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Determination of 70-Meter Antenna
Elevation-Axis Inertia

J. Sommerville1

In the near future, JPL will create spacecraft/transmitters that are smaller in size
to reduce mission costs significantly. However, a smaller spacecraft transmitter/dish
creates a signal that is smaller in wavelength. The Earth-based 70-m downlink
antenna cannot track smaller wavelengths, unless improvements are made to the
current servo system. A study is conducted to define some 70-m antenna servo
system parameters that will allow improvements in its tracking response for smaller
targets.

I. Introduction

Plans are under way to upgrade the 70-m antenna from the current 8 MHz (X-band) to 32 MHz
(Ka-band). The Ka-band wavelength is one-fourth the size of the current X-band wavelength. This
means that the 70-m antenna must point to a smaller target. The 70-m antenna pointing accuracy and
tracking response must be improved to operate within the Ka-bandwidth. The 70-m antenna’s tracking
response can be improved by minimizing the time it takes to respond to external disturbances such as
wind. Excessive inertia on the servo drive motors causes the antenna to sluggishly correct its pointing
position when wind disturbances move the antenna position away from its intended path. In this article,
the 70-m elevation-axis inertia is determined to provide a baseline for the existing servo control system.
The baseline data will be used as reference to make servo system design improvements. Industrial servo
control experts recommend that the servo motor’s inertia should equal or match the inertia of the reflected
load. The term “inertia matching” is the practice of balancing the inertia of a servo motor with the load
inertia (i.e., the inertia that is felt by the servo motor). A parallel effort is under way to define the best
inertia ratio for the 70-m antenna requirements. The primary purpose of this article is to quantify the
existing 70-m elevation-axis inertia. A secondary purpose is to compare the current 70-m inertia ratios
to the proposed 70-m inertia ratios and to the former 64-m inertia ratio values.

Three approaches were taken to determine the current 70-m antenna’s effective inertia for the elevation
axis. The first method determines inertia by analysis of the antenna’s mass properties and gear ratios.
The mass properties are estimated from component geometry that is depicted in drawings and from mass
properties data supplied by JPL’s Antenna Mechanical Structural Engineering Group.

1 Communications Ground Systems Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
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The second method derives a mathematical expression for the hydraulic natural frequency. Then, the
antenna reflected inertia, J , is calculated from the same expression. Test data are used to determine the
hydraulic stiffness, K, and the hydraulic natural frequency, f :

fhydraulic =
1

2π

√
K

J
(1)

The system rotational inertia is then calculated from the rearranged formula for the hydraulic natural
frequency:

J =
K

(2πfhydraulic)2 (2)

This method of determination is independent of the antenna’s frictions. However, an analysis of the
hydraulic motor pressures is necessary. When the antenna is driven, both structural and hydraulic forces
are manifested in the hydraulic-line pressure traces. These forces are periodic in nature. The resultant
waveform must be decomposed into its component frequencies by using a fast Fourier transform (FFT).
Then, the hydraulic resonance frequency must be selected from a number of other resident frequencies in
the FFT power spectral density.

The third method used to determine the antenna’s inertia is the application of an integrated form of
Newton’s equation to 70-m antenna-drive test data:

∑
T = Jα (the summation of torques is equal to

rotational inertia times angular acceleration). The integral form of Newton’s equation states that the
impulse (the integral of applied torques over time) is equal to the change in angular momentum (the
antenna inertia times the angular speed) of the antenna. This approach requires some knowledge of all
of the antenna external forces, such as the driving forces, offset torques, coulomb and static frictions, etc.

II. Antenna Inertia Calculations from Mass Properties

The antenna inertia is a composite that includes the hydraulic motors, the gearbox pinions and shafts,
and the antenna itself. The inertia of each component follows.

The servo motor’s inertia encompasses the motor’s inertia and any object that is rigidly attached to
the motor’s shaft. The motor inertia, Jmotor, is comprised of two components: the motor inertia and the
flywheel inertia. The 70-m antenna motors have 24 flywheel disks rigidly coupled to the motor shaft.
The load inertia encompasses the gear heads, pinions, and the inertia of the driven load. The amount of
inertia felt by the servo motor is called the reflected inertia or effective inertia.

The six elevation-axis rotating assemblies are

J1 = the inertia of the first intermediate shaft/pinion and the high-speed gear

J2 = the inertia of the second intermediate shaft/pinion and the first intermediate gear

J3 = the inertia of the third intermediate shaft/pinion and the second intermediate gear

J4 = the inertia of the low-speed gear and bull pinion

Jct = the inertia of the counter-torque motor and the high-speed shaft/pinion

Jant = the inertia of the antenna tipping mass
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The inertia of each component is reflected to the motor axis by taking into account the gear train
ratios; D’Azzo and Houpis [1] developed a mathematical relationship between the gear ratios and the
gearbox pinion and shaft inertias:

Jreflected = Jmotor + Jct +
J1

(N1)2 +
J2

(N1N2)2 +
J3

(N1N2N3)2 + · · ·+ Jant

(N1N2N3N4N5)2 (3)

The reflected inertia is mathematically represented in Eq. (3). The reflected inertia is the rotating inertia
(e.g., motor, gear head, or antenna dish inertias) divided by the square of the ratio of the motor speed to
the speed of the gear head or tipping mass. The load inertia, JL, consists of the six rotating assemblies
that are scaled relative to their axis speed ratios. Each of the rotating assemblies has a different rotating
speed relative to the motor rate, with the exception of Jct, the counter-torque motor and shaft/pinion.
Mathematically, JL, is defined as the sum of all of the terms on the right-hand side of Eq. (3), less the
the first term, Jmotor.

The inertia values for Eq. (3) are

Jant64m = inertia for 64-m elevation antenna tipping mass, 100× 106 lbf-ft-s2 (see Footnote 2)

Jant70m = inertia for 70-m elevation antenna tipping mass, 2.41667× 108 lbf-ft-s2

The inertia value for the 64-m azimuth axis is not known. The inertia value for the 70-m azimuth when
the elevation axis is positioned at 60 deg is 3.033× 108 lbf-ft-s2.

For the elevation axis, the ratios of speeds between the adjoining rotating assemblies are

N1 = 134/20

N2 = 101/21

N3 = 113/23

N4 = 77/20

N5 = 754/16

The inertia of the shaft and gear components may be approximated by that of a solid-steel disk,

Ji =
1
2
MR2

i (4)

where M is the mass of the disk or shaft and Ri is the outer radius of the disk or shaft. Equation (4) is
an overestimation of the pinion gear inertia because each pinion actually has gear teeth cut into its outer
edge. A circular disk is chosen as a geometrical approximation to simplify the inertia calculation.

The weight of the disk, W , is calculated by multiplying the specific weight of the disk, ρ, times the
volume of the disk, V :

2 “The NASA/JPL 64-Meter-Diameter Antenna at Goldstone, California: Project Report,” Technical Memorandum 33-671
(internal document), Jet Propulsion Laboratory, Pasadena, California, p. 180, July 15, 1974.
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W = ρV (5)

where ρ for steel is 7832 kg/m3 (15.28 slug/ft3) (see [2]),

V = πR2H (6)

R is the radius of the disk, and H is the thickness or length of the disk.

Table 1 lists the assumed dimensions of the shafts and gears of the rotating assemblies.

Table 1. Rotating assembly inertias.

Inertia Composite
Length/ component, inertia,

Rotating assembly Radius, cm (in.) thickness, 1/2MR2, Jii, Ji,
cm (in.) kg-m2 kg-m2

(lbf-ft-s2) (lbf-ft-s2)

(1) Inertia of the first Shaft/pinion: 3.81 38.1 J11 = 0.0099 J1 = J11 + J12

intermediate shaft/ (1.5) (15) (0.0073) 1.5876
pinion and the high- (1.1710)
speed gear Gear: 22.42 5.08 J12 = 1.5777

(8.827) (2) (1.1637)

(2) Inertia of the second Shaft/pinion: 6.667 34.29 J21 = 0.075518 J2 = J21 + J22

intermediate shaft/ (2.625) (13.5) (0.0557) 5.2576
pinion and the first (3.8779)
intermediate gear Gear: 26.67 8.255 J22 = 5.182

(10.5) (3.25) (3.8221)

(3) Inertia of the third Shaft/pinion: 10.795 49.53 J31 = 0.7688 J3 = J31 + J32

intermediate shaft/ (4.25) (19.5) (0.5671) 31.294
pinion and the second (23.0816)
intermediate gear Gear: 36.4998 13.97 J32 = 30.525

(14.375) (5.5) (22.5144)

(4) Inertia of the low- Shaft/pinion: 26.162 68.58 J41 = 39.49798 J4 = J41 + J42

speed gear and (10.3) (27) (29.1326) 194.5418
bull pinion (143.4886)

Gear: 49.53 20.955 J42 = 155.0439
(19.5) (8.25) (114.356)

(5) Inertia of the counter- Shaft/pinion: 3.81 38.61 JC1 = 0.009897 JC = JC1 + JC2

torque motor and (1.5) (15.2) (0.0073) 0.01207
the high-speed shaft/ (0.0089)
pinion Counter-torque — JC2 = 0.00021

motor (0.00155)

The load inertia, JL, is the inertia felt at the motor and is given in Tables 2 and 3 for the 64-m and
70-m antennas, respectively.

Using Eq. (3), one adds the 64-m load inertias from Table 2 to the single motor inertia,

Jmotor64m = 0.17712 kg m2(0.13064 ft lbf s2)

to obtain the reflected inertias:
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Table 2. 64-meter antenna load inertia table.

Load
Item inertia, Load inertia

Rotating assembly
no. kg-m2 formula, Ji

(lbf-ft-s2)

1 First intermediate shaft/ 0.14164 4J1/(N1)2

pinion and the high-speed gear (0.10434)

2 Second intermediate shaft/ 0.0194 4J2/(N1N2)2

pinion and the first intermediate gear (0.01494)

3 Third intermediate shaft/ 0.04989 4J3/(N1N2N3)2

pinion and the second intermediate gear (0.00368)

4 Low-speed gear and bull pinion 0.002088 4J4/(N1N2N3N4)2

(0.00154)

5 Counter-torque motor and the 0.048402 4Jct
high-speed shaft/pinion (0.03570)

6 Inertia of the 64-m antenna 0.164323 Jant/(N1N2N3N4N5)2

tipping mass (0.12120)

7 Summation of 64-m load inertias 0.3815 JL =
∑6

i=1
Ji

(0.28141)

64 m reflected inertia = 4× 0.17712 + 0.3815 = 1.09 kg m2

= 4× 0.13064 + 0.28141 = 0.804 ft lbf s2

The motor-to-load inertia ratio is the motor inertia divided by the load inertia from Table 2:

4× Jmotor64m

JL
= 1.8568

for the 64-m antenna (elevation axis).

For the 70-m antenna, one also uses Eq. (3) and adds the load inertias from Table 3 to the single
motor inertia,

Jmotor70m = 0.3007 kg m2(0.22177 ft lbf s2)

to obtain the reflected inertias:

70 m antenna reflected inertia = 4× 0.3007 + 0.5732 = 1.7759 kg m2

= 4× 0.22177 + 0.42282 = 1.31 ft lbf s2

The motor-to-load inertia ratio is the motor inertia divided by the load inertia from Table 3:

4× Jmotor70m

JL
= 2.09799

for the 70-m antenna (elevation axis).
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Table 3. 70-meter antenna load inertia table.

Load
Item inertia, Load inertia

Rotating assembly
no. kg-m2 formula, Ji

(lbf-ft-s2)

1 First intermediate shaft/ 0.14146 4J1/(N1)2

pinion and the high-speed gear (0.10434)

2 Second intermediate shaft/ 0.02025 4J2/(N1N2)2

pinion and the first intermediate gear (0.01494)

3 Third intermediate shaft/ 0.004989 4J3/(N1N2N3)2

pinion and the second intermediate gear (0.00368)

4 Low-speed gear and bull pinion 0.002088 4J4/(N1N2N3N4)2

(0.00154)

5 Counter-torque motor and the 0.048402 4Jct
high-speed shaft/pinion (0.03570)

6 Inertia of the 70-m antenna 0.356047 Jant/(N1N2N3N4N5)2

tipping mass (0.26261)

7 Summation of 70-m load inertias 0.57324 JL =
∑6

i=1
Ji

(0.42281)

III. Antenna Inertia Calculation from the Hydraulic Natural Frequency

The 70-m antenna rotational inertia will be calculated from the hydraulic resonance equation.

A mathematical relationship for the hydraulic resonance of the 70-m antenna will be developed. The
hydraulic natural frequency and hydraulic line stiffness will be determined from spectral analysis of
hydraulic line pressure traces. The 70-m antenna has four hydraulic motors that drive four pinions that
ultimately turn the large antenna structure on an axis of rotation, as depicted in Fig. 1.

The sum of the hydraulic motor torques equals the reflected motor inertia, J , times the angular
acceleration of the motor, θ̈:

∑
Ti = Jθ̈ (7)

The torque, Ti, of an individual hydraulic motor is

Ti = et
d

2π
∆p (8)

where d is the hydraulic motor volumetric displacement in units of volume per shaft revolution. The
variable et is the motor’s torque efficiency.

Since there are four motors for the four pinions of Fig. 1, the sum of the motor torques becomes

∑
Ti = et

4d
2π

[dp1 − dp2] (9)

where the variables dp1 and dp2 represent a small change in pressure inside the common hydraulic lines
leading to the motors.
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AZIMUTH AXIS(b)

PINION PINION

Fig. 1.  The 70-m drive pinion and bull gear configuration for the (a) elevation and (b) azimuth axes.

The change in pressure inside the hydraulic line is related to the volume of the line by the bulk
modulus, β:

β =
dp

∆V
V

(10)

Solving for the change in line pressure, dp, one obtains

dp = β
∆V
V

(11)

If the hydraulic motor shaft was slightly rotated in a positive direction, a small amount of fluid would
be extracted from one hydraulic line, and the same amount of fluid would be added to the other line.
Assume that the volume V2 in the hydraulic schematic loses fluid and the volume V1 gains fluid. So, the
corresponding change in the line pressures would be the following:

dp1 = β
∆V1

V1

dp2 = − β∆V2

V2

 (12)

where ∆V1 is the small amount of fluid added to the volume V1, and ∆V2 is the small amount of fluid
extracted from volume V2 when the motor shaft is twisted.

When the hydraulic motor shaft rotates, the amount of fluid that transfers from one side to the other
is determined by the motor’s displacement, d:

d =
fluid
shaft

(13)
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Let θ represent the angular position of the hydraulic motor. Each hydraulic motor delivers a specified
volume of fluid per (2π rad) angular rotation of the motor shaft. In the 70-m hydraulic configuration
depicted in Fig. 2, each hydraulic motor moves fluid to or from a common control volume, V1 or V2. Thus,
Eq. (14) represents the change in volume of ∆V1 and ∆V2 as four times the displacement of a single motor
times the hydraulic motor’s volumetric efficiency, ev:

∆V1 = ev
4dθ
2π

∆V2 = ev
4dθ
2π

 (14)

By substituting Eq. (12) for dp1 and dp2 into the equation of motion for the antenna, Eq. (9), and then
substituting Eq. (14) for volume changes, ∆V1 and ∆V2, into the resulting equation, one obtains

∑
Ti = etevβ

(
4d
2π

)2 [ 1
V1

+
1
V2

]
θ = Jθ̈ (15)

or,

Kθ = Jθ̈ (16)

where K is the equivalent hydraulic stiffness of the 70-m antenna:

K = etevβ

(
4d
2π

)2 [ 1
V1

+
1
V2

]
(17)

The hydraulic natural frequency for the 70-m antenna is defined as

fhydraulic =
1

2π

√
etevβ

J

(
4d
2π

)2 [ 1
V1

+
1
V2

]
(18)

which will be used to calculate the antenna inertia. The bulk modulus, β; volumetric displacement, d;
and hydraulic resonance, fhydraulic, are determined from test data as described below. The volumes V1

and V2, the trapped hydraulic fluid between the servo valve and the hydraulic motor ports, are given
in [3] as 0.02455 m3 (1498.1 in.3) and 0.02457 m3 (1499.6 in.3), respectively. Thus, the reflected inertia, J ,

dp1,V1

dp2,V2

Fig. 2.  Schematic of 70-m hydraulic lines leading to and from the
hydraulic drive motors.
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is the only unknown in the mathematical expression for the hydraulic natural frequency. Equation (18)
may be rearranged to express the inertia, J , in terms of the other known variables:

J =
etevβ

(
4d
2π

)2 [ 1
V1

+
1
V2

]
(2πfhydraulic)2

(19)

or

J =
K

(2πfhydraulic)2
(20)

where K is from Eq. (17).

A. The Bulk Modulus

The bulk modulus, β, is related to the wave speed, c0, and the density, ρ, of the hydraulic fluid (see
[4]):

c0 =

√
β

ρ
(21)

or,

β = c20ρ (22)

The wave speed, c0, may be expressed as the time, T , that a pressure wave travels the distance from the
valve to the motor, L:

β =
(
L

T

)2

ρ (23)

The time variable, T , or period, is equal to half of the time that it takes to complete one pressure
oscillation cycle, Tp:

T =
Tp
2

(24)

but,

Tp =
1
fp

(25)

Since the pressure or (slosh) frequency, fp, is the reciprocal of the period, the expression may be restated
as the following:

β = (2Lfp)
2
ρ (26)
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The “slosh” frequency, fp, may be described as the following: As the servo valve is suddenly opened,
a pressure wave runs along the hydraulic line until it hits the hydraulic motor port where the pressure
transducer resides. The wave then reflects backwards towards the valve to begin the cycle over again. In
this discussion, the fluid’s pressure cycle is termed the slosh frequency. Hydraulic lines are very lightly
damped, so the signature frequencies of oscillation remain even after the servo valve is closed. Each
hydraulic line length has its own signature frequency. An FFT of the hydraulic line pressure traces will
separate the hydraulic line frequencies into their component parts. The longest hydraulic line will have
the lowest slosh frequency, and the shortest hydraulic line will have the highest slosh frequency.

Figure 3 shows slosh frequencies of hydraulic lines measured after the servo valve was suddenly opened
and then closed. An FFT of these waveforms is given in Fig. 4. The highest frequency is given as 46.3 Hz,
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Fig. 3.  A time plot of 70-m antenna hydraulic line pres-
sures after the servo valve was suddenly closed.
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and the lowest frequency is given as 38.3 Hz from the test data. The shortest hydraulic line length is
13.11 m (516 in.), and the longest line length is 15.60 m (614 in.). The hydraulic fluid density is given as
850 kg/m3 (7.95× 10−5 lbf-s2/in.4) (see [3]).

The insertion of the density, line length, and frequency values into Eq. (26) determines the bulk
modulus: 1245.5 MPa (180,643 lbf/in.2) for the shortest line and 1212.5 MPa (175,857 lbf/in.2) for the
longest hydraulic line.

B. Hydraulic Natural Frequency

The hydraulic resonance frequency, fhydraulic, of 0.97 Hz was acquired from test data taken in October
1999. In this test, the 70-m antenna was instrumented with a pressure sensor at the inlet and outlet ports
of each hydraulic motor. A triangle wave command was issued to the servo valve. The axis speed was
measured by tachometers on each hydraulic drive. The difference between the inlet and outlet pressures is
directly proportional to the driving torque of the hydraulic motor. The ringing or oscillations of hydraulic
pressure traces are composed of hydraulic and structural resonance frequencies of the system. Figures 5
and 6 show the individual torques of each motor as well as the sum of all motor driving torques on the
antenna axis. The antenna axis rate is measured by tachometer. The hydraulic and structural resonance
frequencies can be seen in the torque summation traces that are depicted in Figs. 5 through 8. An FFT of
the summation of torques decomposes it into a spectrum of frequencies. From this spectrum of frequencies,
the hydraulic natural frequency may be extracted. It is difficult to separate the structural resonances
from the hydraulic resonance. For this reason, the hydraulic natural frequencies from two antenna drive
conditions—a high-speed ramp command and a low-speed ramp command—were evaluated in Figs. 9
and 10 for a spectral comparison; the eigenvalues from the JPL antenna structural model were used to
eliminate certain frequencies near the expected range of resonance. The eigenvalues are the predicted
structural resonant frequencies. No structural resonances are predicted to occur below 1.75 Hz on the
azimuth axis of rotation.

C. Hydraulic Motor Displacement and Motor Efficiencies

The hydraulic motor parameters were determined by a test conducted at Fluid Technologies Inc. of
Stillwater, Oklahoma, in November of 1999. Volumetric displacement, d, was measured to be 38.329 cc/rev
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Fig. 6.  A time plot of individual and total torque of the ele-
vation-axis hydraulic motors and antenna slew rate during
a low-speed ramp command.
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(2.339 in.3/rev); motor torque efficiency, et, was measured as 0.938; and motor volume efficiency, ev, was
measured as 0.9412.

D. Determination of 70-Meter Antenna Reflected Inertia and Inertia Ratio from Hydraulic
Resonance Data

Combining the known variables into Eq. (19) and solving for the reflected antenna inertia, J , yields a
value of 1.45 kg-m2 (1.07 lbf-ft-s2). The motor-to-load inertia ratio, RMtoL, is as follows:

RMtoL =
Jmotor

Jreflected − Jmotor
(27)

Equation (27) yields a value of 4.63 for RMtoL.

IV. 70-Meter Antenna Inertia Determination by Impulse and Momentum
Considerations

The impulse/momentum equation will be derived from Newton’s equation of motion for rotational
bodies. This equation will be used to calculate the 70-m antenna’s inertia using the previously discussed
70-m test data from October 1999. Other supplemental antenna data were taken in December 2000 to
determine antenna frictions. Antenna friction is needed to determine how much drive torque actually
goes to moving the antenna. Newton’s equation for rotational motion, if integrated on both sides, is as
follows:

∑
T = Jα (28)

where
∑
T is the summation of torque or total torque applied to the 70-m reflected inertia, J , and α is

a constant rate of angular acceleration:

12



0 2 4 6 8 10 12

−10

10

20

30

40

50

60

TIME, s

T
O

T
A

L 
H

Y
D

R
A

U
LI

C
 M

O
T

O
R

 T
O

R
Q

U
E

, N
-m

Fig. 7.  A time plot of the total torque of the elevation-axis
hydraulic motors during a high-speed ramp command.
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Fig. 8.  A time plot of the total torque of the elevation-axis
hydraulic motors during a low-speed ramp command.
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∫ ∑
Tdt =

∫
Jθ̈dt (29)

∫ ∑
Tdt = J

[
θ̇2 − θ̇1

]
(30)

where θ̇1 is the speed of the antenna at the beginning of the applied torque and θ̇2 is the angular speed
at the end of the applied torque. The integral of Newton’s equation states that the impulse is equal to
the change in the angular momentum. The impulse is defined as the integral of the driving torque of
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the hydraulic motors over time. The momentum is the product of the antenna inertia and the angular
rate of speed of the antenna. The change in the momentum is the reflected inertia times the difference
of angular speed at the beginning of the applied torque subtracted from the angular speed at the end of
the applied torque. The reflected antenna inertia, J , may be expressed from Eq. (30) as follows:

J =
∫ ∑

Tdt[
θ̇2 − θ̇1

] (31)

Antenna tachometer data, shown in Fig. 5, measure the speed of the antenna, although the tachometer is
physically located on a different axis than the motor. The tachometer outputs 157 V per 600 rpm. The
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Fig. 9.  A spectral plot of the total torque of the elevation-
axis hydraulic motors during a high-speed ramp.  The pri-
mary (hydraulic) frequency is approximately 1 Hz.
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tachometer output plateaus in Fig. 5 because its output exceeds the data acquisition recorder input limit
of approximately 10 V. The hydraulic motors turn at a rate of 130/23 times faster than the tachometers.
The motor turns faster because of the gear ratio between the tachometer and the motor axes. Thus, the
conversion factor for converting tachometer volts to motor radians per second is as follows:

600
157

(
rev
V

1
min

)
1
60

(
min
S

)
2π
1

(
rad
rev

)
130
23

= 2.261
(

rad
S − V

)
(32)

Pressure transducers measure the driving torque of the hydraulic motor shown in Fig. 5 that is math-
ematically expressed as the left-hand side of Eq. (29). The motor’s pressure is related to the motor’s
torque by Eq. (9). However, some of the driving torque is consumed by antenna friction. This means that
the driving torque, applied by the hydraulic motors, does not totally translate into acceleration of the
antenna. Frictional torques must be subtracted from the driving torques within the impulse integration.

On the elevation axis, the antenna dish is counterbalanced with a weight on the opposing side of its
pivot point. The dish and counterweight do not exactly counterbalance each other. This condition creates
an offset torque on the elevation axis. The result is that the offset torque either helps or hinders the
motion of the antenna. In summary, the torque applied to the antenna is comprised of several components:

∑
T = Tdrive + Tfriction ± Toffset (33)

where Tdrive is the driving torque, Tfriction is the antenna frictional torques, and Toffset is the offset torque
for the elevation axis. The antenna friction is comprised of three components: a steady-state component
known as coulomb friction, static or breakaway friction, and viscous friction. Viscous friction is dependent
upon the rotational speed of the antenna.

A. Offset Torque Elimination

The offset torque must be eliminated from elevation-axis data before the reflected inertia can be
determined. If one assumes that the offset torque is biased to the counterweight side of the pivot point
rather than the dish side of the pivot point, when the antenna dish is moved upward the offset torque
assists the driving torque. If the antenna dish is moved downward, the offset force opposes the driving
force. In order to eliminate the offset torque from calculations, the antenna torque for upward motion
and antenna torque for downward motion, over the same angular path, must be added together and then
the result divided by two. The contribution of the offset torque for each direction cancels with the other
when this operation is performed. Two integrations are performed on the total motor torque curve to
find the antenna’s inertia. Then the results are added together and scaled by a factor of one-half. The
first integral lower limit occurs where the antenna’s rate initially becomes positive in Fig. 5. The first
integral upper limit is where the tachometer data plateau slightly above 10 V. The second integral lower
limit is where the tachometer data begin to transition downwardly from the 10-V plateau in Fig. 5. The
second integral upper limit is where the number of time divisions matches the time divisions in the first
integration.

B. Antenna Testing for Frictional Torque

Antenna friction values may be obtained by performing constant speed tests or slow ramp tests with
the antenna’s rate loop in operation.

1. Constant Speed Tests. The justification for the constant speed test is found in Newton’s
equation for rotational motion: The summation of the external torques is equal to the rotational inertia
times the angular rate of acceleration. However, for constant speed conditions, the angular acceleration is
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equal to zero. So, the summation of all the external forces equals zero. Thus, Eq. (33) can be rearranged
to state that the driving torque equals the frictional torque plus or minus the offset torque:

Tdrive = Tfriction ± Toffset (34)

During 70-m antenna constant speed testing, a bipolar symmetrical square wave was applied to the servo
rate loop before the summing junction. This allowed the rate loop to regulate to the commanded speeds.
The symmetrical bipolar square wave causes the antenna to rotate at a constant speed in one direction and
then causes it to reverse that direction while running at the same speed. Several cycles were conducted to
ensure that repeatable results occurred. This cycle results in one data point for the antenna friction at the
commanded speed. Because the antenna viscous friction is speed dependent, multiple cycles at different
square-wave amplitudes must be conducted to ascertain the antenna frictions at other speeds. When
the testing is completed, an antenna friction-versus-angular speed curve may be plotted. The curve’s
intercept on the y-axis shows the coulomb friction torque (i.e., the steady-state friction at zero speed).
The curve’s slope defines the coefficient for the viscous friction term (assuming a linear curve). Only two
data points were available from 70-m antenna constant speed tests. These two points yield a slope of
5.21 N-m/rpm (46.1 in.-lbf/rpm) and coulomb friction value, or y-intercept, of 69.49 N-m (615.00 in.-lbf).

2. Slow Ramp Tests. The slow ramp test is a second approach for determining antenna friction. A
bipolar symmetrical triangle wave is applied to the servo system rate loop before the summing junction.
A signal input before the summing junction allows the antenna to follow the servo valve commands.
The physical basis for a slow ramp is that the driving torque of the antenna is gradually increased until
the antenna begins to move. The value of the torque at the instance when motion begins is called the
breakaway friction. Breakaway friction is normally higher than the friction after the motion begins. After
breakaway, the driving torque is commanded to continue to ramp up the antenna speed at the same
rate. The torque that remains after antenna motion begins is called coulomb friction. Figure 6 shows
the results of slow ramp testing. Hydraulic motor torque is measured by pressure transducers in each
motor port. The hydraulic motor port pressure is related to its output torque by Eq. (9). The torque
summation curve shows the total torque applied to the elevation axis. The antenna motion is measured
by tachometers. The tachometer trace follows the commanded bipolar triangle waveform pattern that
was input to the servo valve. Like the constant speed test results, the torque values must be processed to
eliminate the offset torque. The measured coulomb torque value of 14.12 N-m (125 in.-lbf) during upward
motion of the antenna must be added to the measured coulomb torque value of 25.42 N-m (225 in.-lbf)
during the downward motion of the antenna. The result was divided by two, giving a coulomb friction
value of 19.77 N-m (175 in.-1bf).

3. Coulomb Friction Discrepancy. It is not known why the value for coulomb friction in the
constant speed tests differs from the friction results from the slow ramp test. Perhaps the relationship
between the antenna friction and the antenna speed is not linear, as originally assumed. Further tests
of the antenna are necessary to better define the antenna friction-versus-antenna speed curve. The 70-m
antenna inertia is calculated in the following using both values for coulomb friction.

C. Impulse/Momentum Antenna Inertia Ratio Calculation

The inertia calculation using Eq. (30) with the drive torque data (hydraulic motor port pressure
measurements from Fig. 5), drive friction data (constant speed test results), and antenna tachometer
data from Fig. 5 yielded a moment of inertia of 1.668 kg-m2 (1.23 lbf-ft-s2). The same inertia calculation,
using the friction results from the slow ramp tests from Fig. 6 instead of the friction results from constant
speed tests, yields a reflected inertia of 1.45 kg-m2 (1.07 lbf-ft-s2). The motor-to-load ratio as computed
from Eq. (27) is 2.51 for the constant speed inertia data, while it is 4.63 for the slow ramp inertia data.
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V. Summary

The 70-m reflected inertia was calculated using three methods in an effort to perform inertia matching
for an upgraded servo system. The first method computed the antenna inertia using antenna mass
properties, component volumes from drawings, and densities. The second method computed the inertia
from a mathematical expression for the hydraulic resonance. The third method computed the antenna
inertia from impulse and momentum considerations. The first method yielded a value of 1.776 kg-m2

(1.3 ft-lbf-s2); the second method yielded a value of 1.45 kg-m2 (1.07 ft-lbf-s2); and, finally, the third
method yielded values of 1.668 kg-m2 (1.23 lbf-ft-s2) and 1.45 kg-m2 (1.07 lbf-ft-s2). The servo motor-to-
load inertia ratio results ranged from 2.09 to 4.6. Of the three methods of determining antenna inertia, the
hydraulic resonance and the impulse/momentum methods are the most credible because they are based
upon actual test data with fewer assumptions and approximations. Each method indicates that the 70-m
antenna’s motor-to-load inertia is greater than the one-to-one ratio that is considered by industrial servo
control experts to be ideal for an optimal tracking response.
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