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Techniques for Onboard Prioritization of
Science Data for Transmission
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Future planetary exploration missions will continue to face an ever-increasing
data prioritization problem as instrument data collection rates continue to exceed
spacecraft downlink transmission rates. Hard decisions must be made about what
data are sent back to Earth and what data are purged without being seen by
scientists. In this article, we present a suite of techniques for the prioritization of
science data for transmission. These techniques include methods to ensure that
data representative of the local geology, as well as any unusual observations, are
given the highest priority.

I. Introduction

As planetary exploration continues to expand, the combination of more missions, an increased number
of instruments, and the advanced capabilities of those instruments will cause an increase in the volume
of data to be transmitted back to Earth via the Deep Space Network (DSN). Missions will have to make
critical decisions regarding the quantity and quality of the downlinked data, both of which are indirectly
affected by, among other things, the availability constraints of the DSN and the limited spacecraft power.
Although the DSN’s receiving capability increases every year, the number of missions it must service is
growing rapidly.

New methods must be developed to maximize the science return for the available bandwidth. Con-
ventional data compression helps in this regard; however, ever-increasing amounts of compression can
cause unacceptably high distortion levels. We are developing onboard analysis methods to autonomously
prioritize data for downlink as another approach to getting the most out of the limited bandwidth.

Data prioritization already implicitly occurs. A priori decisions are made regarding when to turn on
an instrument based on the number of data sets that can be transmitted to Earth. Instruments may not
be activated because existing scenarios have limited or no ability to make intelligent decisions about the
value of data being collected. In contrast, by collecting more data than can be transmitted to Earth and
applying onboard data-analysis technology to carefully select which data are sent, the quality of data
returned can be increased, maximizing the science return for the available downlink. Selecting the most
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interesting data from a set requires encapsulation of data characteristics with high science value in a form
that can be analyzed and evaluated onboard. The spacecraft must have the capability to automatically
recognize data that contain information about targets with high science interest.

Our operating scenario is rover traverse science, although the algorithms developed in this work can
easily be adapted for use on orbital platforms. Rover traverse science involves the analysis of data
that are collected as a rover travels between study sites. Since images are among the highest volume
data acquired by the rover and thus consume the most bandwidth, images represent one of the greatest
opportunities for data prioritization. Therefore, in this article, we focus on prioritization of images. To
assess and subsequently prioritize the scientific value of a set of collected images, we first must extract
the information found within the images. A geologist in the field would extract the information from a
site by identifying geologic features, including the albedo, texture, shape, size, color, and arrangement of
rocks, and features of the topography, such as layers in a cliff face. Based on knowledge and experience,
the importance of these features then would be evaluated. Our system begins to emulate this process
by first evaluating each image and locating the rocks within it. Next, we extract the properties of the
rocks, including albedo, texture, and shape features. These features are assigned a science value, and the
importance of the image is evaluated based on these values as compared with the features extracted from
rocks identified in other images. Images with interesting features, such as rocks with unusual shapes or
textures, should be ranked higher than images without distinctive features.

We have developed three different prioritization methods that use the extracted rock features to
rank the rocks in terms of scientific importance. Once the rocks are prioritized, the images containing
the rocks are ranked based on the rocks contained within them. The first technique, target signature
detection, recognizes pre-specified signatures that have been identified by the science team as data of
high interest. The second technique, novelty detection, identifies unusual signatures that do not conform
to the statistical norm for the region. The last method, representative sampling, prioritizes data for
downlink by ensuring that representative rocks of the traversed region are returned. These three data
prioritization and analysis techniques have been identified by mission scientists as critical onboard rover
traverse science data-analysis capabilities.

Without extensive ground testing and validation, the science team will be extremely reluctant to use
autonomous, onboard prioritization of data for downlink. As a validation mechanism, we have developed
a robust method for quantifying the correlation between our automated prioritization and a scientist’s
prioritization of the same data set.

Finally, prioritization can be used for more than just data downlink decisions. It also can be used
to trigger opportunistic science observations. Prioritization that calls for opportunistic science cannot
be utilized without a method of re-sequencing the rover, or orbital spacecraft, to obtain the additional
scientific observations requested. This ability for real-time opportunistic science requires integrating the
prioritization module with the onboard planning and scheduling system. We briefly outline our approach
to this integration.

Throughout the remainder of this article, we describe our methods for feature extraction and priori-
tization. We then briefly outline our validation approach and discuss future directions for the project.

II. Feature Extraction

The first step in image prioritization is to extract geological features of interest from the image itself.
Our work has focused on the analysis of rocks in the scene, and thus we begin by locating rocks in a
stereo image pair. Previous methods for locating rocks in an image include techniques using shadows
and information about the Sun angle [11]. Our technique for locating rocks is based on finding objects
above the ground plane. We begin by determining the ground plane from the stereo range data. We then
produce a height image, in which the value of each pixel represents the elevation of the point above the

2



ground plane. Level contours in the height image are calculated and then these contours are connected
from peaks to the ground plane to identify the rocks [10]. Rock properties including albedo, visual texture,
and shape then are extracted from the identified rocks.

The reflectance properties of a rock provide information about its mineralogical composition. We
measure albedo, an indicator of the reflectance properties of a surface, by computing the average gray-
scale value of the pixels that comprise the image of the rock. Shadows and Sun angle can affect the
gray-scale value of a pixel. Although this can be corrected by using the range data along with knowledge
of both the Sun angle and the camera orientation, our foundational work discussed in this article does
not address these specific issues.

The second rock property extracted is visual texture. Visual texture can provide valuable clues to both
the mineral composition and geological history of a rock (see Fig. 1). Visual texture can be described
by gray-scale intensity variations at different orientations and spatial frequencies within the image. We
measure texture using a bank of Gabor filters [9]. A Gabor filter is a complex exponential modulated by
a Gaussian. Taking the Fourier transform, the filter is given by a Gaussian in the frequency domain,

G(u, v, θ, F, σu, σv) = e−2π2([(u′−F )2/σ2
u]+[(v′)2/σ2

v])

where u and v are the horizontal and vertical frequency coordinates, u′ and v′ are the rotated frequency
coordinates (u′ = u cos θ + v sin θ and v′ = u sin θ + v cos θ), θ is the angle of orientation, F is the center
frequency or scale, and σu and σv define the bandwidth of the filter. The benefit of these filters for
texture is that they are local spatial bandpass filters. Moreover, the filters achieve the theoretical limit
for conjoint resolution of information in the 2-D spatial and 2-D Fourier domains [5]. Thus, in a sense,
they are the optimal filter for measuring the frequency response within a local region of the image. The
conditions under which a class of 2-D Gabor wavelets can provide a complete representation of an image
can be identified [12]. In this work, we want a set of filters that can be used to describe the texture
of regions of an image (i.e., the rocks), but we do not need to reconstruct the image. The family of
self-similar filters that we use is defined by the minimum and maximum frequencies passed by the filter
set, as well as the number of orientations (linearly spaced) and the number of scales (logarithmically
spaced), where we assume the aspect ratio of the Gaussians is 2:1 and the filters intersect radially at
the half-amplitude. An example of such a set of filters in the frequency domain is shown in Fig. 2. The
texture response for an image is measured by convolving each filter in the set with the original image. We
then take the magnitude of the response at a pixel. The resulting image cube has one layer corresponding
to each filter, i.e., at each pixel there is a real-valued vector representing the measured texture centered
on the pixel.

IGNEOUS
ROCK

METAMORPHIC
ROCK
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ROCK

METAMORPHIC
ROCK

GRAY-SCALE IMAGE TEXTURE ALGORITHM

Fig. 1.  Examples of visual texture.

3



25020015010050

250

200

150

100

50

pixels

pi
xe

ls

Fig. 2. The magnitude of frequency
response for a bank of 12 Gabor filters
with 3 scales and 4 orientations (0 Hz
is at 125 pixels).

Due to onboard computational constraints, a compromise must be made between the number of filters
used and the discriminatory power of the filter bank. With the addition of filters to the set (i.e., more
scales or orientations), each filter covers a smaller region of the frequency domain, enabling distinction of
finer-frequency signals and providing more discriminating power between different textures in the spatial
domain. We have found that 12 filters (four orientations and three scales) are effective without being
computationally prohibitive [2].

Our current system is not rotationally invariant; however, by merging orientation information across
each scale, the sensitivity to variation in the rotation of rocks within the image could be eliminated.
This is primarily a consideration for rocks whose geological texture has an orientation preference such as
layering or the orientation of grains that can be present in metamorphic rocks.

Another important and geologically useful feature of rocks is their shape. For example, a rock that
is highly rounded may have undergone fluvial processing and traveled far from its source. Conversely, a
rock that is highly angular is likely to be close to its source and to have undergone minimal secondary
processing. The shape of a rock can be difficult to describe precisely. Our system describes the shape of
a rock in an image using three parameters that capture how close to circular and how angular the rock
is [8]. We begin by fitting an ellipse to the boundary points of the identified rock in the image. Our
first shape measure is the eccentricity of this ellipse. Our second measure is the estimated mean-squared
error between the boundary points and the ellipse. The third measure is angularity. Our angularity
measure is based on an algorithm developed by Chetverikov et al. [3] to detect corners of high angularity
in images. Assuming the boundary points of the rock are labeled in the clockwise direction starting from
an arbitrary point, we wish to estimate the curvature at a particular point, Pi. We define the estimated
curvature at point Pi as

ρi = max
h,j

h=i−ω,ω∈[α,···,β]
j=i+ω,ω∈[α,···,β]

� PhPiPj

where � PhPiPj denotes the angle between line segments PhPi and PiPj , and α and β are two predefined
integer constants. The indices h and i are computed modulo the number of boundary points so that they
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wrap around the boundary. In earlier work, α = 2 and β = 9 were determined to be the most effective
values for this application [8].

Having calculated an estimated curvature, ρi, at every point on the boundary, we define the angularity
of a rock as the standard deviation of the estimated curvature at each point. Thus, for a rock with
N boundary points,

A2d =

√√√√ 1
N − 1

N∑
i=1

(ρi − ρ)2

where ρ is the average of the curvature of the N points. Using this measure, a rock with a perfectly round
boundary would have zero angularity.

Image analysis is two-dimensional; however, rocks are three-dimensional objects. We currently are
incorporating three-dimensional properties into our system. These include estimates of sphericity and
3-D angularity, both of which can be derived from stereo range data.

III. Prioritization of Rock Image Data

Once the rocks have been identified in each image, the features of each rock (e.g., shape, albedo, visual
texture) are extracted. The extracted values of the features are concatenated to form a feature vector,
representing the quantified properties of the rock. The feature vectors for each rock are input into the
three distinct prioritization algorithms described in this section.

Each of the different prioritization techniques provides a separate ranking of the images, which in turn
is based on the most important rock found in each image. The examples in this section, presented to
demonstrate the different prioritizations, use a data set containing 178 rocks extracted from 25 images.
These images were taken by the Field Integrated Design and Operations (FIDO) rover, an experimental
test rover for the 2003 Mars Exploration Rovers, during a field test near Flagstaff, Arizona, in August
2002.

A. Target Signature

A mission’s instruments are carefully selected to collect information that will provide valuable insight
about the history of, or current conditions on, the planet. Certain instruments, therefore, will be used to
search for key target signatures that indicate the presence of what scientists consider crucial information.
Thus, when only limited data can be sent to Earth, it is very important to scientists that any data
containing these signatures be among the data that are returned.

Target signatures are specified by identifying nominal values for each of the relevant features. An
importance is then assigned to each of the features. Rocks are prioritized as a function of the weighted
Euclidean distance of their extracted feature vector from the specified feature vector.

We have implemented an efficient and easy to use graphical user interface (GUI) for scientists to
stipulate the value and importance to assign to each feature. This GUI can be used in two ways. The
first method involves manually specifying a set of feature vectors, as shown in Fig. 3. In the example,
the scientist has chosen to prioritize rocks based on two aspects of their shape, eccentricity, and ellipse
fit. This specification is used to rank the data set based on how round the rocks are, i.e., high priority to
rocks with low eccentricity and low ellipse fit error. The second manner in which scientists can specify a
target signature is by selecting a rock with interesting properties from the set of already identified rocks.
Rocks similar to the selected rock with respect to the specified properties are given a high priority.
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(b)

(a)

(c)

Fig. 3.  Target signature specification and rock
prioritization:  (a) target signature GUI for select-
ing round rocks, i.e., low eccentricity and good
fit to an ellipse, (b) image containing one of the
best-fitting (round) rocks to the designated tar-
get signature, and (c) image containing one of
the worst-fitting (not round) rocks to the speci-
fied target signature.
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B. Novelty Detection

We have developed three methods for detecting and prioritizing novel rocks, representing the three
dominant flavors of machine learning approaches to novelty detection: a distance-based method, a
probability-based (i.e., “generative”) method, and a discriminative method. These methods for nov-
elty detection are applicable to a variety of novelty-detection tasks but are specifically designed with
onboard constraints and large candidate feature spaces in mind.

The first novelty detection method is a distance-based, K-means, clustering approach [1]. K-means is
an unsupervised clustering algorithm. In unsupervised procedures, the clustering is performed using the
data themselves, with no information provided as to what data belong to any of the classes. This is in
contrast to supervised methods, in which a provided set of training data that is labeled to show category
membership is used to design the classifier [6]. We currently employ K-means due to its relatively low
computational requirements, although any unsupervised method could be used. Initially, the K-means
clustering algorithm is applied to all available rock data. The K-means algorithm alternates between
computing cluster centroids and assigning each feature vector to the cluster represented by the nearest
centroid. The novelty of any rock is defined to be the distance from the rock feature vector to the nearest
centroid of any of the k clusters.

Since the feature vector consists of disparate components, such as albedo and shape, consideration
must be given as to how the vectors will be compared. A number of normalization options were con-
sidered, including normalizing each subvector, e.g., the two components associated with albedo would
be normalized to a unit length and the twelve components representing texture would be normalized to
a unit length separately. Distance then is measured by comparing the angles between albedo vectors,
etc. At present, we are using the z-norm, where every element of the vector is normalized to a standard
normal distribution over the sample set. We use Euclidean distance to compare normalized feature vec-
tors, thus effectively employing a Mahalanobis distance to compare vectors. This normalizing method
can be applied without contextual knowledge of the relationships between the components of the feature
vector. We anticipate that, using input provided by scientists, the weighting and distance metric could
be adjusted to return even more scientifically significant results.

The second technique uses a Gaussian mixture model of the probability density over the rock feature
space to estimate the novelty of a rock. The density of the distribution from which the feature vectors are
drawn is assumed to be a linear combination of component Gaussian densities, p(x) =

∑M
j=1 p(x|j)P (j),

where p(x) is the probability of feature vector x, p(x|j) ∼ N(θj , σj) is the probability of generating feature
vector x given that x is generated from component j, P (j) is the prior probability of a feature vector having
been generated from component j of the mixture, and M is the number of Gaussian components in the
mixture model. M is selected to maximize the expressiveness of the model (more Gaussians can accurately
model complicated surfaces) while minimizing computational resource requirements. Rock feature vectors
that have been previously collected are used as training data in the Expectation-Maximization algorithm
[1] to estimate the values of θj , σj , and P (j) for j = 1 · · ·M . The novelty of a rock is inversely proportional
to the probability of that rock being generated by the learned model.

The final method is a discrimination-based kernel one-class classifier approach. Here we treat all
previous rock data as the “positive class” and learn the discriminant boundary that encloses all that
data in the feature space. We essentially consider the previous rock data as a cloud scatter in some
D-dimensional space, where D is the number of features. The algorithm learns the boundary of that
cloud, so that future rock data that fall outside the cloud boundary are considered novel. The further
the new rock feature is from the boundary, the more novel it is.

An example of using the third algorithm on the test data set of rocks extracted from the FIDO im-
ages is presented in Fig. 4. Applying a direct mapping of the rock prioritizations to prioritize image data
for downlink would give the image containing the most novel rock the highest priority. Out of the 25-image
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Fig. 4.  Detection of a significant novel rock.  One of the most novel rocks
detected in the test data set is the rock indicated in this image.  The marked
rock is a piece of petrified wood that is extremely interesting to scientists.
Unfortunately, during the course of the FIDO field test, the petrified wood
was not identified by the remotely located geologists.

data set, the image in Fig. 4 was ranked sixth highest in terms of novelty and, thus, would be included for
downlink under a scenario that transmits six or more of the most novel images. The marked rock is a piece
of petrified wood that is extremely interesting to scientists. Of the entire set, it has been designated as
one of the most important rocks by scientists on our team who both studied the image set and were at the
field site. In contrast, if six images were randomly selected from the set of 25, there is only a 24 percent
chance that this image would be included in the downlink set. In the future, the algorithm will need to
be tuned with input from scientists to identify rocks that are scientifically novel; however, initial tests,
including the example shown, already have shown promise without yet using domain information.

C. Representative Target

One of the objectives for rover traverse science is to gain an understanding of the region being traversed.
To meet this objective, the data downlinked should include information on rocks that are typical for a
region, not just information on interesting and unusual rocks. A region is likely populated by several
types of rocks with different relative abundances. If uniform sampling is employed for downlink image
selection, as opposed to our autonomous onboard selection process, the downlinked set will be biased
towards the dominant class of rock present. This situation may result in less populated classes (i.e., less
common rocks) not being represented at all in the downlinked data.

In our representative sampling algorithm, the rocks are clustered into groups based on their feature
vectors using K-means. The science team pre-assigns a weighting, or importance value, to each property
(shape, albedo, texture) in the feature vector. Different weight assignments can be used to emphasize the
properties of highest interest. For example, albedo and texture typically are used to distinguish types of
rocks, but rock size may be used if sorting is of interest. (Rocks that have been subjected to a geologic
process such as flooding may be sorted over a surface area according to their size. The presence of such
sorting provides information about the processes that may have occurred.)

The data then are prioritized to ensure that representative rocks from each class are sampled. For
each class of rocks, we find the most representative rock in the class, i.e., the single rock in any image
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that is closest to the mean of the set. We give a high priority to the image containing this rock. The
process is complementary to novelty detection using K-means, where rocks that are farthest from the
cluster means are given the highest priority. Rocks within each class are ranked in order of increasing
distance from cluster centers, and rocks (in different sets) with the same rank are given equal priority in
overall ranking. If a well-ordered composite list is required, rocks of the same rank can be sorted based
on the distance to their respective cluster centers.

Currently, the value of K, the number of classes, is fixed prior to performing prioritization. There are
at least two methods that we could use to determine a suitable value for K. First, the number of classes
to use could be determined using the data in an unsupervised manner, e.g., via cross-validation techniques
[14]. The second method of determining the number of classes would be to use manual intervention. After
the rover sends down initial images, the number of classes could be determined by experts on the ground.
This value then would be uplinked and the onboard system updated.

An example of prioritization based on representative rocks using the August FIDO image set is shown
in Figs. 5 and 6, where we have defined three classes of rocks, labeled A, B, and C. The top six rocks,
the top two from each of the three classes, are shown in Fig. 5. Thus, if it were possible to transmit
only three of the images from the entire set, transmitting the three images shown in Fig. 6 ensures that
an example of each of the classes reaches the scientists. If six images are sent, the downlink set would
include two representative rocks from each class.

In the future, the spatial locations of rocks will be used in addition to extracted visual properties to
enable expanded analyses. This includes characterizing local surface regions, i.e., distinguishing between
regions that have distinct distributions of abundances and types of rocks, and sorting, which requires size
and location information.

IV. Validating Prioritization Algorithms

In order for our autonomous prioritization algorithms to be accepted and used, we need a technique
for validating the results of our methods. In particular, we would like a quantitative measure to gauge
how closely our algorithms match the priorities of experts. Although we will not present detailed results
here, we briefly describe our approach to validating the prioritization techniques.

Our validation approach is to gather sample prioritizations from expert planetary geologists on several
collections of images. We have implemented a Web-based application GUI that enables experts to pri-
oritize images and add annotations for their decisions. Our Web-based expert prioritization application
allows planetary geologists from around the world to access collections of images and to provide their
input into how the images should be prioritized. Figure 7 shows an example of the results from an
individual expert ranking on a set of five images.

After collecting information from the experts, statistical methods are used to combine the results
from a number of experts to compare consistency across the experts and to compare their results with
the prioritizations produced by our algorithms [13]. This process, which is based on accepted statistical
methods for combining and comparing rankings, provides a quantitative measure of the performance of
our algorithms.

V. Planning and Scheduling

In addition to downlink data selection, the prioritized rock information can be used for opportunistic
science. Based on the rock prioritizations, a new set of targets for collecting additional data can be
formed. These targets can be passed to other onboard autonomy software that will modify the onboard
command sequence in order to collect the new science data. Current approaches to rover control require
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(a)

(b)

(c)

CLASS A

CLASS B

CLASS C

CLASS A

CLASS B

CLASS C

Fig. 5.  Prioritized ranking of rocks
for three clusters of rocks. Using the
representative target prioritization
technique ensures that images con-
taining the most representative rock
of each class have the highest prior-
ity for downlink.

Fig. 6.  The three most important images based on the
representative rock prioritization shown in Fig. 5:
(a) Class A, (b) Class B, and (c) Class C.
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Fig. 7.  Example results for an expert prioritization of
a set of five images.

human analysis to determine goals and manually convert the set of high-level science goals into low-level
rover command sequences. By integrating these components onboard, we enable a rover to collect data
when an unexpected but scientifically interesting target is encountered. The loop between planning, data
analysis, and data collection is closed onboard the rover, as shown in Fig. 8, enabling new data to be
collected with little or no communication with Earth.

The capability of changing the activities performed by a rover is provided by the Continuous Activity
Scheduling Planning Execution and Replanning (CASPER) planning and scheduling system [4,7], which
can

(1) Autonomously evaluate whether goals to collect data for new science targets can be
achieved given the state of the rover

(2) Modify the current command sequence to incorporate new targets

(3) Monitor execution of that sequence in case further adjustments are necessary

The CASPER planning and scheduling system evaluates an input set of goals, the rover’s current state,
and resource levels. For example, the goal might be to take another measurement. If the current state is
that the spectrometer is pointing away from the intended target, there must be sufficient power available
to point the spectrometer. CASPER generates a new sequence of commands that satisfies as many of the
new goals as possible while obeying any rover resource and operation constraints. Goals are evaluated
based on their priority (as assigned by the data analysis software). If limited resources are available, then
only the highest priority goals may be included in the new plan (i.e., command sequence).
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Fig. 8.  Closed-loop data flow of the
traverse science system.

VI. Conclusions

Although we have used rocks to demonstrate the benefits of autonomously prioritizing data, the
prioritization techniques can be applied to any feature information that can be extracted from the data.
Thus, they apply to more complex gray-scale image features, other data modalities (e.g., hyperspectral
images), and orbital, as well as ground, data applications.

The DSN will remain a valuable, yet constrained, resource for future deep-space missions as the
number of high-bandwidth missions increases. Traditional data compression can cope with only so much
of this increase. To maximize science return, it is first necessary to autonomously identify the data
with the highest science value, while the data are still onboard the spacecraft, and then to return the
prioritized data to the science team. This requires a quantifiable measure of science value that can be
evaluated onboard and a prioritization mechanism to rank the data for downlink based on the measured
science value. We have described a system that implements this functionality by extracting properties
from image data and prioritizing the data represented by the extracted properties using three distinct
data prioritization methods that together allow a mission to achieve its primary scientific exploration
objectives.
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