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Noise Temperature of a Lossy Flat-Plate Reflector
for the Elliptically Polarized Wave Case

T. Y. Otoshi1 and C. Yeh1

This article presents the derivation of equations necessary to calculate noise
temperature of a lossy flat-plate reflector. Reflector losses can be due to metallic
surface resistivity and multilayer dielectric sheets, including thin layers of plating,
paint, and primer on the reflector surface. The incident wave is elliptically polarized,
which is general enough to include linear and circular polarizations as well. The
derivations show that the noise temperature for the circularly polarized incident
wave case is simply the average of those for perpendicular and parallel polarizations.

I. Introduction

Although equations for power in an incident and reflected elliptically polarized wave can be derived
in a straightforward manner, the equations for the associated noise temperatures are not well known
nor, to the authors’ knowledge, can they be found in published literature. It is especially of interest
to know what the relations are when expressed in terms of perpendicular and parallel polarizations and
the corresponding reflection coefficients. The following presents the derivations of noise-temperature
equations for three cases of interest.

II. Theory

A. Power Relationships

For the coordinate system geometry shown in Fig. 1, the fields for an incident elliptically polarized
plane wave at the reflection point are [1,2]

Ei = Exiâxi + Eyiâyi (1)

Hi = Hxiâxi + Hyiâyi (2)

where

Exi = E1e
j(ωt−kzi) (3)
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Fig. 1.  The coordinate system for incident and reflected plane waves. The
symbols with a boldface a are unit vectors, and qi and qr are angles of inci-
dence and reflection, respectively. The plane of incidence is the plane of
this page.

Eyi = E2e
j(ωt−kzi+δ) (4)

Hxi = −Eyi

η
(5)

Hyi =
Exi

η
(6)

where ω is the angular frequency, t is time, η is the characteristic impedance of free space, k is the
free-space wave number, and zi is the distance from an arbitrarily chosen source point on the incident
wave ray path to the reflection point on the reflector surface (Fig. 1). In Eqs. (3) and (4), it is important
to note that E1 and E2 are scalar magnitudes and δ is the phase difference between Exi and Eyi.

The Poynting vector [1] for the incident wave is expressed as

P i =
1
2

Re
(
Ei ×H

∗
i

)
(7)

where ×, ∗, and Re denote the cross product, complex conjugate, and real part, respectively. Then
assuming all of the incident power travels through an area A in the direction of the Poynting vector, the
total incident wave power is

PTi =
∫ (

P i ··· âzi

)
dA (8)

where ··· denotes the dot product. Substitution of Eqs. (1) through (7) into Eq. (8) results in

PTi =
1
2η

(
E2

1 + E2
2

)
A (9)
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The equations for the reflected wave are obtained by replacing the subscript i with r in all of the equations
for the incident wave except for Eqs. (3) and (4). From Fig. 1, it can be seen that the expressions for
Exr and Eyr are

Exr = Γ||Exie
−jkzr (10)

Eyr = Γ⊥Eyie
−jkzr (11)

where

Γ|| = the voltage reflection coefficient for parallel polarization at the reflection point and is a
function of incidence angle θi (see Fig. 1)

Γ⊥ = the voltage reflection coefficient for perpendicular polarization at the reflection point and
is a function of incidence angle θi

zr = the distance from the reflection point on the reflector surface to an arbitrary observation
point along the reflected ray path

Then following steps similar to those used to obtain Eq. (9), the total power for the reflected wave can
be derived as

PTr =
1
2η

[∣∣Γ||∣∣2 E2
1 + |Γ⊥|2 E2

2

]
A (12)

It is assumed that the lossy conductor in Fig. 1 has sufficient thickness so that no power is transmitted
out the bottom side. Then the dissipated power is

Pd = PTi − PTr (13)

B. Noise-Temperature Relationships

For the geometry of Fig. 1, the noise temperature due to a lossy reflector is

Tn =
(

Pd

PTi

)
Tp (14)

where Tp is the physical temperature of the reflector in units of K. For example, if the lossy conductor is
at a physical temperature of 20 deg C, then Tp = 293.16 K. Use of Eqs. (9), (12), and (13) in Eq. (14)
gives

Tn =
(
1− |Γep|2

)
Tp (15)

where

|Γep|2 =

∣∣Γ||∣∣2 E2
1 + |Γ⊥|2 E2

2

E2
1 + E2

2

(16)
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Equation (15) is the elliptically polarized wave noise-temperature equation that is general enough to
apply to linear and circular polarizations as well. In the following, the noise-temperature expressions for
three different polarization cases are derived.

Case 1. If the incident wave is linearly polarized with the E-field perpendicular to the plane of
incidence, then E1 = 0 and Eq. (15) becomes

Tn = (Tn)⊥ =
(
1− |Γ⊥|2

)
Tp (17)

Case 2. If the incident wave is linearly polarized with the E-field parallel to the plane of incidence,
then E2 = 0 and Eq. (15) becomes

Tn = (Tn)|| =
(
1−

∣∣Γ||∣∣2) Tp (18)

Case 3. If the incident wave is circularly polarized, then E1 = E2 and

Tn = (Tn)cp =

1−

(∣∣Γ||∣∣2 + |Γ⊥|2
)

2

Tp (19)

Note then that (Tn)cp is also just the average of (Tn)⊥ and (Tn)|| or

(Tn)cp =
1
2

[
(Tn)⊥ + (Tn)||

]
(20)

The reader is reminded that, since the reflection coefficients are functions of incidence angle θi, the noise
temperatures are also functions of θi as well as of polarization.

C. Excess Noise-Temperature Relationships

It is of interest to see what the relationship is for excess noise temperature as well. For painted
reflector noise-temperature analyses [3], it is convenient to use the term excess noise temperature (ENT).
It is defined in [3] as the total noise temperature of a painted reflector minus the noise temperature of
the reflector (bare metal) without paint. Mathematically, it is expressed as

∆Tn = Tn2 − Tn1 =
(
1− |Γ2|2

)
Tp −

(
1− |Γ1|2

)
Tp (21)

where Γ1 and Γ2 are the input voltage reflection as seen looking at the unpainted (bare conductor) and
painted reflector surfaces, respectively, and are functions of incidence angle and polarization. These
reflection coefficients can be obtained through the use of multilayer equations such as those given in [4].

Then from Eqs. (17) through (21) it follows that, for the perpendicular-, parallel-, and circular-
polarization cases,

(∆Tn)⊥ = (Tn2)⊥ − (Tn1)⊥

=
(
1− |Γ2|2⊥

)
Tp −

(
1− |Γ1|2⊥

)
Tp (22)
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(∆Tn)|| = (Tn2)|| − (Tn1)||

=
(
1− |Γ2|2||

)
Tp −

(
1− |Γ1|2||

)
Tp (23)

(∆Tn)cp = (Tn2)cp − (Tn1) cp (24)

Substitution of Eq. (20) into Eq. (24) gives

(∆Tn)cp =
1
2

[
(Tn2)⊥ + (Tn2)||

]
− 1

2

[
(Tn1)⊥ + (Tn1)||

]

=
1
2

{[
(Tn2)⊥ − (Tn1)⊥

]
+

[
(Tn2)|| − (Tn1)||

]}
(25)

Substitution of Eqs. (22) and (23) into Eq. (25) gives

(∆Tn)cp =
1
2

[
(∆Tn)⊥ + (∆Tn)||

]
(26)

Equation (25) shows that the ENT for the circular-polarization case is simply the average of the ENTs
of perpendicular and parallel polarizations. Although not shown mathematically, the ENTs are functions
of incidence angle θi.

III. Concluding Remarks

In the article, noise-temperature equations were derived from power equations for the incident and
reflected wave. The relationships between noise temperatures of the different polarized wave cases were
not obvious to the authors until the equations were derived from basic theoretical considerations. Hence,
this article serves to document the relationships and derivations. These noise-temperature formulas have
proven to be useful for painted reflector studies [3] and will be useful for studies of plating [5] or rain [4,6]
on reflector surfaces as well.
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