation as a maximization (compare-select) plus a correction
term (look-up table). Using the results of Sections IIL.D, IV, and V, we obtain the forward and the
backward recursions as

ar(s) = max* {ar_1 [s°(€)] +u(e)M[U; I] + e1(e)Mk[C1; I] + ea(e) Ak [Co; I1} + ha,

e:sE(e)=s

Br(s) = max™ {Brt+1 [sE(e)} + u(e)Ae+1[Us I + c1(e)Mi+1[Cr; I] + ca(e) A g1 [Ca; I} + hg,

e:sS(e)=s

with initial values ag(s) = 0 if s = Sy, and ag(s) = —oo otherwise, and 8,(s) = 0 if s = 5, and G,(s)
= —oo otherwise, where h,, and hg, are normalization constants, which, for a hardware implementation
of the SISO, are used to prevent buffer overflow. These operations are similar to those employed by the
Viterbi algorithm when it is used in the forward and backward directions, except for a correction term
that is added when compare—select operations are performed.

For the inner decoder, which is connected to the AWGN channel, we have \;[C1;I] = (24/0%)r; , and
Ae[C2; 1) = (2A/02)ra i, where r;, = A(2¢; — 1) + nig, @ = 1,2, is the received samples at the output
of the receiver matched filter, ¢; € {0,1}, and n; j is the zero-mean independent identically distributed
(i.i.d.) Gaussian noise samples with variance o2.

The extrinsic bit information for U, C1, and Cy can be obtained as

19

M(U:0) = max* {og_y [s5(e)] + e1()As[Cr: 1] + ea(e)Me[Coi 1) + i [7 ()]}

e:u(e)=1

- e:um(g))i"o{ak_l [ss(e)] + c1(e) Ak [Cr; I] + ca(e) A, [Ca; I] + Ok [SE(e)]}

M(C1:0) = max' oy [s5(e)] +ule)MlUs 1] + ea(e)M[Coi 1) + i [7 ()]}

e:c1(e)=1

=, Joax’ oy [s%(e)] + u(e)M\e[U: I] + ca(e) Ak [Cos I + Br [s7(e)]}

M(C2:0) = max’ fogy [s5(e)] + ule)MlU: 1] + 1 (€)Me[Cr: 1) + i [7 ()]}

e:ca(e)=1

— max" {a_1 [ss(e)] + u(e) A [U; I+ c1(e) A [Cr; I] + Bk [sE(e)]}

e:ca(e)=0

This example should also clarify the extension of the additive SISO, using bit reliabilities, to a convolu-
tional code with code rate k,/n,. The circuits required to implement all of the above calculations are
similar to those proposed in the Appendix of [31].

20

