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Iterative Turbo Decoder Analysis
Based on Density Evolution

D. Divsalar,1 S. Dolinar,1 and F. Pollara1

We track the density of extrinsic information in iterative turbo decoders by ac-
tual density evolution, and also approximate it by consistent Gaussian density func-
tions. The approximate model is verified by experimental measurements. We view
the evolution of these density functions through an iterative decoder as a nonlinear
dynamical system with feedback. Iterative decoding of turbo codes and of serially
concatenated codes is analyzed by examining whether a signal-to-noise ratio (SNR)
for the extrinsic information keeps growing with iterations. We define a noise fig-
ure for the iterative decoder, such that the turbo decoder will converge to the correct
codeword if the noise figure is bounded by a number below 0 dB. By decomposing
the code’s noise figure into individual curves of output SNR versus input SNR cor-
responding to the individual constituent codes, we gain many new insights into the
performance of the iterative decoder for different constituents. Many mysteries of
turbo codes are explained based on this analysis. For example, we show why certain
codes converge better with iterative decoding than do more powerful codes, which are
suitable only for maximum-likelihood decoding. The roles of systematic bits and of
recursive convolutional codes as constituents of turbo codes are crystallized. The
analysis is generalized to serial concatenations of mixtures of complementary outer
and inner constituent codes. Design examples are given to optimize mixture codes to
achieve low iterative decoding thresholds on the signal-to-noise ratio of the channel.

I. Introduction

Concatenated coding schemes consist of the combination of two or more simple constituent encoders
and interleavers. The parallel concatenation known as a “turbo code” [1] has been shown to yield
remarkable coding gains close to the theoretical limits, yet admitting a relatively simple iterative decoding
technique. Also, serial concatenation of interleaved codes [2] may offer superior performance to parallel
concatenation at very low bit-error rates. In both coding schemes, the core of the iterative decoding
structure is a soft-input soft-output (SISO) a posteriori probability (APP) module [7].

The analysis of iterative decoders for concatenated codes with short blocks is an unsolved problem.
However, for very large block sizes, such analysis is possible under certain assumptions. An asymptotic
(as block size goes to infinity) analysis of iterative decoding can be based on the method of density
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evolution proposed by Richardson and Urbanke [8]; see also [10,11]. Their analysis tracks the probability
density function of the extrinsic information messages as this density evolves from iteration to iteration.
They used this method to compute iterative decoding thresholds for low-density parity check (LDPC)
codes over a binary input additive white Gaussian noise (AWGN) channel. In our article, we apply the
density evolution method to analyze the (asymptotic) performance of iterative decoders for turbo codes
and turbo-like serially concatenated codes.

Wiberg in his dissertation [3] showed that the extrinsic information in iterative decoding can be
approximated by a Gaussian density function. This approximation was used by Chung et al. [9] to
obtain a threshold on minimum bit signal-to-noise ratio, Eb/N0, for LDPC codes. El Gamal, in his
dissertation [4] and with Hammons [5], considered the SISO module in turbo decoders as a signal-to-noise
ratio (SNR) transformer, and also suggested a method for analyzing the overall turbo decoder. Prior to
El Gamal, Hagenauer and Hoeher [20] proposed a similar SNR transformer analysis for the soft output
Viterbi algorithm (SOVA), and Alexander et al. [21] proposed a similar noise variance trace method to
analyze iterative multiuser detection. In [14], ten Brink developed a method for analyzing the convergence
of the decoder based on the evolution of mutual information. Our methods in this article are similar to
all of these approaches, and also to analysis of the turbo decoder algorithm by Agrawal and Vardy [25]
and of turbo decoder thresholds by Richardson and Urbanke [26], Vialle and Boutros [27], and Chung
and Forney [28]. Our main contribution is to apply these analyses to gain new insights into designing
new turbo-like code structures and to explain the workings of old ones.

In this article, we first evaluate iterative decoding for turbo and turbo-like codes using actual density
evolution and then compare these results with analyses obtained using a Gaussian approximation to the
density function for the extrinsic information messages. For the Gaussian approximation, we have two
choices for modeling the Gaussian density: (1) based on the empirically determined mean and variance as
independent parameters or (2) based on the empirical mean only, assuming that the variance is determined
by the consistency condition proposed by Richardson et al. [10]. We found that the second Gaussian model
gave closer agreement with the results obtained from actual density evolution, so this is the model that
we used for our approximate analysis based on Gaussian density evolution.

For any parallel or serially concatenated turbo or turbo-like code having two component codes, we
compute input and output SNRs at each iteration for the two component decoders, using actual density
evolution or the consistent Gaussian approximation. We also define, as in low-noise amplifiers, a noise
figure for the overall decoder. We argue that if the noise figure of the iterative decoder is bounded by a
number strictly lower than 0 dB then the iterative decoder converges to the correct codeword. Another
method is to plot the output SNR versus the input SNR for one component decoder, and the input SNR
versus the output SNR for the other component decoder. If the two curves do not intersect, then the
iterative decoder converges. We apply this methodology both to explain conditions of decoder convergence
and to resolve some mysteries associated with the iterative decoding of turbo codes. Next, by focusing
on the input–output SNR characteristics of individual component codes, we devised some new serially
concatenated codes constructed by mixing different inner or outer component codes with complementary
SNR characteristics. Finally, we derive analytic expressions for the SNR characteristics of arbitrary
2-state recursive convolutional component codes (rate 1 or rate 1/2) when used as an inner code, an outer
code, or a middle code in a serial concatenation.

II. The Density Evolution Model and the Gaussian Approximation

Consider a parallel turbo code as shown in Fig. 1 or a serially concatenated convolutional code as
shown in Fig. 2. Iterative decoders for these codes are based on two SISO modules shown in Figs. 1 and 2
and described in detail in [7].

The iterative decoder for either code construction can be viewed as a nonlinear dynamical feedback
system. Extrinsic information messages {λi} are passed from one constituent decoder to the other. The

2



SISO
DECODER

1 π

π−1

SISO
DECODER

2

DECISION

FROM
DEMODULATOR

λ(c 1;I )

λ(u1 ;I )

λ(c 1;O )

λ(u 1;O )

NOT USED
FROM

DEMODULATOR

λ(c 2;I )

λ(u2 ;I )

λ(c 2;O )

λ(u 2;O )

(b)

DATA
ENCODER

1

ENCODER
2

TO CHANNEL

TO CHANNEL

(a)

u 2

u 1

c 1

c 2

π

Fig. 1.  Structure for (a) encoding and (b) iteratively decoding parallel concatenated
convolutional codes (turbo codes).
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Fig. 2.  Structure for (a) encoding and (b) iteratively decoding serially concatenated
convolutional codes.

message λi measures the log-likelihood ratio for the ith bit based on input messages {λj} from all other bits
except the ith. For analysis purposes, we assume that the all-zero codeword is transmitted (corresponding
to transmission of +1’s on the channel), so, for each i, a positive value of extrinsic information λi > 0
constitutes favorable evidence toward determining the true value of the ith bit.

When the interleaver π in Fig. 1 or 2 is very large and random, the extrinsic information messages
λi are independent and identically distributed, with probability density function f(λ). As shown in [10],
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this density function is consistent, i.e., λ = log[f(λ)/f(−λ)]. Its mean, µ = E(λ), is the discrimination
between the two densities f(λ) and f(−λ). The error probability, ε = Prob{λ < 0}, for a bitwise decoding
decision based solely on λ can be evaluated as ε = E{1/(1 + e|λ|)} when the density f(λ) is consistent.
Similarly, for a consistent density f(λ), the mutual information I between the ith information bit and
the ith extrinsic information value λi can be evaluated as I = E{log2[2/(1 + e−λ)]}.

We computed histograms of the extrinsic information λin and λout at the input and output of a SISO
module for a systematic 8-state rate-1/2 turbo-like code shown in Figs. 3 and 4. For this code, the
information bits are repeated three times, with one copy sent directly to the channel and two copies sent
through an interleaver to a punctured recursive convolutional code with forward and backward generator
polynomials 1 + D + D3 and 1 + D2 + D3, respectively. The unpunctured version of this constituent
code is denoted (1 +D+D3)/(1 +D2 +D3), or more compactly in octal form as 13/15 (interpreting the
least-significant bit in the octal representation to be the coefficient of D0). The puncturing removes every
second code symbol (puncturing pattern 1010), resulting in a rate-2 constituent code and an overall code
rate of 1/2.

As shown in these figures, the (empirical) probability densities f(λin) and f(λout) evolve with successive
decoder iterations from narrow densities concentrated near λ = 0 to broader Gaussian-shaped densities
with increasing means as the iterations continue. We have observed that, for a wide variety of turbo and
turbo-like code constructions, the evolution of densities shown in Figs. 3 and 4 is typical. Except for
some skewness in the early iterations, the probability density function f(λ) can be approximated by a
Gaussian density.
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Fig. 3.  Evolution with iterations of empirically measured histograms of a SISO mod-
ule’s input extrinsic information, λin, for a systematic 8-state, rate-1/2 turbo-like code.
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Fig. 4.  Evolution with iterations of empirically measured histograms of a SISO
module’s output extrinsic information, λout, for a systematic 8-state, rate-1/2 turbo-
like code.
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If f(λ) is approximated by a Gaussian density function, then its statistics depend on only two pa-
rameters, its mean, µ = E(λ), and its variance, σ2 = Var(λ). A signal-to-noise ratio for this random
variable can be defined as SNR 4= µ2/σ2. A high value of SNR implies that f(λ) is easily discriminated
from f(−λ). Note that this SNR is a signal-to-noise ratio for the quality of the extrinsic information
developed during the iterative decoding process. The usual signal-to-noise ratio measuring the quality of
the channel symbols is denoted conventionally in this article as Es/N0, or Eb/N0 when normalized per
information bit.

If f(λ) is both Gaussian and consistent, then σ2 = 2µ and SNR = µ/2. However, since the Gaussian
density is not a perfect approximation to the true density, f(λ), the empirically measured variance σ2

does not bear this exact relationship to the empirically measured mean. Thus, we get different answers
depending on whether the evolution of SNR with iterations is computed as SNR = µ2/σ2 or SNR = µ/2.
In our experience, the second formula (enforcing the consistency condition in the definition of SNR) gives
a better prediction of decoder convergence. The first formula (defining SNR based on mean and variance
measured independently) generally gives predictions that are too pessimistic at low values of SNR and
too optimistic at high values.
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III. Dynamic Models for Decoder Convergence

Consider the input and output SNRs for each decoder at each iteration, as shown in Fig. 5. These
are denoted SNR1in, SNR1out, SNR2in, and SNR2out. A nonzero Eb/N0 from the channel enables
decoder 1 to produce a nonzero SNR1out for the output extrinsic information despite starting with
SNR1in = 0. For a given value of Eb/N0, the output SNR of each decoder is a nonlinear function
of its input SNR, denoted by G1 for decoder 1 and G2 for decoder 2, as shown in Fig. 5. We have
SNR1out = G1(SNR1in, Eb/N0) and SNR2out = G2(SNR2in, Eb/N0). Also, SNR2in = SNR1out, and thus
SNR2out = G2(G1(SNR1in, Eb/N0), Eb/N0). This general model can be applied to both parallel and serial
concatenations, as illustrated in the next two main sections. For serial concatenations, decoder 1 and
decoder 2 correspond to the inner and outer constituent codes, respectively, and no channel observations
are input to decoder 2 unless the code is a hybrid code that sends some bits directly from the outer code
to the channel.

We evaluated the functions G1 and G2 empirically by Monte Carlo simulation, using two different
statistical models to generate the input λ’s. The actual density evolution model generates input λ’s
directly from the histogram of output λ’s from the previous decoder. The approximate Gaussian density
evolution model generates input λ’s from a consistent Gaussian density with mean µ and variance 2µ,
where µ is a varied parameter. In each case, the input and output SNRs are computed from the actual
λ-histograms as E{λ}/2, which is the appropriate measure of SNR if the λ-distribution is both Gaussian
and consistent.

In these evaluations, we used large blocks of 2000 bits or longer and discarded λ’s computed within
200 bits of the edges of the block before computing λ-histograms or SNRs.
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SNR2out

SNR1in SNR1out
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Fig. 5.  Analysis of turbo coding as a nonlinear
dynamical system with feedback using density
evolution.

A. Full-Iteration Dynamic Model

The decoder’s convergence can be assessed by measuring the change in the SNR of the extrinsic
information from one iteration to the next. A noise figure F = SNR1in/SNR2out can be defined for
the turbo decoder at each iteration as the ratio of the input SNR of decoder 1 at the beginning of the
iteration to the output SNR of decoder 2 at the end of the iteration (which becomes the input SNR to
decoder 1 at the start of the next iteration). If the noise figure at a given iteration is less than 1, this
indicates an improvement in the SNR of the extrinsic information from the beginning of the iteration to
the end. If the noise figure is bounded by a number lower than 1 for the entire range of input SNR to
decoder 1, then the SNR of the extrinsic information messages will increase without bound (if the block
size is infinite) and the turbo decoder will converge to the correct codeword. We used all the assumptions
made by Richardson and Urbanke [8] for very large block sizes (essentially, when the block size and the
number of iterations go to infinity but the number of iterations is much less than roughly the log of the
block size corresponding to the girth of the graph representing the overall code, then the effects of cycles
on performance can be ignored).
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These claims can be justified by a concentration theorem [18,11] similar to that used in [8–11] to
prove iterative-decoding decoding thresholds for LDPC codes. The concentration theorem says that the
average bit-error probability is concentrated around the ensemble average of the bit-error probability over
all possible graphs representing a given code, or over all interleavers in the case of turbo codes, when
the block size goes to infinity. This convergence is exponential in the block size, and, as the block size
goes to infinity, the graphs representing the code can be considered loop-free (locally tree-like). Such
an assumption for turbo codes was argued in [11], based on the decay of dependencies of messages that
are far apart from each other on the trellis (similar to the concept of finite-length trace back in Viterbi
decoding).

We show in Fig. 6 an example of how the convergence properties of the overall decoder can be deter-
mined from its noise figure. The code in this case is a simple serially concatenated repeat-and-accumulate
(RA) code [19], tested at three values of Eb/N0 just above the iterative decoding threshold. The noise
figure in each case rises with iterations from an initial value of 0 to a maximum just below 1, indicating
that decoder convergence is achieved. However, as Eb/N0 is reduced toward the threshold value, there is a
dramatic increase in the number of iterations required to get past the region where the noise figure is just
barely less than 1. This is the zone where the decoder is making very slow progress toward convergence
(called the iterative decoding tunnel in the next section). After getting past this zone, the decoder in
each case converges quickly.

B. Half-Iteration Dynamic Model

Equivalently, we can test decoder convergence by tracking the evolution of the extrinsic information’s
SNR from half-iteration to half-iteration. The analytical method is to plot the output SNR of decoder 1
versus its input SNR, and the input SNR of decoder 2 versus its output SNR, as shown in Fig. 7. In
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Fig. 6.  Noise figure for a rate-1/3 repeat-and accumulate (RA) code.
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2 9

this figure, we considered a rate-1/3 Consultative Committee for Space Data Systems (CCSDS) turbo
code [12] consisting of two 16-state systematic recursive convolutional codes. Encoder 1 is rate 1/2, and
encoder 2 is rate 1, as its systematic bits are punctured to make the overall code rate 1/3. The upper
pair of curves corresponds to the input–output function G1 for decoder 1, and the lower pair of curves
corresponds to G−1

2 for decoder 2.

In Fig. 7, the input–output functionsG1 andG−1
2 are computed under both the actual density evolution

model and the Gaussian approximation for comparison. The curve for G1 or G−1
2 obtained from actual

density evolution is just a sequence of discrete points; in the figure, these points are joined by linear
interpolation to give an estimate of the value of G1 or G−1

2 at intermediate points. The curve for G1

or G−1
2 obtained from the Gaussian approximation can be smoothed to any desired degree by testing

sufficiently close values of the parametric input.

Figure 7 graphically shows the progress of the decoder’s iterations. The improvement in the SNR of
the extrinsic information, and the corresponding improvement in the decoder’s bit-error rate, follows a
staircase path reflecting at right angles between the curves corresponding to G1 and G−1

2 . The steps in
this staircase are large when the bounding curves are far apart and small when they are close together.
Where the curves are closest together, the improvement in bit-error rate slows down, as many iterations
are required to bore through the narrow iterative decoding tunnel between the curves. If the iterative
decoder successfully passes through the tunnel, convergence becomes very rapid as the two curves get
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farther apart at higher SNRs. This means that as the block size goes to infinity the bit-error rate goes
to zero as the number of iterations increases.

The initial displacement of the G1 curve for SNR1in = 0 is dependent on the Eb/N0 due to the channel
observations. If we reduce Eb/N0 from the value of 0.5 dB used in Fig. 7, then at some point the two
curves will just touch each other. That value of Eb/N0 represents the iterative decoding threshold. The
iterative decoding tunnel will be closed at the SNR where the two curves touch, and the staircase path
will not go past this point. The bit-error rate will settle to a nonzero value determined by this finite SNR.
Conversely, if Eb/N0 is greater than this threshold, the decoder converges and the bit-error rate goes to
zero as the iterations increase.

This article exclusively uses SNR = E{λ}/2, which can be interpreted either as a signal-to-noise ratio
for consistent Gaussian extrinsics or as half the discrimination between f(λ) and f(−λ) for any consistent
density f(λ). Similar analysis with similar conclusions about decoder convergence can be conducted using
alternative averages over the λ statistics, such as the probability of error ε and the mutual information
I mentioned earlier. In these two cases, the input–output characteristics are confined to a finite interval
[0, 1], and decoder convergence corresponds to ε→ 0 or I → 1, rather than SNR→∞.

IV. The Analysis Method for Parallel Concatenated (Turbo) Codes

The half-iteration dynamic model using separate SNRout versus SNRin characteristic curves for the
two constituent codes can help to explain many mysteries of parallel concatenated (turbo) codes and
provide more insight into the selection of good constituent codes.

A. The Role of Systematic Bits

There has not been an adequate explanation of why the systematic bits in turbo codes should be
transmitted in order for the decoder to converge. A maximum-likelihood decoder does not require these
bits; indeed, it is possible to construct more powerful turbo codes without transmission of the systematic
bits. An explanation for the role of the systematic bits can be surmised from Fig. 8, which analyzes
the SNRout versus SNRin characteristic for a parallel concatenation of identical octal 5/7, rate-1, 4-state
recursive convolutional codes, with or without an additional set of systematic bits sent to the channel.
The comparison is done at a channel symbol signal-to-noise ratio Es/N0 of −4 dB. Even though the
received symbols corresponding to parity bits from the octal 5/7 code have nonzero Es/N0, if we don’t
send the systematic bits, the SNR of the extrinsic information at the first iteration will be zero. This
causes the curves for the two constituent codes to intersect at SNR = 0, and the decoder never makes
any progress toward converging to the correct codeword. However, if the systematic bits are transmitted,
e.g., using the octal (1,5/7) code, the curve for code 1 moves upward and the SNR of the extrinsics at
the first iteration will be high.

Now the secondary question is why this is happening. Consider any rate-1 recursive convolutional
code (obtained by puncturing the systematic bits of a rate-1/2 systematic recursive convolutional code).
If the degree of the feedforward polynomial is greater than or equal to 1, then an input bit equals the
modulo-2 sum of nearly half of the output parity bits in the entire block. In this case, it can be shown
analytically that the SNR of the input bits goes to zero as the block size goes to infinity. However, if
the degree of the feedforward polynomial is zero, then the input equals the modulo-2 sum of only a few
output parity bits, depending on the degree of the feedback polynomial. This results in a nonzero SNR
for the input bits at the first iteration.

An example of such a rate-1 recursive convolutional code is an accumulator (differential encoder), for
which the feedforward polynomial is 1 (degree is zero). Consider a parallel turbo code constructed from a
differential encoder and a rate-1 recursive 16-state convolutional code, as shown in Fig. 9. For this code,
there is a substantial nonzero SNR1out for decoder 1 at the end of the first iteration. In such cases, the
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decoder will converge as long as Eb/N0 is high enough to keep open a narrow iterative decoding tunnel
between the two curves.

There is a more detailed way to argue that a nontrivial feedforward polynomial causes the extrinsic
information at the first iteration to be zero. Suppose that the code’s input bits {xk} and output bits
{yk} are related by

∑
i xk−ipi =

∑
i yk−iqi, corresponding to a rate-1 recursive code with feedforward

polynomial coefficients {pi} and feedback polynomial coefficients {qi}. Assume without loss of generality
that pj = 1 for some j. Then, using the algebra introduced by Hagenauer [17], we have the following
equation relating the extrinsic information {λk} associated with the input bits {xk} and the channel
information {λck} associated with the coded bits {yk}:

tanh
(
λk−j

2

)
=
∏
i6=j

[
tanh

(
λk−i

2

)]pi∏
i

[
tanh

(
λck−i

2

)]qi

Unless pi = 0 for all i 6= j, the right-hand side is zero at the first iteration because all of the initial
extrinsics, {λk−i}, are zero. Thus, given an input SNR of zero, the output SNR will also be zero. For a
code with only one nonzero feedforward component, the iterations will start with a nonzero SNR, because
in that case there are no tanh(·) factors on the right side of this equation coming from zero-SNR extrinsics.
By taking derivatives of the equation above, we can establish the slope of the SNR characteristic for the
first iteration and use this slope as one of the tools for code design.

One may ask if this same conclusion is true when we use the forward–backward sum-product algorithm
on the trellis representation of a rate-1 recursive convolutional code. This is easy to show analytically
for a rate-1 recursive convolutional code with full-degree feedback and feedforward polynomials. If we
start with uniform state distributions at the beginning and end of a block for the calculation of α and
β in the forward and backward algorithm [6,7], the distribution of α and β remains uniform. Due to
the symmetry of trellis edges for input bits 0 and 1, the output extrinsic information will be zero. If
the feedback polynomial is not full-degree or if the feedforward polynomial with at least two nonzero
components is not full-degree, then, by averaging the transition matrix representing the trellis section,
with transition probabilities depending on the parity bits on the edges leaving or entering the states, we
will have a nonuniform state distribution but with groups of two or more states having the same value
that again results in extrinsics that approach zero on average.

We note that the above arguments do not hold for a recursive convolutional code with rate less
than one. In this case, the SNR of the extrinsics at the first iteration can be nonzero. However, if we
compare, say, rate-1/2 systematic and nonsystematic recursive codes (the latter obtained by puncturing
the systematic bits of a rate-1/3 convolutional encoder), the SNR of the extrinsics at the first iteration for
the systematic code is significantly higher than for the nonsystematic code. However, the nonsystematic
code’s SNR characteristic has a higher slope as the input SNR is increased. The basic mechanism for
all of these conclusions is that, when the feedforward polynomial has only one nonzero component, then
the sequence of channel observations gives direct information about the sequence of states, and nonzero
extrinsic information can be inferred about each input bit by applying the feedback polynomial coefficients
to the state sequence. On the other hand, when the feedforward polynomial has more than one nonzero
component, nothing can be inferred about the state sequence from the channel observations unless there
are more channel bits than input bits, i.e., the code rate is less than 1.

Examples of rate-1/2 recursive nonsystematic codes that produce a nonzero SNR at the first it-
eration are those proposed by Collins et al. [24]. Consider a rate-1/2 recursive nonsystematic code
([p1(D)/q(D)], [p2(D)/q(D)]), where p1(D) and p2(D) do not have any common factors with q(D). If
p1(D) + p2(D) = Di for some i ≥ 0, then the code produces a nonzero SNR output at the first itera-
tion. Figure 10 shows the SNRout versus SNRin curve for one such code, octal (3/7,13/7), alongside the
corresponding curve for a rate-1/2 recursive systematic code, octal (1,5/7).
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B. The Role of Recursive Convolutional Constituent Codes

Next we explain the role of recursive convolutional codes by considering what happens when the
component codes are nonrecursive. As shown in Fig. 11, in this case the two curves will always cross
each other. The curves for codes 1 and 2 in this figure have the opposite convexity from those seen in
the previous figures for recursive convolutional constituent codes. Iterations start with a substantially
nonzero SNR1out due to the channel information, but SNR improvements at successive iterations are
eventually trapped at the point where the two curves cross. Further iterations will not improve the
bit-error rate beyond an error floor determined by this SNR.

For a high enough SNR, the curves for recursive convolutional codes approach a straight-line asymptote
with slope 1, whereas those for nonrecursive codes flatten out to zero slope. One may wonder, for the case
of recursive codes, what is the mechanism by which highly reliable extrinsic information keeps generating
additional extrinsic information, despite the fact that the weak channel symbols seem almost irrelevant
compared to the strong a priori information associated with the high-SNR extrinsics? The explanation
is the same as the explanation for why recursive constituent codes make stronger turbo codes than
nonrecursive constituents, namely, that errors with information weight 1 correspond to codewords with
infinite coded weight. Thus, even weak channel symbols, amassed over an infinite block, are sufficient to
rule out the possibility of a single isolated information bit error. High-SNR extrinsic information for a
given bit i corresponds to a tiny a priori probability of bit error εi. But since the channel information
rules out single errors, bit i cannot be in error unless at least one other bit j is also wrong, with tiny
probability εj . Thus, the input extrinsic information at bit i is log[(1−εi)/εi], and bit i gets new extrinsic
information that amounts to log[(1− εj)/εj ]. If the high-SNR extrinsics are uniform over the code block,
this implies that the SNR increases at a 1:1 slope for high SNR.2

2 For finite block size, the output SNR for large input SNR eventually saturates, and its slope goes to zero. The saturation
level depends on type of code, block size, and channel Es/N0.
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C. The Role of Primitive Polynomials

Figure 12 elucidates the role of a primitive feedback polynomial. In this figure, we show (using actual
density evolution only) the SNRout versus SNRin curves for two different rate-1/3 4-state turbo codes
operating at Eb/N0 = 1.2 dB. One code is the same code considered in Fig. 8, for which the feedback
polynomial is primitive (octal 7). The other code uses a nonprimitive feedback polynomial (octal 5). We
see that for high SNRs the two curves for the code using primitive feedback diverge from each other until
they eventually approach their asymptotic 1:1 slope, after which they maintain a large separation. On
the other hand, the curves for the code using nonprimitive feedback converge toward each other before
straightening to their asymptotic slope, so decoder convergence is much slower for this code than for the
other code. Also, in this case, the critical iterative decoding tunnel is most constrictive at high values of
SNR rather than low values, and the effective iterative decoding threshold for this code will be determined
by this narrowing of the tunnel at high SNR even if the curves never actually cross each other.

D. The Role of State Complexity

Figure 13 shows the role of different state complexities. The SNRout versus SNRin curves are plotted
for rate-1/3 turbo codes with 4-state and 16-state constituents (again using actual density evolution only).
We see that the 16-state code (with polynomials given by octal 33/31) has a clear advantage in speed
of convergence in the SNR region beyond the iterative decoding tunnel. On the other hand, the sharper
curvature of the SNR curves for the individual 16-state codes can narrow the iterative decoding tunnel
and require a slightly higher decoding threshold.
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V. The Analysis Method for Serial Concatenations

A similar analysis method can be applied to turbo-like codes constructed by serial concatenation,
through a large random interleaver, of an outer repetition code with an inner recursive convolutional
code.

A. Turbo Codes Viewed as Serially Concatenated Codes

Figure 14 shows how this method can be applied when a parallel concatenated (turbo) code is viewed
alternatively as a serial concatenation, using an outer repetition code. The concatenated code in this figure
is the same, octal 5/7, rate-1/3 turbo code with 4-state constituents considered above. The outer code
produces a set of systematic (uncoded) bits and two repetitions of these bits, which are then encoded
by a rate-1 recursive convolutional inner code. The SNRout versus SNRin characteristic of the outer
repetition-2 code is a simple straight line with slope 1, starting at a point determined by the channel
SNR of the systematic bits. The SNR characteristic of the 4-state, rate-1 inner code (octal 5/7) is the
same as that shown in Fig. 8, and it suffers from the same problem of starting with an output SNR of 0.
However, in this case, the nonzero x-axis intercept of the outer code’s SNR characteristic (due to the
effect of information from the channel on the systematic bits) is sufficient to allow an iterative staircase
to be followed in the direction of the iterative decoding tunnel.

Another example is the code introduced in Figs. 3 and 4, which is similar to a turbo code except
that the permutation π acts on a double-length block of information bits repeated twice, rather than
on one block of information bits separately from the other. Figure 15 shows the SNRout versus SNRin

characteristic for the inner code, along with the straight-line SNR characteristic for the outer repetition
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code (including the effects of a nonzero offset due to the systematic bits sent directly to the channel). For
this graph, the value of Eb/N0 was reduced to 0.589 dB, the point at which the iterative decoding tunnel
closes under the actual density evolution model. Again, the Gaussian approximation gives a slightly
optimistic prediction that the decoding tunnel would still be penetrable at this value of Eb/N0.

B. Serially Concatenated Codes in General

Figure 16 illustrates the analysis method applied to a serially concatenated code for which the outer
code is not a simple repetition code. In this example, the outer and inner codes are identical 4-state,
rate-1/2 recursive convolutional codes (octal 1,5/7), except that one-fourth of the output symbols of
the inner code are punctured to make the overall code rate 1/3. Comparing this figure to the previous
figure, we see that the much stronger (1,5/7) outer code has an SNR characteristic with much sharper
curvature than the slope-1 straight line for the simple repetition code in Fig. 14. This produces very fast
convergence beyond the iterative decoding tunnel, but at the same time the rapid initial rise of the outer
code’s SNR curve determines the minimum Eb/N0 (in this case, about 0.4 dB) required to keep the inner
code’s SNR curve from intersecting it.

Despite its initial sharp curvature, the outer code’s SNR curve eventually approaches a straight-line
asymptote. The asymptotic slope of the SNRin versus SNRout curve for this code, as plotted in the
figure, is 1/4. In general, this asymptotic slope will be no larger than 1/(dmin − 1), where dmin is the
minimum distance of the outer code. The argument for this is similar to that used earlier to establish the
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1:1 asymptotic slope of the SNR curve for a recursive convolutional inner code. For a given outer code
symbol to be incorrect, at least dmin−1 additional code symbols must also be incorrect to satisfy the code
constraint. If, from the extrinsic information, all code symbols are independently incorrect with small
probability ε, then after applying the code constraint, the probability that a given symbol is incorrect
is reduced to εdmin or lower. The reduction in this probability from ε to εdmin corresponds to output
extrinsic information equal to dmin − 1 times the input extrinsic information. For some outer codes, the
asymptotic slope will be different for the input–output SNR characteristics corresponding to different
code symbols. In general, it can be argued that the reciprocal of the asymptotic slope of the SNRin

versus SNRout curve will equal the “minimum extrinsic distance” of the corresponding code symbol. For
a linear (n, k) code, the minimum extrinsic distance can be defined as one less than the smallest weight
of any codeword containing a 1 in the location of the given code symbol.

VI. Concatenated Codes with Mixed Inner or Outer Codes

The analytical method can also be applied to discover combinations of constituent codes whose in-
dividual strengths and weaknesses complement each other. Turbo-like concatenated codes can then be
constructed using a mixture of such complementary constituent codes that outperform codes formed from
either constituent alone. In this section and for the remainder of the article, all SNRout versus SNRin

curves were computed using Gaussian approximations rather than actual density evolution. However, for
the case of code mixtures, we also developed a “mixture of Gaussians” model, as described below.
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A. Concatenated Codes with Mixed Inner Codes

An example of constituent codes suitable for such a construction is the following. A repetition-3 outer
code is serially concatenated with two possible rate-1 inner codes, through an infinitely long random
interleaver. One code is the 2-state accumulator code (octal 1/3), and the second is a 4-state code
(octal 5/7). The overall code rate in each case is 1/3.

When the inner code is the accumulator code, we obtain the code whose overall noise figure was shown
in Fig. 6. This code can also be analyzed using the SNRout versus SNRin characteristics of the individual
constituent codes, as shown in Fig. 17. The SNR characteristic of the outer repetition-3 code is a straight
line with slope 1/2. The SNR characteristic of the accumulator code has slope lower than 1/2 for small
values of input SNR, and its slope increases very slowly with increasing input SNR. An Eb/N0 of 0.49 dB
is just sufficient to keep open a long narrow tunnel for successful iterative decoding.3 Thus, a great many
iterations are required when Eb/N0 is close to this code’s iterative decoding threshold.
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In contrast, the slope of the SNR characteristic of the rate-1, four-state code is much higher than 1/2
in the SNR region where the accumulator is having the most difficulty. If this more powerful 4-state code
were to replace the 2-state accumulator as the inner code, the iterative decoder would converge much
faster and at lower Eb/N0 once the inner code’s SNR increased past a value of roughly 1. Unfortunately,
the performance of the 4-state, octal 5/7 code falls apart completely at low values of input SNR. At the
initial iteration, when the input SNR of the extrinsics is equal to zero, the output SNR for this code is
also zero, because the code is rate-1 and it includes a nontrivial feedforward polynomial. In contrast, a
decoder for the lowly accumulator code is able to start its iterations with a modest nonzero output SNR,
because in this case there is only one feedforward component.

An improved concatenated code can be formed by using a mixture of the accumulator code and the
octal 5/7 code as the inner code. Figure 17 also shows the SNR characteristic of a mixed inner code for
which 60 percent of the input bits are encoded by the accumulator and 40 percent are encoded by the
octal 5/7 code. This mixed code gets some nonzero initial output SNR from its accumulator component

3 Note that the analysis in Fig. 17, based on the consistent Gaussian density approximation, gives slightly optimistic
predictions compared to that in Fig. 6, based on actual density evolution.
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and thus avoids the start-up problem of the pure 5/7 inner code. At the same time, its SNR characteristic
curve picks up some of the higher slope and sharper curvature of the 5/7 code’s curve, thus shortening and
widening the iterative decoding tunnel at Eb/N0 = 0.49 dB, which results in faster decoder convergence
and allows the iterative decoding threshold to be reduced further.

Figure 18 shows the SNR characteristic curves for the same codes in Fig. 17 when Eb/N0 is reduced
to 0 dB. From this figure we see that Eb/N0 = 0 dB is just sufficient to decode the concatenated code
formed from the 60–40 mixture, but it is clearly below the iterative decoding threshold when either inner
constituent code is used without the other. The optimum mixing proportion was obtained by evaluating
the SNR characteristic for different mixes. In this case, almost a half-dB of improvement is obtained by
mixing the two inner codes in an optimal proportion.

The analysis method for obtaining the SNR characteristic curves in the previous two figures was based
on an assumption that the probability density of the output extrinsics from both the inner and outer
codes can be approximated as a consistent Gaussian density at each iteration. For the case of mixed
codes, the assumption of a pure Gaussian density at each step of the iterations seems to contravene the
analysis. As similarly observed in [9] for irregular low-density parity check codes with varying degrees of
connectivity between variable nodes and check nodes, what might start out as a pure Gaussian density
output from each of the inner decoders becomes a mixture of two Gaussians (at different means) when the
outer decoder takes outputs from two different inner decoders after passing through a random infinitely
long interleaver. Then a mixture of two Gaussians at the input of the repetition-3 outer decoder becomes
a mixture of three Gaussians at the output of the outer decoder or when fed to the input of the inner
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decoder. Thus, for the case when the outer code is a simple repetition and the inner code is a mixture,
it is analytically established that a pure Gaussian density at the output of the inner decoder will imply
a non-Gaussian density at the output of the outer decoder, and thus the assumption that both outputs
are purely Gaussian cannot be exactly correct. However, it is empirically observed that a pure Gaussian
assumption at each point in the iteration is nonetheless a robust model for determining performance
thresholds.

Figure 19 shows noise figure calculations for the mixed concatenated code analyzed in the previous
two figures. In this figure, the concatenated code’s noise figure at Eb/N0 = 0.0 dB is computed in two
different ways. The first method enforces the pure Gaussian assumption at the outputs of both the inner
and outer decoders, while the second method applies the Gaussian assumption only at the output of the
inner decoders and uses the analytically derived mixture-of-Gaussians model at other points during an
iteration. Since the input–output SNR characteristics were determined by simulation, this means that
Gaussian-mixture random variables were generated for one case, and pure Gaussian random variables for
the other case, at the inputs to the inner decoders. For both methods, Gaussian-mixture random variables
were generated at the input to the outer decoder. Also for both methods, the pure Gaussian density at
the output of the inner decoders was modeled using the consistency condition, i.e., only the mean was
needed. We observe from Fig. 19 that the pure Gaussian model yields almost the identical noise figure,
and hence decoder convergence properties, as the mixture-of-Gaussians model, except that it is slightly
more optimistic about the speed of decoder convergence on the far side of the iterative decoding tunnel.

Figure 20 shows another variation [22] of a mixing scheme for a rate-1/3 code, wherein the output
of the repetition-3 outer code is either sent uncoded to the channel or sent through a rate-1 inner re-
cursive convolutional code, octal 7/3. In this case, the optimum mix uses only 1 uncoded bit for each
79 convolutionally encoded bits. To achieve this mix while still maintaining an overall code rate of 1/3,
the puncturer keeps 1 out of every 80 uncoded bits and 79 out of every 80 convolutionally encoded bits
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(denoted by “period = 80” in the figure). This technique of sending an occasional uncoded bit amongst
many coded bits has been called “code doping” by ten Brink [23]. Without the code doping, the decoding
of the inner code would fail to get started, because the rate-1, octal 7/3 code has a nontrivial feedforward
component, and so its SNRout versus SNRin characteristic starts at the origin. The occasional uncoded
bit raises the initial SNR just enough above zero to enable the iterative decoder to get started. Once
started, the decoder moves through an extremely narrow iterative decoding tunnel that again constricts
almost to the point of closure near SNR = 2. If the doping rate is decreased below 1 bit every 80 bits, the
tunnel closes at this point and the SNR will not advance further. This code is an example for which the
narrowest constrictions of the tunnel occur at two separated points, and care must be exercised to make
sure that the decoder can squeeze through both openings. These two constriction points, near SNR = 0
and SNR = 2, are highlighted in the lower right graph in Fig. 20, which plots the difference between the
SNRout versus SNRin characteristic of the mixed inner code and the straight-line SNR characteristic of
the repetition-3 outer code.

The doped code in Fig. 20 yields an iterative decoding threshold of −0.35 dB, just 0.15 dB above the
capacity limit, but at a price of extremely slow convergence through the long iterative decoding tunnel.

B. Concatenated Codes with Mixed Outer Codes

Next we consider an example showing that it is also possible to achieve a low decoding threshold by
using a mixture of outer codes concatenated with a single inner code. The inner code in this example
is a 4-state, rate-1 code (octal 1/7). Like the 2-state accumulator code, this code does not suffer from
the extreme start-up deficiency of the 4-state, octal 5/7, rate-1 code, because the octal 1/7 code lacks
multiple feedforward connections and each of its input bits is affected by only 3 channel symbols. The
outer code is a mixture of two rate-1/2 codes, a simple repetition-2 code and a convolutional (1,5/7) code.
The optimal mixing proportion in this case is to send about 2/3 of the bits to the repetition code and
1/3 of the bits to the convolutional code. Figure 21 shows the SNR characteristics of the individual codes
and the optimally mixed outer code. We see that the SNR characteristics predict an iterative decoding
threshold of about 0.5 dB, which is only about 0.3 dB above the capacity limit for rate-1/2 codes.
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An alternative way to produce a mixture code with the same component codes and the same mixture
proportions is shown in Fig. 22. This code is punctured deterministically to yield the same 2/3, 1/3 split
of outer code symbols coming from the repetition code and the convolutional code, respectively. One of
the repeated information blocks is unpunctured, 2/3 of the bits are deleted from the other uncoded outer
block (puncturing pattern 001), and 1/3 of the bits are deleted from the convolutionally coded outer block
(puncturing pattern 110). This deterministic mixing of the outer code components produces a code with
minimum distance 5 instead of 2 and, hence, better asymptotic slope for its SNRout versus SNRin curve.
The iterative decoding threshold for this code is 0.45 dB, just 0.27 dB above the capacity limit.

A similar rate-1/2 code with even lower complexity and equivalent iterative decoding threshold can be
constructed as follows. Start with an outer recursive convolutional code, octal (1,5/7). Send 2/3 of the
parity bits directly to the channel. Send the remaining 1/3 of the parity bits and all of the systematic
(information) bits through an (infinitely long) interleaver to an inner 2-state rate-1 accumulator code.
Figure 23 compares the iterative decoding performance of this code with that of a more straightforward
serial concatenation of the octal (1,5/7) code (unpunctured) with the 2-state accumulator code. We see
that the straightforward serial concatenation requires a minimum Eb/N0 of 0.85 dB, because the sharp
curvature of the SNR characteristic of the outer (1,5/7) convolutional code requires the inner accumulator
code to have a fairly high starting output SNR value. The SNR characteristic of the hybrid outer code,
sending 2 of every 6 bits directly to the channel, is not as sharply curved. This hurts the convergence rate
at high SNR, but it widens the iterative decoding tunnel at its narrowest constriction and thus allows the
accumulator’s characteristic curve to drop substantially. Successful iterative decoding for this rate-1/2
code can take place at an Eb/N0 of about 0.45 dB, the same as for the code in the previous figure.
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VII. Low-Density Parity Check Codes

The graphical analysis method also gives insights into the design of low-density parity-check (LDPC)
codes. The method is the same as that of [8,9], except now we interpret the set of variable nodes
and the set of check nodes in the LDPC decoder’s belief propagation network as two constituents of a
turbo-like decoder, with separate SNRout versus SNRin characteristics. Since each variable node simply
combines (independent) information about a given bit from several incoming sources, the messages passed
to and from the variable nodes are like those passed to and from a decoder for a repetition code. The
corresponding SNRin versus SNRout characteristic is a straight line with slope 1/(dv− 1), where dv is the
degree of variable nodes, which is the number of connections to the variable node. The SNR characteristic
for the collection of degree-dc check nodes is obtained by averaging a product of tanh functions, as shown
in [9]. Alternatively, this SNR characteristic may be obtained by simulation.

Figure 24 shows the SNR characteristics for the variable nodes and the check nodes of rate-1/2 LDPC
codes with degrees (dv, dc) = (2,4), (3,6), (4,8), and (5,10). In this figure, the SNR characteristics for
the variable nodes are straight lines with slopes 1, 1/2, 1/3, and 1/4, emanating from a nonzero SNR
determined by the channel Eb/N0 of 1.1 dB. The SNRout versus SNRin characteristics of the check nodes
start from SNR = 0 and increase more slowly with SNR when the degree of the check nodes increases.
In this example, the (2,4), (4,8), and (5,10) codes are not reliably decodable at this Eb/N0 because their
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respective SNR characteristics intersect. However, the (3,6) code is just at the limit of preserving a
narrow iterative decoding tunnel for reliable convergence.

Now we look at an example showing the improvement obtainable by allowing variable nodes with
mixed degrees. First consider a rate-1/2 (4,8) regular LDPC code. The iterative decoding threshold of
this code is Eb/N0 = 1.6 dB [9]. Then consider another code with two equal-sized groups of variable
nodes of degrees 2 and 6. All of the check nodes are assumed to have degree 8. The resulting iterative
decoding threshold for this code is 1.0 dB. This gives 0.6 dB improvement over the (4,8) regular LDPC,
and the code rate is still 1/2. Figure 25 shows SNR curves for the check nodes and the variable nodes.
As shown in the figure, the SNRout versus SNRin characteristic of the check nodes degrades due to the
mixture input. However, the slope of the SNRin versus SNRout characteristic of the mixture of variable
nodes decreases more, such that at Eb/N0 = 1.0 dB the two curves touch each other. At the same Eb/N0,
the two SNR curves for the (4,8) regular LDPC code cross each other.

Returning to Fig. 24, we see that the SNR curves for the check nodes of different degrees all approach
parallel straight lines with 1:1 slopes for high SNR. The asymptote for a degree-dc check node satisfies
the equation SNRout = SNRin − 2 ln(dc − 1). The straight-line equation for a variable node of degree
dv is SNRout = (dv − 1)SNRin + 2REb/N0. In the special case of variable nodes with degree dv = 2,
both slopes are equal. In this case, the SNRout versus SNRin asymptote for the check nodes will lie
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entirely above the SNRin versus SNRout curve for the variable nodes only if 2REb/N0 > 2 ln(dc − 1), or
Eb/N0 > [dc/(dc − 2)] ln(dc − 1), since in this case the code rate R = 1− 2/dc. This can serve as a lower
bound on the Eb/N0 threshold. This coincides with the result obtained by Wiberg [3] and is a special
case of the stability condition obtained by Richardson et al. [8] for LDPC codes.
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Fig. 24.  Iterative decoding threshold analysis for rate-1/2 LDPC codes.
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VIII. Analytic Estimates of Gaussian Density Evolution for 2-State Constituent
Codes

Analytic computation of the evolving mean of the extrinsic information messages for a concatenated
code with convolutional constituent codes is in general a difficult problem. Approximate solutions have
not produced accurate computations of iterative decoding thresholds. However, by imitating the analysis
method used in [9] for LDPC codes, we are able to derive analytic expressions for general serial and
parallel concatenations using 2-state constituent codes.

A. Analysis for LDPC codes

For iterative decoding of LDPC codes using a belief-propagation network, there are two types of nodes
and three types of extrinsic information messages. There are variable nodes corresponding to coded
symbols and check nodes corresponding to the parity check equations. The variable nodes send messages
v to the check nodes and receive messages λc from the channel and u from the check nodes. The check
nodes send messages u to the variable nodes and receive messages v from the variable nodes.

The message v going from a variable node to a given check node is computed as a linear sum of the
incoming channel message and the extrinsic messages from the other check nodes:

v = λc +
dv−1∑
m=1

um (1)

where dv is the degree of the variable node and {um,m = 1, · · · dv − 1} are the incoming messages from
the dv − 1 other check nodes connected to the given variable node. The message going from a check node
to a variable node is computed as a nonlinear function of the extrinsic messages from the other variable
nodes connected to this check node. For the sum-product algorithm, the result is expressed as

tanh
(u

2

)
=
dc−1∏
m=1

tanh
(vm

2

)
(2)

Using the Gaussian approximation and the consistency condition, we only need to compute the mean
of the extrinsic messages. The mean v̄ of the message from a variable node to a check node is simply the
sum of the mean λ̄c of the channel message and the means ū of the incoming messages {um} from the
other check nodes,

v̄ = λ̄c + (dv − 1)ū (3)

For an AWGN channel, λ̄c = 2/σ2, where 1/(2σ2) = (k/n)(Eb/N0).

At the next step in the iterative process, the mean ū of the message from a check node back to a
variable node is computed by averaging Eq. (2) over the assumed Gaussian densities for u and {vm}.
Define ψ(µ) to be the average of tanh(y/2) over a Gaussian random variable y with mean µ and variance
2µ:

ψ(µ) =
∫ ∞
−∞

tanh
(y

2

) 1√
4πµ

exp
(
− (y − µ)2

4µ

)
dy (4)

In terms of ψ(·), the update equation for the mean of a message from a check node to a variable node is
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ψ (ū) = [ψ (v̄)]dc−1 (5)

Here we have assumed that the variable node messages {vm} and the check node messages {um} all have
the same means, v̄ and ū, respectively. These update equations for LDPC codes have been obtained in [9].

B. Analysis for Concatenated Codes with 2-State Inner Codes

We consider two versions of the 2-state convolutional code: the rate-1 accumulator code, octal (1/3);
and the rate-1/2 recursive convolutional code, octal (1,1/3). Although convolutional codes are conven-
tionally constructed on a trellis, these 2-state codes have simple Tanner graph representations [13] without
loops. This graph representation is shown in Fig. 26. Here the nodes corresponding to the parity bits and
the information bits play the role of the variable nodes for LDPC codes, and they are connected through
a set of check nodes.

vk−2 vk−1
vk+1

zk−1 wk zk+1

uk−1 vk
uk

λc,k−1 λc,k

θ λc,k−1 θ λc,k θ λc,k+1

λi,k−1 λo,k λi,k+1

PARITY BITS

INFORMATION BITS

Fig. 26.  Tanner graph for a 2-state convolutional inner code, used to calculate extrinsic-
information messages corresponding to input information bits.

First we use the 2-state convolutional code, either rate-1 or rate-1/2, as the inner code of a serial con-
catenation or as one of the constituent codes of a parallel concatenation. The input extrinsic information
corresponding to the jth information bit is denoted λi,j , and we wish to compute the output extrinsic
information λo,k for information bit k.

The message from the channel corresponding to the kth parity bit is denoted λ
′

c,k, and the message
from the channel corresponding to the (systematic) information bit is denoted by θλ

′′

c,k, where θ = 1 for
the case of the rate-1/2 code and θ = 0 for the rate-1 accumulator code. We also define intermediate
messages {uj}, {vj} between the check nodes and the variable nodes associated with the parity bits, and
intermediate messages {wj}, {zj} between the check nodes and the variable nodes associated with the
information bits, as indicated in the figure.

Two key message-passing equations are evident from the graph. The equation for the messages
{uk = vk − λ

′

c,k} sent from the check nodes to the variable nodes associated with the parity bits is

tanh

(
vk − λ

′

c,k

2

)
= tanh

(vk+1

2

)
tanh

(
λi,k+1 + θλ

′′

c,k+1

2

)
(6)

and the equation for messages {wk = λo,k − θλ
′′

c,k} sent from the check nodes to the variable nodes
associated with the information bits is

27



tanh

(
λo,k − θλ

′′

c,k

2

)
= tanh

(vk−1

2

)
tanh

(vk
2

)
(7)

With large code blocks, we can argue that averages over the various types of messages will be inde-
pendent of the bit location k. Taking the steady-state averages of these two expressions produces first an
equation to be solved for the mean v̄ of the messages {vk}, in terms of the mean λ̄i of the input extrinsics
λi,k and the mean λ̄c = 2/σ2 of the channel messages λ

′

c,k, λ
′′

c,k,

ψ
(
v̄ − λ̄c

)
= ψ (v̄)ψ

(
λ̄i + θλ̄c

)
(8)

and second an equation for the mean λ̄o of the output extrinsics λo,k,

ψ
(
λ̄o − θλ̄c

)
= [ψ (v̄)]2 (9)

C. Analysis for Doubly Serial Concatenations of 2-State Codes

We can also use the 2-state convolutional code, either rate-1 or rate-1/2, as an outer code or more
generally as the middle code of a serial concatenation of three codes [15,16]. Again we use a Tanner
graph representation for the 2-state convolutional code. In the general case, there are three types of input
and output extrinsic messages that must be analyzed, corresponding to the code’s input and output (if
rate-1/2) information bits and to its output parity bits.

The graph representation for computing the output extrinsic messages λo,k, λ
′′

o,k, corresponding to the
input or output (if rate-1/2) information bits, respectively, is almost identical to that of Fig. 26, except
that the input messages from the channel λ

′

c,k, λ
′′

c,k are replaced by input extrinsic-information messages
λ
′

i,k, θλ
′′

i,k from an inner code, corresponding to the parity bits and the (systematic) information bits
(if rate-1/2), respectively. There are also input extrinsic-information messages λi,k from an outer code,
corresponding to the information bits. Now the output extrinsic messages depend on all three types of
input extrinsic messages, and the means λ̄o, λ̄

′′
o of the output messages are functions of the corresponding

means λ̄i, λ̄
′
i, λ̄

′′
i of λi,k, λ

′

i,k, λ
′′

i,k, respectively. To determine λ̄o and λ̄
′′
o , first solve the following equation

for v̄:

ψ
(
v̄ − λ̄′i

)
= ψ(v̄)ψ

(
λ̄i + θλ̄

′′

i

)
(10)

Then the solution v̄ can be used to calculate λ̄o as the solution of

ψ
(
λ̄o − θλ̄

′′

i

)
= [ψ (v̄)]2 (11)

and λ̄
′′
o as the solution of

ψ
(
λ̄
′′

o − λ̄i
)

= [ψ(v̄)]2 (12)

The graph representation for computing the output extrinsic messages λ
′

o,k corresponding to the parity
bits is shown in Fig. 27. The message flow in this graph produces a nonlinear equation,
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Fig. 27.  Tanner graph for a 2-state convolutional middle code, used to calculate output extrinsic-
information messages corresponding to output parity bits.
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tanh
(uk
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)
= tanh

(
uk−1 + λ

′

i,k−1

2

)
tanh
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for the output of the check nodes, and a linear equation,

λ
′

o,k = uk + uk+1 (14)

for the output of the variable nodes corresponding to the parity.

Again we assume a steady-state condition such that averages are independent of bit location k and
obtain the following equation to be solved for the mean ū of uk:

ψ (ū) = ψ
(
ū+ λ̄

′

i

)
ψ
(
λ̄i + θλ̄

′′

i

)
(15)

Finally, the mean λ̄
′
o of the output extrinsic-information messages for the parity bits is computed in terms

of ū by averaging the linear equation above to obtain

λ̄
′

o = 2ū (16)

The results in this section are for a general configuration where the 2-state code is situated amidst a
series of concatenations. For the rate-1 accumulator code, set θ = 0, or set θ = 1 for the 2-state code
with rate-1/2. If the code is used as an outer code, set λ̄i = 0. If the entire output of the rate-1/2 code
is serially concatenated through an infinitely long random interleaver with an inner code, then we can
also set λ̄

′
i = λ̄

′′
i . However, we can also generally allow λ̄

′
i 6= λ̄

′′
i to model the case when the rate-1/2

code’s systematic bits and parity bits are sent through separate interleavers to different inner codes. In
particular, this applies to a code concatenation that sends the systematic bits uncoded to the channel,
while permuting the parity bits and sending them to another layer of coding.

To extend these analytic results to more complex constituent codes, the evolution of the mean of the
extrinsic information can be approximately computed from stage to stage of a general code trellis, but
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the approximation requires ignoring a normalization factor, and to date we have not found this method
to give satisfactory predictions of decoding thresholds.

An example of this analysis method applied to a 2-state code used in a doubly serial configuration is
shown in Fig. 28. This is a rate-1/3 systematic code obtained by sending one copy of the information
bits to the channel and two copies through a series of two rate-1 accumulators preceded by interleavers.
Compared to the rate-1/3 repeat-and-accumulate (RA) code in Fig. 6, the repeat-and-doubly-accumulate
(RDA) code in this figure has a slightly lower iterative decoding threshold of about 0.4 dB. The curves
in Fig. 28 analyze this code in two pieces, with the innermost rate-1 accumulator as one constituent and
the rest of the code as the second. The SNRout versus SNRin characteristics of these two pieces are
shown along with the straight-line characteristic of the repetition-3 outer code used in the construction
of the plain RA code [19] in Figs. 6 and 17. We see from the figure that the SNR characteristic of the
repetition-3 outer code just barely intersects the SNR characteristic of the rate-1 accumulator code. This
produces a slightly higher Eb/N0 iterative decoding threshold for the plain RA code. More significantly,
the SNR characteristic of the stronger outer code defined in Fig. 28 curves sharply away from the straight-
line characteristic of the repetition-3 code. This shortens the iterative decoding tunnel and enables the
iterative decoder to converge much faster.
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IX. Conclusion

We tracked the density of extrinsic information in iterative turbo decoders by actual density evolution,
and also approximated it by consistent Gaussian density functions. Then we used both models to analyze
the convergence of iterative decoding for turbo codes and for serially concatenated codes. The approximate
Gaussian method, although not as exact as actual density evolution, nonetheless gives accurate predictions
of iterative decoding thresholds compared to simulated decoder performance.

A noise figure was defined for one full loop through the iterative decoder, such that the turbo decoder
will converge to the correct codeword if the noise figure is bounded by a number lower than 1. By
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decomposing the code’s noise figure into individual curves of output SNR versus input SNR corresponding
to the individual constituent codes, we gained many new insights into the performance of the iterative
decoder for different constituents. Many mysteries of turbo codes can be explained based on this analysis.
For example, we illustrated why certain codes converge better with iterative decoding than do more
powerful codes, which are only suitable for maximum-likelihood decoding. The roles of systematic bits
and of recursive convolutional codes as constituents of turbo codes were explained based on this analysis.

Having identified the strengths and weaknesses of particular inner and outer constituent codes through
their input–output SNR characteristics, we then generalized the analysis to include serial concatenations
of mixtures of different outer and inner constituent codes. Such mixtures allow us to design better con-
stituent codes that exhibit more of the strengths and fewer of the weaknesses of the individual components
of the mix. The input–output SNR analysis method provides good graphical insight into understanding
how to choose mixture components that complement each other. We gave examples of simple rate-1/2
and rate-1/3 mixture configurations, using component codes with at most four states, that approach their
respective capacity limits within 0.3 dB to 0.5 dB.

While the general method for determining the constituent codes’ input–output SNR characteristics
was by Monte Carlo simulation, we also gave analytic expressions for these curves for the particular case
of a 2-state constituent. These expressions cover both the rate-1, octal (1/3) accumulator code and the
rate-1/2, octal (1,1/3) recursive convolutional code, used in any concatenation configuration, whether as
an inner code, an outer code, or as a middle code in a series of more than two concatenated codes.
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