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Performance Analysis of Direct-Sequence Code-
Division Multiple-Access Communications

with Asymmetric Quadrature
Phase-Shift-Keying

Modulation
C.-W. Wang1 and W. Stark1

This article considers a quaternary direct-sequence code-division multiple-access
(DS-CDMA) communication system with asymmetric quadrature phase-shift-
keying (AQPSK) modulation for unequal error protection (UEP) capability. Both
time synchronous and asynchronous cases are investigated. An expression for the
probability distribution of the multiple-access interference is derived. The exact
bit-error performance and the approximate performance using a Gaussian approxi-
mation and random signature sequences are evaluated by extending the techniques
used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-
keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal
user power and the near–far problem is considered and analyzed. The results show
that, for a system with UEP capability, the less protected data bits are more sen-
sitive to the near–far effect that occurs in a multiple-access environment than are
the more protected bits.

I. Introduction

In the design of a wireless communication system, feedback between the transmitter and receiver
regarding the channel condition is useful for adapting the radio transmission rate to match the channel
conditions [1,3–5,19]. When the channel condition is good, the data rate is increased, while when the
channel condition is bad, the data rate is decreased. However, in some cases the transmitter does not
know the condition of the channel and still desires to match the data rate to the channel. In this case,
modulation and demodulation techniques are needed that allow more data to be transmitted when the
channel is good and less when the channel is bad, without the transmitter knowing in advance the
condition of the channel.
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Consider for example the transmission of an image. Suppose that there are two modes of operation
at the receiver with respect to high and low signal-to-noise ratios (SNRs). The two modes have different
demodulation and decoding strategies according to two different rates and image qualities. In the high
SNR mode, the receiver can demodulate and decode the data at high rate (or full rate) and recover the
image with its high quality. In the low SNR mode, the protection available with coding and modulation
is not adequate to protect all the data. However, it may be possible to decode only a subset of the bits
that have higher error protection. In this case, the receiver demodulates and decodes the data at a lower
rate, and recovers the image with lower quality as compared to the high-quality image.

In a wireless network, the channel condition can vary for several reasons. One reason is just the
change in the distance between the transmitter and the receiver. Another reason is that the multiple-
access interference produces time-varying channel conditions.

The key idea in designing such a system is to introduce modulation and coding schemes that pro-
vide different error protection to different classes of data. The earlier work on multicasting [6,11–16]
and unequal error protection (UEP) [8,18,20] examined such a system in the case of a mobile network
downlink. This idea is essential when different portions of the source do not contribute evenly to the
overall quality of the decoded information. The UEP technique is a simple and efficient method to satisfy
such a requirement. The basic idea is to use a constellation with non-uniformly spaced signal points in
the modulation scheme. The non-uniform nature of such a constellation results in different distances be-
tween sets of signals and provides different levels of reliability against noise and interference and, hence,
unequal error protection on different bits of a symbol. An asymmetric quadrature phase-shift-keying
(AQPSK) constellation can be regarded as the simplest modulation scheme to provide the system with
UEP capability.

In [9], a quaternary direct-sequence code-division multiple-access (DS-CDMA) system is analyzed and
an expression for the SNR is determined. However, the exact bit-error rate (BER) performance is not
derived. In [7] and [17], the case of binary DS-CDMA with random signature sequences is investigated
for binary phase-shift-keying (BPSK). Also, the Gaussian approximation to the interference is used to
approximate the performance. In this article, we derive the exact BER for a quaternary DS-CDMA system
and also derive the approximate BER using a Gaussian approximation to the interference for AQPSK.
We consider a direct-sequence spread-spectrum modulation technique with asymmetric QPSK modulation
that allows higher data rate transmission if the channel is good and a lower transmission rate when the
channel condition is poor. We analyze the performance of a quaternary DS-CDMA communication using
AQPSK modulation over an additive white Gaussian noise (AWGN) channel, with a correlation receiver
that is coherent to the desired user. We look at both the cases of specific and random signature sequences
being used in the system.

This article is organized as follows. In Section II, the system model is introduced. In Section III, we
derive the exact BER performance of the system. This also includes the derivation of the probability
density function (pdf) of the multiple-access interference (MAI). A numerical example is given to illustrate
the performance using a specific set of signature sequences. In Section IV, the random signature-sequence
case is considered. The Gaussian approximation is used to model the MAI, and the approximate BER
performance is obtained. In Section V, we generalize the signal model and examine the near–far effect
on the system performance.

II. System Model

In this section, we describe the mathematical model of an asymmetric QPSK modulation system
and characterize the receiver output. We consider an extension of the model described in [9] for asyn-
chronous quaternary DS-CDMA. The model is shown in Fig. 1. The difference from [9] is that we consider
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Fig. 1.  A quaternary DS-CDMA communication system model.

asymmetric QPSK so that the in-phase (I)-channel and quadrature-phase (Q)-channel bits have unequal
energy. Suppose there are K users in the system. The quaternary signal of the kth user is given by

sk(t) = sI
k(t) + sQ

k (t)

where

sI
k(t) =

√
2P · cos β · aI

k(t)bI
k(t) cos(2πfct + θk)

sQ
k (t) =

√
2P · sinβ · aQ

k (t)bQ
k (t) sin(2πfct + θk)

In the above expressions, P is the transmitted power, β is the angle of the signal points in the asymmetrical
constellation, aI

k(t) and aQ
k (t) are the spreading signals of the I and Q channels, bI

k(t) and bQ
k (t) are the

user information being transmitted in the I and Q channels, and θk is the initial phase of the kth user and
is assumed to be uniformly distributed over the interval [0, 2π]. The modulation constellation is shown
in Fig. 2. In this scheme, we choose 0 < β < π/4.

The information being transmitted by user k is represented by

bI
k(t) =

∞∑
j=−∞

bI
k,j · pT (t − jT )

bQ
k (t) =

∞∑
j=−∞

bQ
k,j · pT (t − jT )
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Fig. 2.  Asymmetric QPSK constellation.

β

where bI
k,j , bQ

k,j ∈ {±1}, T is the symbol duration, and

pT (t) =
{

1, 0 ≤ t ≤ T
0, otherwise

The spreading signals are expressed as

aI
k(t) =

∞∑
j=−∞

aI
k,j · ψ(t − jTc)

aQ
k (t) =

∞∑
j=−∞

aQ
k,j · ψ(t − jTc)

where aI
k,j , aQ

k,j ∈ {±1} are the signature sequences for the I and Q channels, Tc is the chip duration such
that T = NTc, and ψ(t) is the chip waveform which is nonzero for 0 ≤ t ≤ Tc. In general, we can choose
any pulse shape as the chip waveform. However, to simplify the analysis, in the following we will assume
that the rectangular pulse is used as the chip waveform, i.e., ψ(t) = pTc(t).

The receiver is assumed to consist of a simple correlator matched to the desired signal. We examine
both the time synchronous and asynchronous cases. Even though the asynchronous case is the more
realistic case of the two, the synchronous case is more easily analyzed than the asynchronous case. When
considering channel coding using linear block codes, it is very difficult to analyze the asynchronous case
due to the dependency of bit errors within one block.

A. Asynchronous System

We first consider the asynchronous case. The received signal is given by
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r(t) =
K∑

k=1

sk(t − τk) + n(t)

=
K∑

k=1

√
2P cos β · aI

k(t − τk)bI
k(t − τk) cos

(
2πfc(t − τk) + θk

)

+
K∑

k=1

√
2P sinβ · aQ

k (t − τk)bQ
k (t − τk) sin

(
2πfc(t − τk) + θk

)
+ n(t)

=
K∑

k=1

√
2P cos β · aI

k(t − τk)bI
k(t − τk) cos(2πfct + φk)

+
K∑

k=1

√
2P sinβ · aQ

k (t − τk)bQ
k (t − τk) sin(2πfct + φk) + n(t)

where n(t) is an additive white Gaussian noise with zero mean and two-sided power spectral density
N0/2. The time delay of the kth signal is represented by τk and φk = θk − 2πfcτk (mod 2π).

The analysis here basically follows the methods in [9] and [2]. Consider the output of the correlation
receiver for the first user. The output of the I-channel correlator for the data bit bI

1,0 can be decomposed
into terms corresponding to the desired signal, the interference, and noise as follows:

ZI
1 =

∫ T

0

r(t)aI
1(t) cos(2πfct)dt

=
∫ T

0

√
2P cos β · aI

1(t)b
I
1(t) cos(2πfct)aI

1(t) cos(2πfct)dt

+
∫ T

0

√
2P sin β · aQ

1 (t)bQ
1 (t) sin(2πfct)aI

1(t) cos(2πfct)dt

+
K∑

k=2

∫ T

0

√
2P cos β · aI

k(t − τk)bI
k(t − τk) cos(2πfct + φk)aI

1(t) cos(2πfct)dt

+
K∑

k=2

∫ T

0

√
2P sin β · aQ

k (t − τk)bQ
k (t − τk) sin(2πfct + φk)aI

1(t) cos(2πfct)dt

+
∫ T

0

n(t)aI
1(t) cos(2πfct)dt

In the above expression, the component due to the desired signal is
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A =
∫ T

0

√
2P cos β · bI

1(t)
(
aI
1(t)

)2 cos2(2πfct)dt

=
√

2P cos β · bI
1,0

∫ T

0

1
2
[
1 + cos(4πfct)

]
dt

= T
√

P/2 cos β · bI
1,0

where the double frequency term is negligible since we assume fc � (Tc)−1. Because of the assumption
of coherent reception, the component of the I-channel correlator output due to the Q-channel signal is

B =
∫ T

0

√
2P sinβ · aQ

1 (t)bQ
1 (t) sin(2πfct)aI

1(t) cos(2πfct)dt

=
√

2P sin β · bQ
1,0

∫ T

0

aQ
1 (t)aI

1(t) sin(2πfct) cos(2πfct)dt

= 0

The interference component of the I-channel correlator output is given by

Ck =
∫ T

0

√
2P cos β · aI

k(t − τk)bI
k(t − τk) cos(2πfct + φk)aI

1(t) cos(2πfct)dt

=
√

2P cos β

∫ T

0

bI
k(t − τk)aI

k(t − τk)aI
1(t) cos(2πfct + φk) cos(2πfct)dt

=
√

2P cos β

∫ T

0

bI
k(t − τk)aI

k(t − τk)aI
1(t)

1
2

[
cos(φk) + cos(4πfct + φk)

]
dt

=
√

P/2 cos β · cos(φk)
∫ T

0

bI
k(t − τk)aI

k(t − τk)aI
1(t)dt

=
√

P/2 cos β · cos(φk)
[
bI
k,−1R

II
k,1(τk) + bI

k,0R̂
II
k,1(τk)

]
(1)

where the time cross-correlations RII
k,i(τ) and R̂II

k,i(τ) are defined as [9]2

2 Note that the “hat” notation on the cross-correlation functions is used to denote the correlation over the complementary
(with respect to the symbol duration) portion of the integration interval.
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RII
k,i(τ) =

∫ τ

0

aI
k(t − τ)aI

i (t)dt (2)

R̂II
k,i(τ) =

∫ T

τ

aI
k(t − τ)aI

i (t)dt (3)

Letting

III
k,i(b

II
k , τ, φ) = T−1

[
bI
k,−1R

II
k,1(τk) + bI

k,0R̂
I
k,1(τk)

]
cos φ (4)

then Eq. (1) can be written as

Ck = T
√

P/2 cos β · III
k,1

(
bI
k, τk, φk

)
The total I-channel interference is then

K∑
k=2

Ck = T
√

P/2 cos β

K∑
k=2

III
k,1

(
bI
k, τk, φk

)

where bI = (bI
2,−1, b

I
2,0, · · · , bI

K,−1, b
I
K,0). Similarly, the component of the I-channel correlator output due

to a Q-channel interferer is

Dk =
∫ T

0

√
2P sinβ · aQ

k (t − τk)bQ
k (t − τk) sin(2πfct + φk)aI

1(t) cos(2πfct)dt

=
√

2P sinβ

∫ T

0

bQ
k (t − τk)aQ

k (t − τk)aI
1(t) sin(2πfct + φk) cos(2πfct)dt

=
√

2P sinβ

∫ T

0

bQ
k (t − τk)aQ

k (t − τk)aI
1(t)

1
2

[
sin(φk) + sin(4πfct + φk)

]
dt

=
√

P/2 sinβ · sin(φk)
∫ T

0

bQ
k (t − τk)aQ

k (t − τk)aI
1(t)dt

=
√

P/2 sinβ · sin(φk)
[
bQ
k,−1R

QI
k,1(τk) + bQ

k,0R̂
QI
k,1(τk)

]
(5)

where, analogously to Eqs. (2) through (4), we define

RQI
k,i (τ) =

∫ τ

0

aQ
k (t − τ)aI

i (t)dt

R̂QI
k,i (τ) =

∫ T

τ

aQ
k (t − τ)aI

i (t)dt
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and

IQI
k,i

(
bQ
k , τ, φ

)
= T−1

[
bQ
k,−1R

QI
k,1(τk) + bQ

k,0R̂
QI
k,1(τk)

]
sinφ

Then Eq. (5) can be written as

Dk = T
√

P/2 sinβ · IQI
k,1

(
bQ
k , τk, φk

)
and hence the total Q-channel interference is

K∑
k=2

Dk = T
√

P/2 sinβ

K∑
k=2

IQI
k,1

(
bQ
k , τk, φk

)

where bQ =
(
bQ
2,−1, b

Q
2,0, · · · , bQ

K,−1, b
Q
K,0

)
. The noise component of the I-channel correlator output is

nI
1 =

∫ T

0

n(t)aI
1(t) cos(2πfct)dt

Note that nI
1 is Gaussian with zero mean and variance N0T/4. In summary, we have

ZI
1 = T

√
P

2
cos β · bI

1,0 +
K∑

k=2

T

√
P

2
cos β · III

k,1

(
bI
k, τk, φk

)
+

K∑
k=2

T

√
P

2
sinβ · IQI

k,1

(
bQ
k , τk, φk

)
+ nI

1

= T

√
P

2

{
bI
1,0 cos β + cos β

K∑
k=2

III
k,1

(
bI
k, τk, φk

)
+ sinβ

K∑
k=2

IQI
k,1

(
bQ
k , τk, φk

)}
+ nI

1

= T

√
P

2
[
cos β

(
bI
1,0 + II

)]
where

II =
K∑

k=2

III
k,1

(
bI
k, τk, φk

)
+ tanβ · IQI

k,1

(
bQ
k , τk, φk

)

Similarly, for the Q-channel correlator output we have

ZQ
1 = T

√
P/2

{
bQ
1,0 sinβ + cos β

K∑
k=2

IIQ
k,1

(
bI
k, τk, φk

)
+ sinβ

K∑
k=2

IQQ
k,1

(
bQ
k , τk, φk

)}
+ nQ

1

= T
√

P/2
[
sinβ

(
bQ
1,0 + IQ

)]
8



where

IQ =
K∑

k=2

IQQ
k,1

(
bI
k, τk, φk

)
+ cot βIIQ

k,1

(
bQ
k , τk, φk

)

IIQ
k,i

(
bI
k, τ, φ

)
= T−1

[
bI
k,−1R

IQ
k,1(τk) + bI

k,0R̂
IQ
k,1(τk)

]
sin(−φ)

IQQ
k,i

(
bQ
k , τ, φ

)
= T−1

[
bQ
k,−1R

QQ
k,1 (τk) + bQ

k,0R̂
QQ
k,1 (τk)

]
cos φ

and

RIQ
k,i (τ) =

∫ τ

0

aI
k(t − τ)aQ

i (t)dt

R̂IQ
k,i (τ) =

∫ T

τ

aI
k(t − τ)aQ

i (t)dt

RQQ
k,i (τ) =

∫ τ

0

aQ
k (t − τ)aQ

i (t)dt

R̂QQ
k,i (τ) =

∫ T

τ

aQ
k (t − τ)aQ

i (t)dt

Also, nQ
1 is Gaussian with zero mean and variance N0T/4.

B. Synchronous System

For the synchronous case wherein τk = 0 for all k = 1, 2, · · · , K, the received signal is given by

r(t) =
K∑

k=1

sk(t) + n(t)

With arguments similar to those in the previous section, we have the correlation receiver outputs

ZI
1 = nI

1 + T
√

P/2 cos β

[
bI
1,0 +

K∑
k=2

II
k,1(bk, θk)

]

ZQ
1 = nQ

1 + T
√

P/2 sinβ

[
bQ
1,0 +

K∑
k=2

IQ
k,1(bk, θk)

]

where nI
1 and nQ

1 are Gaussian with zero mean and variance N0T/4, bk =
(
bI
k,0, b

Q
k,0

)
, and
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II
k,1(bk, θk) = III

k,1

(
bI
k,0, θk

)
+ tanβ · IQI

k,1

(
bQ
k,0, θk

)
IQ
k,1(bk, θk) = IIQ

k,1

(
bI
k,0, θk

)
+ cot β · IQQ

k,1

(
bQ
k,0, θk

)
with

III
k,1

(
bI
k,0, θk

)
= T−1 · bI

k,0 · RII
k,1(0) · cos(θk)

IQI
k,1

(
bQ
k,0, θk

)
= T−1 · bQ

k,0 · R
QI
k,1(0) · sin(θk)

IIQ
k,1

(
bI
k,0, θk

)
= T−1 · bI

k,0 · RIQ
k,1(0) · sin(−θk)

IQQ
k,1

(
bQ
k,0, θk

)
= T−1 · bQ

k,0 · R
QQ
k,1 (0) · cos(θk)

Since there is no delay between users, we have

RII
k,1(0) =

∫ T

0

aI
k(t)aI

1(t)dt =
N−1∑
j=0

aI
k,ja

I
1,j

∫ Tc

0

ψ2(t)dt

RQI
k,1(0) =

∫ T

0

aQ
k (t)aI

1(t)dt =
N−1∑
j=0

aQ
k,ja

I
1,j

∫ Tc

0

ψ2(t)dt

RIQ
k,1(0) =

∫ T

0

aI
k(t)aQ

1 (t)dt =
N−1∑
j=0

aI
k,ja

Q
1,j

∫ Tc

0

ψ2(t)dt

RQQ
k,1 (0) =

∫ T

0

aQ
k (t)aQ

1 (t)dt =
N−1∑
j=0

aQ
k,ja

Q
1,j

∫ Tc

0

ψ2(t)dt

Furthermore, since we use a rectangular chip waveform, that is, ψ(t) = pTc(t), then
∫ Tc

0
ψ2(t)dt = Tc,

and we can further simplify the above expressions as

RII
k,1(0) = Tc

N−1∑
j=0

aI
k,ja

I
1,j

RQI
k,1(0) = Tc

N−1∑
j=0

aQ
k,ja

I
1,j

RIQ
k,1(0) = Tc

N−1∑
j=0

aI
k,ja

Q
1,j

RQQ
k,1 (0) = Tc

N−1∑
j=0

aQ
k,ja

Q
1,j
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III. Exact Performance Analysis

Our goal is to analyze the bit-error rate (BER) of such a system. In order to find the exact BER,
we need to find the probability distribution of the interference. In this section, we derive the pdf of the
interference for both synchronous and asynchronous cases.

A. Average Probability of Error

The average probability of bit error is given by

Pe =
1
2

(
P I

e + PQ
e

)
where P I

e and PQ
e are the average probabilities of bit error of the I and Q channels, respectively, and are

evaluated as follows:

P I
e =

1
2

{
Pr

(
ZI

1 ≤ 0|bI
1,0 = +1

)
+ Pr

(
ZI

1 > 0|bI
1,0 = −1

) }

=
1
2

{
Pr

(
T

√
P/2 cos β(1 + II) + nI

1 ≤ 0
)

+ Pr
(
T

√
P/2 cos β(−1 + II) + nI

1 > 0
)}

=
1
2

{
Pr

(
nI

1

T
√

P/2 cos β
≤ −1 − II

)
+ Pr

(
nI

1

T
√

P/2 cos β
> 1 − II

)}

=
1
2

{
Pr (nI + II ≤ −1) + Pr (nI + II > 1)

}

=
1
2

{
1 − Pr (−1 < nI + II ≤ 1)

}

where nI = nI
1/(T

√
P/2 cos β) is Gaussian with zero mean and variance (2EI

b /N0)−1, EI
b = PT cos2 β =

Es cos2 β, and Es = PT . Similarly, we have

PQ
e =

1
2

{
1 − Pr (−1 < nQ + IQ ≤ 1)

}

where nQ = nQ
1 /(T

√
P/2 sin β) is Gaussian with zero mean and variance (2EQ

b /N0)−1, and EQ
b =

PT sin2 β = Es sin2 β.

In order to evaluate P I
e and PQ

e , we use the characteristic function method in [2] to compute these
probabilities. In order to compute Pe, we need to know the probability distribution of the sum of the
noise and interference. We first obtain the characteristic functions of the random variables, and then
derive P I

e and PQ
e from the characteristic functions.
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Let ΦnI
(v), ΦII

(v), and ΦI(v) be the characteristic functions of nI , II , and I = nI + II . Note that
they are even functions

(
Φ(v) = Φ(−v)

)
, and ΦI(v) = ΦnI

(v)ΦII
(v) by the independence of nI and II .

The probability needed to compute P I
e is obtained as

Pr (−1 < nI + II ≤ 1) =
∫ 1

−1

fI(x)dx

= 2
∫ 1

0

fI(x)dx

= 2
∫ 1

0

(
1
2π

∫ ∞

−∞
ΦI(v)e−jvxdv

)
dx

=
2
π

∫ 1

0

(∫ ∞

0

ΦI(v) cos(vx)dv

)
dx

=
2
π

∫ ∞

0

ΦI(v)
(∫ 1

0

cos(vx)dx

)
dv

=
2
π

∫ ∞

0

ΦI(v)v−1 sin(v)dv

The characteristic function of the interference in the I-channel, ΦI(v), can be written as

ΦI(v) = ΦnI
(v)ΦII

(v) = ΦnI
(v) − ΦnI

(v) + ΦnI
(v)ΦII

(v) = ΦnI
(v) − ΦnI

(v)
[
1 − ΦII

(v)
]

thus,

Pr (−1 < nI + II ≤ 1) =
2
π

∫ ∞

0

ΦnI
(v)v−1 sin(v)dv − 2

π

∫ ∞

0

v−1 sin(v)ΦnI
(v)

[
1 − ΦII

(v)
]
dv

where

ΦnI
(v) = exp

(
− N0

4EI
b

v2

)

The average probability of error of the I-channel is then given by

P I
e =

1
2
− 1

2
Pr (−1 < nI + II ≤ 1)

=
1
2
− 1

π

∫ ∞

0

v−1 sin(v)ΦnI
(v)dv +

1
π

∫ ∞

0

v−1 sin(v)ΦnI
(v)

[
1 − ΦII

(v)
]
dv

= Q

⎛⎝√
2EI

b

N0

⎞⎠ +
1
π

∫ ∞

0

v−1 sin(v)ΦnI
(v)

[
1 − ΦII

(v)
]
dv

12



where

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt, x ≥ 0

Similarly, let ΦnQ
(v), ΦIQ

(v), and ΦQ(v) be the characteristic functions of nQ and IQ. Then we have

Pr (−1 < nQ + IQ ≤ 1) =
2
π

∫ ∞

0

v−1 sin(v)ΦnQ
(v)dv − 2

π

∫ ∞

0

v−1 sin(v)ΦnQ
(v)

[
1 − ΦIQ

(v)
]
dv

and

PQ
e =

1
2
− 1

π

∫ ∞

0

v−1 sin(v)ΦnQ
(v)dv +

1
π

∫ ∞

0

v−1 sin(v)ΦnQ
(v)

[
1 − ΦIQ

(v)
]
dv

= Q

⎛⎝√
2EQ

b

N0

⎞⎠ +
1
π

∫ ∞

0

v−1 sin(v)ΦnQ
(v)

[
1 − ΦIQ

(v)
]
dv

Therefore, the average probability of error is given by

Pe =
1
2

⎧⎨⎩Q

⎛⎝√
2EI

b

N0

⎞⎠ + Q

⎛⎝√
2EQ

b

N0

⎞⎠⎫⎬⎭
+

1
2π

∫ ∞

0

v−1 sin(v)
{
ΦnI

(v)
[
1 − ΦII

(v)
]
+ ΦnQ

(v)
[
1 − ΦIQ

(v)
]}

dv

Note that by representing the error probability in this way it is clear what the contribution to error
probability is from noise and interference. When there is no MAI, i.e., the single user case, the MAI
term in the above expression is zero, and the probability of error is the same as in the case of an AWGN
channel. In general, the MAI term in the above expression does not have a closed-form solution and needs
to be evaluated numerically. However, in order to evaluate it numerically, we need to find expressions for
ΦII

(v) and ΦIQ
(v).

B. Asynchronous Case

Here we begin to derive the characteristic function of the interference in the asynchronous case. The
I-channel interference is given by

II =
K∑

k=2

III
k,1

(
bI
k, τk, φk

)
+ tanβ · IQI

k,1

(
bQ
k , τk, φk

)

where

13



III
k,1

(
bI
k, τk, φk

)
=

cos(φk)
T

[
bI
k,−1R

II
k,1(τk) + bI

k,0R̂
II
k,1(τk)

]

IQI
k,1

(
bQ
k , τk, φk

)
=

sin(φk)
T

[
bQ
k,−1R

QI
k,1(τk) + bQ

k,0R̂
QI
k,1(τk)

]
Now consider lTc ≤ τk ≤ (l + 1)Tc. In this case, we have

RII
k,1(τk) = CII

k,1(l − N)R̂ψ(τk − lTc) + CII
k,1(l + 1 − N)Rψ(τk − lTc) (6)

R̂II
k,1(τk) = CII

k,1(l)R̂ψ(τk − lTc) + CII
k,1(l + 1)Rψ(τk − lTc) (7)

where R̂ψ(τ) and Rψ(τ) are the autocorrelation functions of the chip waveform defined as

R̂ψ(τ) =
∫ Tc

τ

ψ(t)ψ(t − τ)dt

Rψ(τ) =
∫ τ

0

ψ(t)ψ(t + Tc − τ)dt

Similarly,

RQI
k,1(τk) = CQI

k,1(l − N)R̂ψ(τk − lTc) + CQI
k,1(l + 1 − N)Rψ(τk − lTc)

R̂QI
k,1(τk) = CQI

k,1(l)R̂ψ(τk − lTc) + CQI
k,1(l + 1)Rψ(τk − lTc)

In the above expressions, CII
k,i(l) and CQI

k,i (l) are the aperiodic cross-correlation functions defined as

CII
k,i(l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑N−1−l

j=0 aI
k,ja

I
i,j+l, 0 ≤ l ≤ N − 1∑N−1+l

j=0 aI
k,j−la

I
i,j , 1 − N ≤ l < 0

0, |l| ≥ N

(8)

CIQ
k,i (l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑N−1−l

j=0 aI
k,ja

Q
i,j+l, 0 ≤ l ≤ N − 1∑N−1+l

j=0 aI
k,j−la

Q
i,j , 1 − N ≤ l < 0

0, |l| ≥ N

(9)

Here {aI
k,j} and {aQ

k,j} are the spreading sequences of the I and Q channels of the kth user. The charac-
teristic function of II is given by
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ΦII
(v) = E

{
exp(jvII)

}

= E

{
exp

[
jv

(
K∑

k=2

III
k,1

(
bI
k, τk, φk

)
+ tanβ · IQI

k,1

(
bQ
k , τk, φk

))]}

=
K∏

k=2

E
{

exp
[
jv

(
III
k,1

(
bI
k, τk, φk

)
+ tanβ · IQI

k,1

(
bQ
k , τk, φk

))]}

=
K∏

k=2

⎧⎪⎨⎪⎩ 1
2π

1
T

(
1
4

) (
1
4

) ∑
bI

k

∑
bQ

k

∫ 2π

0

∫ T

0

exp
[
jv

(
III
k,1

(
bI
k, τ, φ

)
+ tanβ · IQI

k,1

(
bQ
k , τ, φ

))]
dτdφ

⎫⎪⎬⎪⎭

=
K∏

k=2

⎧⎪⎨⎪⎩ 1
32πT

∑
bI

k

∑
bQ

k

∫ 2π

0

N−1∑
l=0

∫ (l+1)Tc

lTc

exp
[
jv

cos φ

T

[
bI
k,−1

(
CII

k,1(l − N)R̂ψ(τ − lTc)

+ CII
k,−1(l + 1 − N)Rψ(τ − lTc)

)
+bI

k,0

(
CII

k,1(l)R̂ψ(τ − lTc) + CII
k,1(l + 1)Rψ(τ − lTc)

)]

+ jv tanβ
sinφ

T

[
bQ
k,−1

(
CQI

k,1(l − N)R̂ψ(τ − lTc) + CQI
k,−1(l + 1 − N)Rψ(τ − lTc)

)

+bQ
k,0

(
CQI

k,1(l)R̂ψ(τ − lTc) + CQI
k,1(l + 1)Rψ(τ − lTc)

)]]
dτdφ

⎫⎬⎭ (10)

With further simplification (see Appendix A), we obtain

ΦII
(v) =

K∏
k=2

{
1

8N

N−1∑
l=0

(
8∑

i=1

f
(
v; l, gi(l), hi(l), αi

))}

where

f
(
v; l, g(l), h(l), α

) �=
1

2πTc

∫ 2π

0

∫ Tc

0

cos
{ v

T

[(
cos φ · g(l) + α sinφ · h(l)

)
R̂ψ(τ)

+
(
cos φ · g(l + 1) + α sinφ · h(l + 1)

)
Rψ(τ)

]}
dτdφ

and
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g1(l) = θII
k,1, h1(l) = θQI

k,1, α1 = tanβ

g2(l) = θII
k,1, h2(l) = θ̂QI

k,1, α2 = − tanβ

g3(l) = θII
k,1, h3(l) = θ̂QI

k,1, α3 = tanβ

g4(l) = θII
k,1, h4(l) = θQI

k,1, α4 = − tanβ

g5(l) = θ̂II
k,1, h5(l) = θQI

k,1, α5 = − tanβ

g6(l) = θ̂II
k,1, h6(l) = θ̂QI

k,1, α6 = tanβ

g7(l) = θ̂II
k,1, h7(l) = θ̂QI

k,1, α7 = − tanβ

g8(l) = θ̂II
k,1, h8(l) = θQI

k,1, α8 = tanβ

If we consider a rectangular chip waveform, we can further simplify the function f(v; l, g(l), h(l), α) as
(see Appendix A)

f(v; l, g(l), h(l), α) =
1
2π

∫ 2π

0

sinc
{ v

2πN

(
cos φ

(
g(l + 1) − g(l)

)
+ α sinφ

(
h(l + 1) − h(l)

))}

· cos
{ v

2N

(
cos φ

(
g(l + 1) + g(l)

)
+ α sinφ

(
h(l + 1) + h(l)

))}
dφ

This expression is simple to evaluate numerically, which allows us to compute the characteristic function
and the average error probability. From the above expression, we see that the characteristic function of
the interference does not depend on the signal energy or SNR. The advantage is that we need to compute
the characteristic function of the interference only once, and it can be applied to different SNR values to
compute the probability of error.

C. Synchronous Case

For the synchronous case, the derivation is similar to the asynchronous case. The expressions for
the bit-error probability for the I and Q channels are the same as for the asynchronous case. The only
difference is in the expressions for the characteristic functions of the interference. These are given by

ΦII
(v) =

K∏
k=2

{
1
4π

∫ 2π

0

cos
( v

T

[
cos φ · RII

k,1(0) + tanβ · sinφ · RQI
k,1(0)

])

+ cos
( v

T

[
cos φ · RII

k,1(0) − tanβ · sinφ · RQI
k,1(0)

])
dφ

}

ΦIQ
(v) =

K∏
k=2

{
1
4π

∫ 2π

0

cos
( v

T

[
cos φ · RQQ

k,1 (0) + cot β · sinφ · RIQ
k,1(0)

])

+ cos
( v

T

[
cos φ · RQQ

k,1 (0) − cot β · sinφ · RIQ
k,1(0)

])
dφ

}
16



D. Numerical Examples

Here we present a numerical example for the asynchronous case. In [2], the average error probability
for a direct-sequence spread-spectrum multiple-access (DS-SSMA) system with symmetric QPSK modu-
lation is investigated. The performance is evaluated using auto-optimal, least side-lobe energy (AO/LSE)
sequences [10] as the spreading codes for the users in the system. For the quaternary system, the spread-
ing factor is chosen to be N = 127, and there are 9 pairs of codes listed. In each pair of codes, the I- and
Q-channel sequences are the reverse of each other. The AO/LSE codes for N = 127 are listed in Table 1.

Each row represents a pair of codes. The generator polynomial coefficients are denoted by H and H−1

in octal. The initial values in the shift registers are denoted by α0 and α−1
0 . The in-phase interference

characteristic function from the second user to the first user using the above spreading codes with β = π/4
is shown in Fig. 3. Since in the symmetric constellation the I- and Q-channel signals have the same power,
the resulting characteristic functions of the I- and Q-channel interference are the same. Therefore, we
show only the characteristic function of the I channel. For β = π/8, even though we use mutually reversed
spreading codes for in-phase and quadrature-phase components, the characteristic functions are different.
This is due to the unequal power of the I- and Q-channel signals in the asymmetric constellation and the
cross-correlation nature of the spreading codes. The characteristic functions of the interference from the
second user to the first user when β = π/8 are shown in Fig. 4. The average probability of error when
the number of users varies from 1 to 9 is shown in Fig. 5. The performance is worse than the symmetric
case as shown in [2]. This is because the performance is dominated by the Q-channel performance, which
is bad due to the low transmitted power.

IV. Approximate Performance Analysis

As seen in the previous section, the expressions for the interference are very complicated, and the
evaluation for the exact performance is computationally tedious. Also, as in the numerical example, the
results are for a specific set of signature sequences. One way to solve this problem is to use a Gaussian
approximation to model the interference and to use random signature sequences in the analysis. Then a
simple approximate expression for the BER can be obtained involving only the signal-to-interference-plus-
noise ratio (SINR) and the Q function. In this section, we approximate the interference as a Gaussian
random variable and assume random signature sequences. We find the variance of the interference and
examine the approximate system performance.

Table 1. AO/LSE codes (N = 127).

H α0 H−1 α−1
0 M̂ L̂ S

211 0010000 221 1001101 17 6 2183

217 0000101 361 1111111 15 12 2015

235 0001100 271 1000101 17 10 2283

247 0010111 345 0110001 17 8 2255

277 1110001 375 0101010 19 4 2295

357 1110010 367 0110101 17 4 2563

323 1110111 313 1000111 17 4 2203

203 1101101 301 0010010 17 4 2087

325 0000101 253 1101100 19 6 2483
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Fig. 3.  In-phase interference characteristic function (N = 127, β = π /4).
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Fig. 4.  Interference characteristic functions (N = 127, β = π /8): (a) in-phase and 

(b) quadrature.
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Fig. 5.  Probability of error for asymmetric QPSK DS-SSMA (N = 127, β = π /8).
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A. Asynchronous Case

In order to find the approximate BER performance, we approximate the interference as a Gaussian
random variable and find its variance. We first find the conditional variance of the interference, and then
average over the random variables to find the variance. Therefore, we can obtain an expression for the
SINR, and thus the approximate BER.

The decision statistics at the output of the correlation receiver for user 1 are

ZI
1 = nI

1 + T
√

P/2 · cos β · bI
1,0 +

√
P/2

K∑
k=2

cos β · W II
k · cos(φk) + sinβ · WQI

k · sin(φk)

ZQ
1 = nQ

1 + T
√

P/2 · cos β · bQ
1,0 +

√
P/2

K∑
k=2

sinβ · WQQ
k · cos(φk) − cos β · W IQ

k · sin(φk)

where

W II
k = bI

k,−1 · RII
k,1(τk) + bI

k,0 · R̂II
k,1(τk)

WQI
k = bQ

k,−1 · R
QI
k,1(τk) + bQ

k,0 · R̂
QI
k,1(τk)

WQQ
k = bQ

k,−1 · R
QQ
k,1 (τk) + bQ

k,0 · R̂
QQ
k,1 (τk)

W IQ
k = bI

k,−1 · RIQ
k,1(τk) + bI

k,0 · R̂IQ
k,1(τk)
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To find the variance of the multiple access interference (MAI) of ZI
1 and ZQ

1 , we start by writing ZI
1 in

the form

ZI
1 = nI

1 + T
√

P/2 · bI
1,0 · cos β + W

where

W =
√

P/2 · cos β

K∑
k=2

W II
k · cos(φk) +

√
P/2 · sinβ

K∑
k=2

WQI
k · sin(φk) = W I + WQ

with

W I =
√

P/2 · cos β

K∑
k=2

W II
k · cos(φk)

WQ =
√

P/2 · sinβ

K∑
k=2

WQI
k · sin(φk)

The variances of W I and WQ are given by (see Appendix B)

Var[W I ] =
(K − 1)NPT 2

c cos2 β

6

Var[WQ] =
(K − 1)NPT 2

c sin2 β

6

Hence, the variance of the MAI in ZI
1 is given by

Var[W ] = Var[W I ] + Var[WQ] =
(K − 1)NPT 2

c

6

The SINR of ZI
1 is then

SINRI =
T 2P/2 · cos2 β

N0T

4
+

(K − 1)NPT 2
c

6

=
6Es · cos2 β

3N0 + 2Es
(K − 1)

N

=
12Eb · cos2 β

3N0 + 4Eb
(K − 1)

N
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where Es = NPTc is the symbol energy, and Eb = (1/2)Es is the average bit energy. Similarly, for the
Q channel, the SINR of ZQ

1 is given by

SINRQ =
6Es · sin2 β

3N0 + 2Es
(K − 1)

N

=
12Eb · sin2 β

3N0 + 4Eb
(K − 1)

N

Then, the approximate BER can be expressed as

P I
e,GA = Q

⎛⎜⎜⎝
√√√√√ 12Eb · cos2 β

3N0 + 4Eb
(K − 1)

N

⎞⎟⎟⎠

PQ
e,GA = Q

⎛⎜⎜⎝
√√√√√ 12Eb · sin2 β

3N0 + 4Eb
(K − 1)

N

⎞⎟⎟⎠

B. Synchronous Case

The analysis for the synchronous case is similar to that for the asynchronous case presented in the
previous subsection. We can rewrite the decision statistic as

ZI
1 = nI

1 + T
√

P/2 · cos β · bI
1,0 + W

where

W =
K∑

k=2

W I
k

and

W I
k =

√
P/2

(
cos β · bI

k,0 · RII
k,1(0) · cos(θk) + sinβ · bQ

k,0 · R
QI
k,1(0) · sin(θk)

)
We want to find the variance of the MAI W I

k . Note that RII
k,1(0) and RQI

k,1(0) are both functions of {aI
1,j}.

Thus, the variance of W I
k conditioned on {aI

1,j} and θk is
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Var
[
W I

k | {aI
1,j}, θk

]
= Var

[√
P/2 · cos β · bI

k,0 · RII
k,1(0) · cos θk | {aI

1,j}, θk

]

+ Var
[√

P/2 · sinβ · bQ
k,0 · R

QI
k,1(0) · sin θk | {aI

1,j}, θk

]

=
P

2

(
cos2 β · cos2 θk · Var

[
bI
k,0 · RII

k,1(0) | {aI
1,j}

]

+ sin2 β · sin2 θk · Var
[
bQ
k,0 · R

QI
k,1(0) | {aI

1,j}
])

Because we assume random signature sequences, given {aI
1,j}, RII

k,1(0) and RQI
k,1(0) are independent

identically distributed (i.i.d.) with pdf

pR(rTc) =

⎛⎝ N

r + N

2

⎞⎠ 2−N

for r = −N,−N + 2, · · · , N − 2, N . Since bI
k,0 and RII

k,1 have zero mean and are independent, we have

Var
[
bI
k,0 · RII

k,1(0) | {aI
1,j}

]
= E

[(
bI
k,0 · RII

k,1(0)
)2 | {aI

1,j}
]

= E
[(

bI
k,0

)2
]
E

[(
RII

k,1(0)
)2 | {aI

1,j}
]

= 1 · NT 2
c

= NT 2
c

Note that even though RII
k,1(0) depends on {aI

1,j}, the mean and variance do not depend on the particular
realization of {aI

1,j}. This is different from the asynchronous case. However, this property helps reduce
the complexity of the analysis. Similarly, we have Var

[
bQ
k,0 · RQI

k,1(0)|{aI
1,j}

]
= NT 2

c . Therefore, the
conditional variance of W I

k is

Var
[
W I

k | θk, {aI
1,j}

]
=

NPT 2
c

2
(
cos2 β · cos2 θk + sin2 β · sin2 θk

)
Let Θ = (θ1, · · · , θK). The conditional variance of W is then given by

Var
[
W | Θ, {aI

1,j}
]

=
K∑

k=2

Var
[
W I

k | θk, {aI
1,j}

]

= (K − 1)
NPT 2

c

2
(
cos2 β · cos2 θk + sin2 β · sin2 θk

)
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Note that the above expression now depends only on θk. By averaging over θk, the variance of W is

Var[W ] =
K∑

k=2

Eθk

[
Var[W I

k | θk]
]

= (K − 1)Eθk

[
NPT 2

c

2
(
cos2 β · cos2 θk + sin2 β · sin2 θk

)]

=
(K − 1)NPT 2

c

2
(
cos2 β · Eθk

[cos2 θk] + sin2 β · Eθk
[sin2 θk]

)

=
(K − 1)NPT 2

c

2

(
cos2 β · 1

2
+ sin2 β · 1

2

)

=
(K − 1)NPT 2

c

4

Therefore, the SINR is

SINRI =
T 2P/2 · cos2 β

N0T/4 + (K − 1)NPT 2
c /4

=
2NTcEs cos2 β

N0NTc + (K − 1)TcEs

=
2Es cos2 β

N0 +
(K − 1)

N
Es

=
4Eb cos2 β

N0 +
2(K − 1)

N
Eb

By approximating the MAI as Gaussian with variance (K − 1)NP/4, the approximate I-channel average
probability of bit error is

P I
e,GA = Q

(√
SINRI

)
= Q

⎛⎜⎜⎝
√√√√√ 4Eb cos2 β

N0 +
2(K − 1)

N
Eb

⎞⎟⎟⎠

Similarly, it can be shown that, for the Q channel, the approximate average probability of bit error is
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PQ
e,GA = Q

⎛⎜⎜⎝
√√√√√ 4Eb sin2 β

N0 +
2(K − 1)

N
Eb

⎞⎟⎟⎠

V. A Generalized Model and the Near–Far Problem

In this section, we consider a general model for the AQPSK DS-CDMA system. The main difference
from the model in the previous sections is that the users can have different transmission power. This
causes what is referred to as “the near–far problem.” We are interested in the near–far effect on system
performance.

A. Analysis

In the general model, the in-phase and quadrature components are given by

sI
k(t) = Ak cos β · aI

k(t)bI
k(t) cos(2πfct + θk)

sQ
k (t) = Ak sinβ · aQ

k (t)bQ
k (t) sin(2πfct + θk)

where A1, A2, · · · , AK can be different. Without loss of generality, let user 1 be the desired user. The
correlation receiver output of the in-phase and quadrature-phase channels are

ZI
1 =

1
2
A1T

{
bI
1,0 cos β + cos β

K∑
k=2

Ak

A1
II
k,1

(
bI
k, τk, φk

)
+ sinβ

K∑
k=2

Ak

A1
IQI
k,1

(
bQ
k , τk, φk

)}
+ nI

1

ZQ
1 =

1
2
A1T

{
bQ
1,0 sin β + cos β

K∑
k=2

Ak

A1
IIQ
k,1

(
bI
k, τk, φk

)
+ sinβ

K∑
k=2

Ak

A1
IQ
k,1

(
bQ
k , τk, φk

)}
+ nQ

1

The average probability of error is given by

Pe =
1
2

(
P I

e + PQ
e

)
with

P I
e =

1
2

{
1 − P

(
−1 <

2nI
1

A1T cos β
+ II

1 ≤ 1
)}

PQ
e =

1
2

{
1 − P

(
−1 <

2nQ
1

A1T sinβ
+ IQ

1 ≤ 1

)}

where
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II
1 =

K∑
k=2

Ak

A1

[
III
k,1

(
bI
k, τk, φk

)
+ tanβIQI

k,1

(
bQ
k , τk, φk

)]

IQ
1 =

K∑
k=2

Ak

A1

[
IQQ
k,1

(
bQ
k , τk, φk

)
+ cot βIIQ

k,1

(
bI
k, τk, φk

)]

The characteristic function of II
1 is

ΦII
1
(v) =

K∏
k=2

ΦII
k,1

(v)

where

ΦII
k,1

(v) =
1

8N

N−1∑
l=0

8∑
i=1

f

(
v; l, gI

k,i(l), h
I
k,i(l), α

I
i ,

Ak

A1

)

and

f(v; l, g(l), h(l), α, γ) =
1
2π

∫ 2π

0

sinc
{

γ
v

2πN

(
cos φ

(
g(l + 1) − g(l)

)
+ α sinφ

(
h(l + 1) − h(l)

))}

· cos
{

γ
v

2N

(
cos φ

(
g(l + 1) + g(l)

)
+ α sinφ

(
h(l + 1) + h(l)

))}
dφ

with

gI
k,1(l) = θII

k,1, hI
k,1(l) = θQI

k,1, αI
1 = tan θ

gI
k,2(l) = θII

k,1, hI
k,2(l) = θ̂QI

k,1, αI
2 = − tan θ

gI
k,3(l) = θII

k,1, hI
k,3(l) = θ̂QI

k,1, αI
3 = tan θ

gI
k,4(l) = θII

k,1, hI
k,4(l) = θQI

k,1, αI
4 = − tan θ

gI
k,5(l) = θ̂II

k,1, hI
k,5(l) = θQI

k,1, αI
5 = − tan θ

gI
k,6(l) = θ̂II

k,1, hI
k,6(l) = θ̂QI

k,1, αI
6 = tan θ

gI
k,7(l) = θ̂II

k,1, hI
k,7(l) = θ̂QI

k,1, αI
7 = − tan θ

gI
k,8(l) = θ̂II

k,1, hI
k,8(l) = θQI

k,1, αI
8 = tan θ
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Similarly, we have

ΦIQ
1

(v) =
K∏

k=2

ΦIQ
k,1

(v)

where

ΦIQ
k,1

(v) =
1

8N

N−1∑
l=0

8∑
i=1

f

(
v; l, gQ

k,i(l), h
Q
k,i(l), α

Q
i ,

Ak

A1

)

and

gQ
k,1(l) = θQQ

k,1 , hQ
k,1(l) = θIQ

k,1, αQ
1 = − cot θ

gQ
k,2(l) = θQQ

k,1 , hQ
k,2(l) = θ̂IQ

k,1, αQ
2 = cot θ

gQ
k,3(l) = θQQ

k,1 , hQ
k,3(l) = θ̂IQ

k,1, αQ
3 = − cot θ

gQ
k,4(l) = θQQ

k,1 , hQ
k,4(l) = θIQ

k,1, α
Q
4 = cot θ

gQ
k,5(l) = θ̂QQ

k,1 , hQ
k,5(l) = θIQ

k,1, αQ
5 = cot θ

gQ
k,6(l) = θ̂QQ

k,1 , hQ
k,6(l) = θ̂IQ

k,1, αQ
6 = − cot θ

gQ
k,7(l) = θ̂QQ

k,1 , hQ
k,7(l) = θ̂IQ

k,1, αQ
7 = cot θ

gQ
k,8(l) = θ̂QQ

k,1 , hQ
k,8(l) = θIQ

k,1, αQ
8 = − cot θ

B. Numerical Examples

Here we show some numerical examples. To see the near–far effect on the error probability, we consider
the cases where there are five users in the system and the desired user’s power is four times the power of
the interferers, while the interferers have the same power—that is, P1 = 4P2 = 4P3 = 4P4 = 4P5. Here
the total interference power is the same as P1. We compare it with the case when there are two users
having the same power, i.e., P1 = P2. In this case also, the total interference power is P1.

Figure 6 shows the average probability of error for both the I and Q channels with β = π/8 and
N = 127. Due to the unequal error protection for the I and Q channels by the modulation scheme, we
can see that the I channel has much lower error probability than that of the Q channel.

Figures 7 and 8 show the average error probability for the I and Q channels for the two cases when
θ = π/8 and N = 127. As can be seen, in the case with the near–far effect, the performance is better as
SNR increases. This is because even though the total interference power is the same, the effect of each
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interferer on the desired user is not the same due to the different correlation relations of the spreading
codes. In this case, the interference effect is not four times that of any one interferer since it is unlikely
that all interferers’ spreading codes have simultaneously large correlation with the desired user.

VI. Conclusions

In this article, the exact and an approximate BER performance were derived for a quaternary asym-
metric QPSK DS-CDMA system. The variance and pdf of the MAI were analyzed. The results showed
that the AQPSK scheme can provide a significant difference in the amount of error protection for differ-
ent bits of a symbol. Therefore, it is advantageous to use AQPSK when designing a UEP system for its
simplicity and efficiency. We also examined the near–far problem by generalizing the system model to
the case where users have different transmit power. The results showed that the Q-channel (less power)
is more sensitive to the near–far effect than the I-channel is in a multiple-access environment.
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Appendix A

Characteristic Function of II

To further simplify Eq. (10), we have

ΦII
(v) =

K∏
k=2

⎧⎪⎨⎪⎩ 1
32πT

N−1∑
l=0

∫ 2π

0

∫ T

0

∑
bI

k

∑
bQ

k

exp
[
jv

1
T

(∆)
]

dτdφ

⎫⎪⎬⎪⎭
where

∆ =
[
cos φ

(
bI
k,−1C

II
k,1(l − N) + bI

k,0C
II
k,1(l)

)
+ tanβ · sinφ

(
bQ
k,−1C

QI
k,1(l − N) + bQ

k,0C
QI
k,1(l)

)]
· R̂ψ(τ)

+
[
cos φ

(
bI
k,−1C

II
k,1(l + 1 − N) + bI

k,0C
II
k,1(l + 1)

)
+ tanβ · sinφ(bQ

k,−1C
QI
k,1(l + 1 − N) + bQ

k,0C
QI
k,1(l + 1)

)]
· Rψ(τ)

To evaluate the summations over bI
k and bQ

k , we note that there are 16 cases for (bI
k, bQ

k ) = (bI
k,−1, b

I
k,0, b

Q
k,−1,

bQ
k,0) as in Table A-1.

Introducing the periodic cross-correlation functions

θII
k,i(l) = CII

k,i(l) + CII
k,i(l − N)

θ̂II
k,i(l) = CII

k,i(l) − CII
k,i(l − N)

θQI
k,i (l) = CQI

k,i (l) + CQI
k,i (l − N)

θ̂QI
k,i (l) = CQI

k,i (l) − CQI
k,i (l − N)

we evaluate ∆ for the above 16 cases with the following results.
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Table A-1. Sixteen cases for (bI
k

, bQ
k
).

Case bI
k,−1 bI

k,0 bQ
k,−1

bQ
k,0

1 1 1 1 1

2 1 1 1 −1

3 1 1 −1 1

4 1 1 −1 −1

5 1 −1 1 1

6 1 −1 1 −1

7 1 −1 −1 1

8 1 −1 −1 −1

9 −1 1 1 1

10 −1 1 1 −1

11 −1 1 −1 1

12 −1 1 −1 −1

13 −1 −1 1 1

14 −1 −1 1 −1

15 −1 −1 −1 1

16 −1 −1 −1 −1

Case 1:

∆1 =
[
cos φ · θII

k,1(l) + tanβ · sinφ · θQI
k,1(l)

]
R̂ψ(τ)

+
[
cos φ · θII

k,1(l + 1) + tanβ · sinφ · θQI
k,1(l + 1)

]
Rψ(τ)

Case 2:

∆2 =
[
cos φ · θII

k,1(l) − tanβ · sinφ · θ̂QI
k,1(l)

]
R̂ψ(τ)

+
[
cos φ · θII

k,1(l + 1) − tanβ · sinφ · θ̂QI
k,1(l + 1)

]
Rψ(τ)

Case 3:

∆3 =
[
cos φ · θII

k,1(l) + tanβ · sinφ · θ̂QI
k,1(l)

]
R̂ψ(τ)

+
[
cos φ · θII

k,1(l + 1) + tanβ · sinφ · θ̂QI
k,1(l + 1)

]
Rψ(τ)
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Case 4:

∆4 =
[
cos φ · θII

k,1(l) − tanβ · sinφ · θQI
k,1(l)

]
R̂ψ(τ)

+
[
cos φ · θII

k,1(l + 1) − tanβ · sinφ · θQI
k,1(l + 1)

]
Rψ(τ)

Case 5:

∆5 = −
([

cos φ · θ̂II
k,1(l) − tanβ · sinφ · θQI

k,1(l)
]
R̂ψ(τ)

+
[
cos φ · θ̂II

k,1(l + 1) − tanβ · sinφ · θQI
k,1(l + 1)

]
Rψ(τ)

)
Case 6:

∆6 = −
([

cos φ · θ̂II
k,1(l) + tanβ · sinφ · θ̂QI

k,1(l)
]
R̂ψ(τ)

+
[
cos φ · θ̂II

k,1(l + 1) + tanβ · sinφ · θ̂QI
k,1(l + 1)

]
Rψ(τ)

)
Case 7:

∆7 = −
([

cos φ · θ̂II
k,1(l) − tanβ · sinφ · θ̂QI

k,1(l)
]
R̂ψ(τ)

+
[
cos φ · θ̂II

k,1(l + 1) − tanβ · sinφ · θ̂QI
k,1(l + 1)

]
Rψ(τ)

)
Case 8:

∆8 = −
([

cos φ · θ̂II
k,1(l) + tanβ · sinφ · θQI

k,1(l)
]
R̂ψ(τ)

+
[
cos φ · θ̂II

k,1(l + 1) + tanβ · sinφ · θQI
k,1(l + 1)

]
Rψ(τ)

)
The latter 8 cases are simply the negative of the first 8 and thus we have 8 pairs of cases. For case 1

and case 16, we have

exp
(

jv
1
T

∆1

)
+ exp

(
jv

1
T

∆16

)
= ejv(∆1/T ) + e−jv(∆1/T ) = 2 cos

( v

T
∆1

)
with similar results for the other pairs of cases. Therefore, we have

ΦII
(v) =

K∏
k=2

{
1

8N

N−1∑
l=0

(
8∑

i=1

1
2πTc

∫ 2π

0

∫ Tc

0

cos
( v

T
∆i

))}
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If we further define

f
(
v; l, g(l), h(l), α

) �=
1

2πTc

∫ 2π

0

∫ Tc

0

cos

{
v

T

[(
cos φ · g(l) + α sinφ · h(l)

)
R̂ψ(τ)

+
(
cos φ · g(l + 1) + α sinφ · h(l + 1)

)
Rψ(τ)

]}
dτdφ

then the characteristic function can be written as

ΦII
(v) =

K∏
k=2

{
1

8N

N−1∑
l=0

(
8∑

i=1

f
(
v; l, gi(l), hi(l), αi

))}

where

g1(l) = θII
k,1, h1(l) = θQI

k,1, α1 = tanβ

g2(l) = θII
k,1, h2(l) = θ̂QI

k,1, α2 = − tanβ

g3(l) = θII
k,1, h3(l) = θ̂QI

k,1, α3 = tanβ

g4(l) = θII
k,1, h4(l) = θQI

k,1, α4 = − tanβ

g5(l) = θ̂II
k,1, h5(l) = θQI

k,1, α5 = − tanβ

g6(l) = θ̂II
k,1, h6(l) = θ̂QI

k,1, α6 = tanβ

g7(l) = θ̂II
k,1, h7(l) = θ̂QI

k,1, α7 = − tanβ

g8(l) = θ̂II
k,1, h8(l) = θQI

k,1, α8 = tanβ

As can be seen, in order to evaluate the characteristic function, we need to evaluate f(v; l, g(l), h(l), α),
which involves the computation of double integrals that can be complicated. We can further simplify this
by integrating over τ when considering the chip waveform ψ(t) to be the rectangular pulse. In this case,
R̂ψ(τ) = Tc − τ and Rψ(τ) = τ . Now the integrand can be written as
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E = cos
{ v

T

[(
cos φ · g(l) + α sin φ · h(l)

)
R̂ψ(τ) +

(
cos φ · g(l + 1) + α sinφ · h(l + 1)

)
Rψ(τ)

]}

= cos
{ v

T
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cos φ · g(l) + α sin φ · h(l)

)
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τ
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= cos
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T
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)
+ α sinφ
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T

[(
cos φ
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(
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Next, we integrate E over τ to obtain
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and

1
2
FTc + G =

v

2N

(
cos φ

(
g(l + 1) − g(l)

)
+ α sinφ

(
h(l + 1) − h(l)

))

+
v

T

(
cos φh1(l) + α sinφh2(l)

)
Tc

=
v

2N

(
cos φ

(
g(l + 1) + g(l)

)
+ α sinφ

(
h(l + 1) + h(l)

))

Therefore, we have

f
(
v; l, g(l), h(l), α

)
=

1
2π

∫ 2π

0

sinc
{ v

2πN

(
cos φ

(
g(l + 1) − g(l)

)
+ α sinφ

(
h(l + 1) − h(l)

))}

· cos
{ v

2N

(
cos φ

(
g(l + 1) + g(l)

)
+ α sinφ

(
h(l + 1) + h(l)

))}
dφ

Appendix B

Variance of the Interference

The derivation here follows the work in [7]. According to Eqs. (6) and (7), we can expand Eq. (11) as

W II
k =

[
bI
k,−1 · CII

k,1(γk − N) + bI
k,0 · CII

k,1(γk)
]
R̂ψ(Sk)

+
[
bI
k,−1 · CII

k,1(γk + 1 − N) + bI
k,0 · CII

k,1(γk + 1)
]
Rψ(Sk) (B-1)

where Sk = τk − γkTc and γk = �τk/Tc�. If we use Eq. (8) to expand Eq. (B-1), we obtain

W II
k =

⎡⎣γk−1∑
j=0

bI
k,−1a

I
k,j−γk+NaI

1,j +
N−1∑
j=γk

bI
k,0a

I
k,j−γk

aI
1,j

⎤⎦ R̂ψ(Sk)

+

⎡⎣ γk∑
j=0

bI
k,−1a

I
k,j−γk−1+NaI

1,j +
N−1∑

j=γk+1

bI
k,0a

I
k,j−γk−1a

I
1,j

⎤⎦Rψ(Sk) (B-2)

which can be further expanded to obtain

35



W II
k =

⎡⎣γk−1∑
j=0

bI
k,−1a

I
k,j−γk+NaI

1,j +
N−2∑
j=γk

bI
k,0a

I
k,j−γk

aI
1,j + bI

k,0a
I
k,N−γk−1a

I
1,N−1

⎤⎦ R̂ψ(Sk)

+

⎡⎣bI
k,−1a

I
k,N−γk−1a

I
1,0 +

γk−1∑
j=0

bI
k,−1a

I
k,j−γk+NaI

1,j+1 +
N−2∑
j=γk

bI
k,0a

I
k,j−γk

aI
1,j+1

⎤⎦Rψ(Sk) (B-3)

Finally, the terms in Eq. (B-3) can be rearranged to obtain

W II
k = bI

k,−1

γk−1∑
j=0

aI
k,j−γk+N

(
aI
1,jR̂ψ(Sk) + a1,j+1Rψ(Sk)

)

+ bI
k,0

N−2∑
j=γk

aI
k,j−γk

(
aI
1,jR̂ψ(Sk) + a1,j+1Rψ(Sk)

)

+ bI
k,0a

I
k,N−γk−1a

I
1,N−1R̂ψ(Sk) + bI

k,−1a
I
k,N−γk−1a

I
1,0Rψ(Sk) (B-4)

In order to reduce the complexity of evaluating Eq. (B-4), we consider it conditioned on the signature
sequence of the first user {aI

1,j} and the random variable γk, which is uniformly distributed on the set
{0, · · · , N − 1}. We condition on γk = γ̂k and {aI

1,j} = {âI
1,j}, and define a set of N + 1 random

variables Ωj , 0 ≤ j ≤ N , by

Ωj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

bI
k,−1a

I
k,j−γ̂k+N âI

1,j , j = 0, · · · , γ̂k − 1

bI
k,0a

I
k,j−γ̂k

âI
1,j , j = γ̂k, · · · , N − 2

bI
k,0a

I
k,N−γ̂k−1â

I
1,N−1, j = N − 1

bI
k,−1a

I
k,N−γ̂k−1â

I
1,0, j = N

Then Eq. (B-4) can be simplified to

W II
k =

N−2∑
j=0

Ωj

[
R̂ψ(Sk) + âI

1,j â
I
1,j+1Rψ(Sk)

]
+ ΩN−1R̂ψ(Sk) + ΩNRψ(Sk) (B-5)

where the random variables Ωj , 0 ≤ j ≤ N , are mutually independent and satisfy Pr(Ωj = +1) =
Pr(Ωj = −1) = 1/2. If we further define f(s) = R̂ψ(s) + Rψ(s), g(s) = R̂ψ(s) − Rψ(s), the set Γ1 to be
the set of all nonnegative integers i less than N − 1 such that âI

1,iâ
I
1,i+1 = 1 and the set Γ2 to be the set

of all nonnegative integers i less than N − 1 such that âI
1,iâ

I
1,i+1 = −1, then Eq. (B-5) can be written as

W II
k =

∑
j∈Γ1

Ωjf(Sk) +
∑
j∈Γ2

Ωjg(Sk) + ΩN−1R̂ψ(Sk) + ΩNRψ(Sk)

If we let XII
k =

∑
j∈Γ1

Ωj , Y II
k =

∑
j∈Γ2

Ωj , ΠII
k = ΩN−1, and ΛII

k = ΩN , then we have
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W II
k = ΠII

k R̂ψ(Sk) + ΛII
k Rψ(Sk) + XII

k f(Sk) + Y II
k g(Sk)

Similarly, WQI
k can be written as

WQI
k = ΠQI

k R̂ψ(Sk) + ΛQI
k Rψ(Sk) + XQI

k f(Sk) + Y QI
k g(Sk)

with ΠQI
k , ΛQI

k , XQI
k , and Y QI

k defined in a similar way.

At this point, in order to simplify the notation, we ignore the superscript of Wk, Πk, Λk, Xk, and Yk.
The random variables Πk and Λk are uniform on {−1, 1}, and Xk and Yk have pdfs

pXk
(i) =

⎛⎝ L

i + L

2

⎞⎠ 2−L, i ∈ {−L,−L + 2, · · · , L − 2, L}

pYk
(i) =

⎛⎝ M

i + M

2

⎞⎠ 2−M , i ∈ {−M,−M + 2, · · · , M − 2, M}

where L = (N − 1 + U)/2, M = (N − 1 − U)/2). The random variable U is defined as

U =
N−2∑
j=0

a1,j · a1,j+1

where {a1,j} is the signature sequence of user 1. By assuming random signature sequences, the pdf of U
is given by

pU (i) =

⎛⎝ N − 1

i + N − 1
2

⎞⎠ 2−N+1, i ∈ {−N + 2,−N + 3, · · · , N − 3, N − 1}

If ψ(t) is a rectangular pulse, we have

Wk = ΠkSk + Λk(Tc − Sk) + XkTc + Yk(Tc − 2Sk)

Let S = (S1, · · · , SK) and Φ = (φ1, · · · , φK). Then the conditional variance of W I is given by

Var [W | S,Φ, M ] = E

⎡⎣(√
P/2 · cos β

K∑
k=2

Wk · cos φk

)2

| S,Φ, M

⎤⎦

=
P

2
cos2 β

K∑
k=2

E
[
W 2

k | Sk, M
]
· E

[
cos2 φk | φk

]

=
P

2
cos2 β

K∑
k=2

1
2

[1 + cos(2φk)] · Var [Wk | Sk, M ] (B-6)
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The conditional variance of Wk can be computed as

Var [Wk | Sk, M ] = E
[
Π2

kS2
k | Sk

]
+ E

[
Λ2

k(Tc − Sk)2 | Sk

]
+ E

[
X2

kT 2
c | M

]
+ E

[
Y 2

k (Tc − 2Sk)2 | Sk, M
]

(B-7)

The random variables Πk and Λk have variances equal to 1. Then we have

E
[
Π2

kS2
k | Sk

]
= S2

k (B-8)

E
[
Λ2

k(Tc − Sk)2 | Sk

]
= (Tc − Sk)2 (B-9)

E
[
X2

kT 2
c | M

]
= T 2

c (N − M − 1) (B-10)

E
[
Y 2

k (Tc − 2Sk)2 | Sk, M
]

= M(Tc − 2Sk)2 (B-11)

Substituting Eqs. (B-8) through (B-11) in Eq. (B-7) gives

Var [Wk | Sk, M ] = 2(2M + 1)(S2
k − TcSk) + NT 2

c

and thus from Eq. (B-6),

Var [W | S,Φ, M ] =
P

2
cos2 β

K∑
k=2

1
2
[
1 + cos(2φk)

] [
2(2M + 1)(S2

k − TcSk) + NT 2
c

]

=
P

2
cos2 β

K∑
k=2

[
1 + cos(2φk)

] [
(2M + 1)(S2

k − TcSk) +
NT 2

c

2

]

By averaging over φk,

Var [W | S, M ] =
P

2
cos2 β

K∑
k=2

[
(2M + 1)(S2

k − TcSk) +
NT 2

c

2

]

=
P

2
cos2 β

[
K∑

k=2

(2M + 1)(S2
k − TcSk)

]
+

(K − 1)NPT 2
c

4
cos2 β

By averaging over Sk, since E[S2
k − TcSk] = −T 2

c /6, we have

Var[W | M ] =
(K − 1)NPT 2

c

4
cos2 β − PT 2

c

12
cos2 β

K∑
k=2

(2M + 1)

38



For random signature sequences, E[M ] = (N − 1)/2; thus, we have

Var[W ] =
(K − 1)NPT 2

c

4
cos2 β − PT 2

c

12
cos2 β

K∑
k=2

(
2
N − 1

2
+ 1

)

=
(K − 1)NPT 2

c cos2 β

6

Therefore, the variance of W I is given by

Var[W I ] =
(K − 1)NPT 2

c cos2 β

6

Similarly, it can be shown that

Var[WQ] =
(K − 1)NPT 2

c sin2 β

6
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