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Lossless Compression of Classification Map Images
H. Xie1 and M. Klimesh1

A classification map is an image that provides a low-level content description of
a corresponding remote-sensing image. Each “pixel” in the map is the index of a
class that represents some type of content, such as a type of vegetation or mineral,
in the corresponding spatial location of the remote-sensing image. Classification
maps generated onboard a spacecraft may be used as part of a region-of-interest
image data compression scheme, and/or to provide low-data-volume summaries of
the remote-sensing images. In either case, it is desirable to losslessly compress
classification maps prior to transmission. In this article, we describe a technique
for lossless compression of classification maps. Compression tests on sample classi-
fication maps indicate that our technique yields considerable improvement, e.g., a
15 to 40 percent bit-rate reduction, as compared to existing general-purpose lossless
image compression methods.

I. Introduction

A classification map is an image that provides a low-level content description of a corresponding
remote-sensing image. This description is in terms of a (typically small) number of classes, each of
which is designed to represent some type of image content, such as a type of vegetation or mineral.
Each “pixel” value in the map is the index of the class that (ideally) best describes the scene content
in the corresponding spatial location in the remote-sensing image. A common method of producing a
classification map is to use a support vector machine (SVM) classifier [3,8]; Fig. 1 shows an example of
a classification map produced by applying an SVM classifier to an Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) scene.2

Two ways in which a classification map generated onboard a spacecraft may be used are (1) to provide
a summary of scene content, perhaps in conjunction with transmission of a low-fidelity version of the scene
itself or even without transmission of any further scene information, and (2) as part of a region-of-interest
(ROI) image data compression scheme [2,4]. In the first case the classification map must be transmitted
to the ground, and in the second case either the classification map or a derived priority map must be
transmitted. Note that a priority map is itself a type of classification map where the classes indicate the
relative importance value.

1 Communications Architectures and Research Section.

2 AVIRIS data sets are available from the AVIRIS web site: http://aviris.jpl.nasa.gov/html/aviris.freedata.html.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
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Fig. 1.  AVIRIS Moffett Field Scene 1:  (a) false color and (b) the classification map pro-
duced by an SVM pixel classifier.  The scene is classified into four classes, roughly 
corresponding to water, land, forest, and human habitat.
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Effective lossless compression of classification maps prior to transmission is important for reducing
the transmission cost. In this article, we describe a technique for lossless compression of classification
maps. We also present results of compression tests on some classification maps; these tests show that
our technique yields considerable improvement over existing general-purpose lossless image compression
methods.

In the case of ROI compression, each class in the classification map is associated with a priority level;
thus, together the classification map and the associated priorities define a data prioritization map (or
priority map), with higher priority levels assigned to classification regions that are more important to the
scientist users. ROI compression [2,4] allows more compressed bits to be allocated to identified regions of
scientific importance, resulting in higher fidelity reconstruction of such regions by the decompressor at the
expense of some fidelity in regions indicated to be less important. ROI compression is thus potentially able
to increase the net science value of the data returned from a spacecraft with limited downlink capacity.
Figure 2 shows a block diagram of a region-of-interest image compression system. Both the compressor
and decompressor require the same priority map as an input.

Each pixel value in a classification map represents a certain scientifically defined class. There are often
large contiguous regions of the same class; thus, if a pixel’s neighbors all belong to the same class, then
it is highly likely that the pixel itself will belong to that class. In contrast to natural continuous-tone
images, there are typically a relatively small number of different pixel values in a classification map. As
an extreme example, if we are interested in finding rocks on Mars, then the classification map might
consist of only two values, “rock” and “non-rock.” Also, unlike natural images, because the pixel values
in a classification map are indices, numerically close pixel values usually do not necessarily represent
similar content. These properties make the classification map compression problem somewhat different
from compression of more conventional images.

A common lossless compression method is predictive compression. In predictive compression, samples
(e.g., pixels) are encoded sequentially based on a probability distribution that is estimated from previously
encoded samples. When this method is applied to continuous-tone images, typically an estimate is
calculated from previously encoded pixels, and the difference between the estimate and the actual pixel
value is encoded in the compressed bitstream. In linear prediction, the estimate is a linear combination
of nearby pixel values. Context modeling is a technique that is often used in conjunction with predictive
compression. In context modeling, samples to be encoded are classified into one of several contexts based
on previously encoded samples. The context modeler maintains separate statistics for each context and
uses these statistics to encode the samples more effectively. Ideally, contexts are defined so that different
contexts include pixels with substantially different statistics.
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Fig. 2.  Block diagram of a region-of-interest image compression system.  The image data are first classified using an 
onboard classifier/prioritizer.  The ROI compressor then employs the priority map as side information to allocate bits 
accordingly to regions of different priorities.  The classification map or the priority map needs to be losslessly trans-
mitted to the receiver for proper reconstruction of the image.
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Many state-of-the-art lossless image compression schemes, such as JPEG-LS (Joint Photographic
Experts Group-lossless image compression standard) [10] and CALIC (Context-based Adaptive Loss-
less Image Compression) [12], use predictive compression with predictors derived from linear predictors,
along with context modeling. These techniques are appropriate for natural continuous-tone images. Con-
text modeling and general predictive compression would also be expected to be useful for compression of
classification maps. However, linear prediction or, more generally, encoding of the differences between an
estimate and a pixel value, is not appropriate for classification map compression because these techniques
rely on continuity of the meaning of pixel values, which is typically not present in classification maps.

For our purposes, context modeling can be described somewhat formally as follows. For each pixel, the
compressor determines an estimate of the probability distribution of values for the pixel, conditioned on
a neighborhood of previously encoded pixels. A context is a function of previously encoded pixel values
in the neighborhood. The conditional probabilities Pr(x|c), where x is a possible pixel value and c is a
context, are estimated and updated empirically from the previously encoded data.

If each distinct combination of pixel values in the context neighborhood is considered to be a distinct
context, then the number of contexts grows exponentially with the number of pixels in the context
neighborhood. For natural continuous-tone images, which typically have an alphabet size of 256 or
larger, the contexts need to be defined appropriately (e.g., by quantization of pixel values in the context
neighborhood) in order to avoid the “context dilution” problem, in which there are so many contexts
that there are not enough samples to accurately estimate the conditional probabilities associated with
the individual contexts. Classification map images typically contain a small number of values, so the
potential context dilution issues are not as serious. However, the alphabet in a classification map image
is still usually too large to use the context modeling approach of the Joint Bi-level Image Experts Group
(JBIG) image compression standard [1], which defines contexts based on all possible pixel values in a
reasonably sized neighborhood of the pixel to be encoded.

The Graphical Interchange Format (GIF) and Portable Network Graphics (PNG) format are com-
monly used file formats for image compression that might be expected to be reasonably appropriate for
non-continuous-tone images such as classification maps. GIF uses Lempel–Ziv–Welch (LZW) compres-
sion [11], and PNG uses a combination of Lempel–Ziv–77 (LZ77) [13] and Huffman coding. LZ77 and the
LZW algorithm are dictionary-based coding techniques that were designed to effectively encode sources
consisting of recurring patterns (e.g., English text or recurring sequences of pixel values as might appear
in computer-generated artwork). GIF treats image data as a one-dimensional sequence, while PNG does
make some use of two-dimensional correlation with a prediction step.

In this article, we propose a classification map compression method that is a simple adaptive context
modeler that feeds into a binary interleaved entropy coder [5,7]. A sequence of binary decision bits is
produced for each pixel to indicate which, if any, neighboring pixel it matches. The encoder maintains
the probability-of-zero estimates for these bits for each of the contexts. The interleaved entropy coder [7]
is bit-wise adaptable, which allows the context modeler to quickly adapt to changing statistics in the
image. Our results show that our proposed technique achieves about a 15 to 40 percent bit-rate reduction
as compared to the JPEG-LS, GIF, and LZ77 compressors.

II. The Algorithm

We compress the classification map pixels in raster scan order. The details of the pixel encoding are
described in Section II.A. When producing the decision bits for a pixel, the context for each such decision
bit is determined from information contained in neighboring pixels that have already been encoded. In
Sections II.B.1 and II.B.2, we describe two different possible ways of defining the contexts; these yield
two different versions of the algorithm. For all the pixels on the image boundary, i.e., the first row, the
first column, or the last column, there are fewer adjacent pixels. One could use separate contexts for
these pixels, but for simplicity, and because there are a small number of boundary pixels in the images,
we simply define all pixels outside the image boundaries to have the value 0.
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A. Piecewise Pixel Prediction

An important characteristic of classification map images is that they tend to contain large contiguous
regions of pixels of the same class. Therefore, it is highly likely that x is the same as one (or more) of its
immediate neighboring pixels, p1, p2, p3, and p4, as indicated in Fig. 3. Instead of directly encoding the
pixel value x, we decompose the information into a sequence of binary decisions as follows:

(1) Is x equal to p1?

(2) If not, is x equal to p3?

(3) If not, is x equal to p2?

(4) If not, is x equal to p4?

If x = pk, we represent an answer with a “0”; otherwise, it is represented with a “1.” When an
affirmative answer is reached, we do not need to continue to the next question. Note that if the neighboring
pixel values are not all different, then a question may be redundant, in which case it is skipped. For
example, if p1 = p2 = p3 and x = p4 and p3 �= p4, then the bit sequence for x is “10,” corresponding to
“x does not equal p1” and “x equals p4.” If x is different from all of its neighboring pixels, then the value
of x is included in the compressed bitstream uncoded.

The length of the decision bit string varies from pixel to pixel. Table 1 shows some statistics for the
number of decisions that need to be made based on four test images. The column labeled “One decision”
lists the percentage of cases when the value of x is decided by one decision bit; the column labeled “Two
decisions” lists the percentage of cases when the value of x is decided by two decision bits; and so on.

We can see that most of the time the value of x can be determined from one or two decision bits. The
sequence of decision bits is encoded using context modeling and entropy coding, which are described in
the following sections.

xp1

p2 p3 p4

Fig. 3.  The neighboring pixels that are used to derive the sequence of
binary decision bits for current pixel x.  Questions are posed as to whether
x is equal to its immediate neighboring pixels in the order p1, p3, p2, p4.

Table 1. Statistics for the number of decision bits needed for encoding a pixel. The statistics
are shown for four of the test images described in Section III.

One Two Three Four No
Image

decision, % decisions, % decisions, % decisions, % match, %

Map 1 94.68 4.29 0.21 0 0.82

Map 2 91.96 6.44 0.31 0.00 1.29

Map 3 87.95 8.51 0.98 0.01 2.55

Map 4 78.98 12.69 2.57 0.14 5.62
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B. Context Modeling

1. Edge-Based Context Model. We call our first context model the edge-based context model. In
this context model, edge information in adjacent pixel locations is exploited. For each of the four adjacent
previously encoded pixels, p1 through p4, the context index includes two bits indicating the presence or
absence of region boundaries in the north and west directions. Figure 4 provides an example.

In this example, the presence of a western edge (represented as a solid vertical line) in pixel location p3

means that p3 is in a different classification region from the neighboring pixel p2 immediately to its left;
and the absence of a northern edge (represented as a dashed horizontal line) means that p3 is in the same
classification region as the neighboring pixel p3N immediately above it.

The number of parameters for this model is 8 (2 edges for each pixel location, and 4 pixel locations are
used); therefore, this results in a total of 256 contexts for each type of decision bit. Not all combinations
of contexts and decisions are needed due to constraints imposed by the pattern of edges. For example,
if no edges are present in the template, which means that all the neighboring pixels are in the same
classification region, then only one decision bit (whether x is equal to p1) needs to be encoded for pixel x.

2. Pattern-Based Context Model. We call our second context model the pattern-based context
model. In this context model, the pattern formed by the four neighboring pixels (see Fig. 3) is determined
and used as the basic context for coding of the current pixel. The pattern is a set of labels that indicate
which of the adjacent pixels are equal to each other. Specifically, we always label the first pixel in the
template, p1 in this case, by the letter A; p2 is labeled as either A, when p2 = p1, or B, when p2 �= p1;
and so on. Each pattern is represented by a string of letters with each of them identifying the label of
the corresponding pixel. For example, pattern “AABB” represents the case when p1 and p2 belong to
the same classification region, while p3 and p4 are identical to each other but different from p1 and p2.
In total there are 15 possible patterns for this four-pixel template. We list in Table 2 all the possible
patterns and the set of binary decisions for each type of context. The binary decisions listed in Table 2
are simply a customized version of the decision sequences described in Section II.A, taking into account
the constraints imposed by each type of context pattern. From Table 2, we can see that the number of
contexts for each of the four types of decision bits is 15, 6, 10, and 6, respectively. Therefore, 37 contexts
are used for this context model.

x

p2 p3 p4

p1W

p2W

p2N p3N p4N

p1

Fig. 4.  An example of the edge-based context determined by the edge informa-
tion in four adjacent pixel locations.  In this example, each pixel location is
filled with one of two colors (white or blue) representing its classification label.
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Table 2. Pattern-based contexts for the four-pixel template and the binary
decisions that need to be sent for each type of context. The pattern is
formed in the order p1, p2, p3, and p4. For example, the pattern “AAAB”
occurs when p1, p2, and p3 all belong to the same classification region,
while p4 belongs to a different one.

Context pattern Binary decisions for each context

AAAA Does x equal p1?

AABA, AABB, ABBA, ABBB Does x equal p1?
If not, does x equal p3?

ABAA, ABAB Does x equal p1?
If not, does x equal p2?

AAAB Does x equal p1?
If not, does x equal p4?

AABC, ABBC, ABCB Does x equal p1?
If not, does x equal p3?
If not, does x equal p4?

ABAC Does x equal p1?
If not, does x equal p2?
If not, does x equal p4?

ABCA, ABCC Does x equal p1?
If not, does x equal p3?
If not, does x equal p2?

ABCD Does x equal p1?
If not, does x equal p3?
If not, does x equal p2?
If not, does x equal p4?

C. Interleaved Entropy Coder

We employ the non-recursive binary interleaved entropy coder [7], developed by Kiely and Klimesh and
used in the ICER imager compressor [6], to encode the sequence of binary decisions. An interleaved en-
tropy coder compresses a binary source by interleaving the output of several different variable-to-variable-
length codes that each encode groups of bits with similar probability estimates. Design variations in the
choice and number of component codes yield different coding complexities and compression efficiencies.
The particular interleaved entropy coder design used in ICER has 17 component codes, details of which
can be found in [6].

As in ICER, the context modeler maintains the nominal counts of the number of zero bits and the
total number of bits that occur in each context. The probability of zero is estimated by the ratio of these
counts.

III. Experimental Results

As an experimental evaluation of the proposed scheme, we compare the compression performance of
the proposed method with that of commonly used lossless compression methods for graphical imagery.
Five classification map images were used. These images were produced by applying either the SVM-based
pixel classifier [3,8] or a spectra-clustering-based classifier [9] to AVIRIS hyperspectral images. AVIRIS
images include 224 spectral bands covering wavelengths from 370 nm to 2500 nm. In our experiments, we
use three scenes from the calibrated 1997 Moffett Field radiance data set, each scene having dimensions of
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614 pixels by 512 lines. Among the test images, Maps 1 through 4 are generated using the SVM classifier,
and Map 5 is generated using the spectra-clustering-based classifier.

In the SVM classifier, we used feature vectors of size 288, consisting of the sample values in a 3 × 3
region surrounding each pixel in 32 bands. To train the SVM classifier, we hand-labeled a small set
of pixels belonging to each class. In the spectra-clustering-based classifier, we used feature vectors of
size 224, consisting of the sample values of each pixel in all 224 bands. In general, the granularity of the
classification map, i.e., the number of distinct classes identified, depends on the content of the scene and
on choices reflecting the scientific interest of the user. The number of classes in our maps ranges from 4
to 32.

Table 3 shows the compressed bit rates (in bits per pixel) for each of the test images and the different
compression methods. Map 1 (as shown in Fig. 1) is the classification map of the first 512-line scene of the
Moffett field dataset. Map 2 is generated from the third 512-line scene of the dataset and has 7 different
classes. Maps 3, 4, and 5 are produced from the second 512-line scene of the Moffett field dataset with
increasing classification granularities (9, 17, and 32 classes for Maps 3, 4, and 5, respectively). The results
for GIFs are produced using ImageJ software.3 LZ77 [13] is a dictionary-based compression method that
is evaluated using the standard UNIX gzip command. Results for JPEG-LS [10] are produced using the
Jasper software.4 The ICER results are for lossless compression with the ICER wavelet-based image
compressor [6]. The column labeled “Edge-based” lists the results of the edge-based context modeling
version of our method as described in Section II.B.1, and the “Pattern-based” column contains results
for the pattern-based context modeling version described in Section II.B.2. For all the test images,
both versions of our proposed method achieve better compression performance than all other methods
evaluated. Compared to JPEG-LS, which is a state-of-the-art lossless image compressor, both proposed
versions achieved more than a 30 percent bit-rate reduction. The two proposed versions of our method
achieved comparable results, with the pattern-based version performing slightly better than the edge-
based version.

The choice of index assignment for different classification regions will affect the compression perfor-
mance of compression methods designed for continuous-tone images. In our experiments, we did not
attempt to assign indexes to the regions in any particular order. To show that our region index assign-
ments are not abnormally unsuitable for JPEG-LS or ICER, we measured the range of compressed bit
rates for all the compression methods on 10 test images derived from Map 5 by randomly rearranging the

Table 3. Comparison of different compression methods based on five test classification map
images. Compressed bit rates (bits per pixel) are shown for each of the test images. For each
image, the best result is shown in boldface.

No. of
Image GIF LZ77 JPEG-LS ICER Edge-based Pattern-based

classes

Map 1 4 0.4517 0.4639 0.3546 1.9888 0.1809 0.1764

Map 2 7 0.6640 0.6159 0.5873 2.5625 0.2826 0.2793

Map 3 9 0.9637 0.9311 0.9104 3.5398 0.4859 0.4869

Map 4 17 1.6137 1.4616 1.6875 4.6313 0.9242 0.9146

Map 5 32 3.2197 2.8738 3.7374 6.1112 2.4281 2.4147

3 Available online from the project home page: http://rsb.info.nih.gov/ij/.

4 Available online from http://www.ece.uvic.ca/∼mdadams/jasper/.
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region index assignments. The results are given in Table 4. It can be seen that the range of variation is
quite small. Of course, there may well be region index assignments that yield significant improvements for
JPEG-LS and ICER, but searching for such assignments is beyond the scope of this work. Note that the
tiny variation in the results from our proposed method arises from the way boundary pixels are handled.
Also, we omitted the results for the GIF and LZ77 compression methods since region index rearranging
does not affect their compressed bit rates.

Table 5 shows compression times of the proposed method. All test images are 614×512; therefore, they
contain 314368 pixels. The implementation was not optimized for benchmarking, so some improvement
should be achievable by code optimization. In any case, we expect that the compression times will
typically be small compared to the time needed to generate the classification map, and so they are not
likely to be an issue.

Table 4. Average, minimum, and maximum compressed bit rates for
JPEG-LS, ICER, and the proposed method. The results are based on
10 test images that were derived from Map 5 by randomly rearranging
the region index assignments.

Compression JPEG-LS ICER Pattern-based

Average bit rate 3.7576 6.1386 2.4173

Minimum bit rate 3.6510 6.0965 2.4127

Maximum bit rate 3.8865 6.2011 2.4192

Table 5. Compression times (in seconds) using a research-grade im-
plementation of the proposed context modelers and ICER’s imple-
mentation of the interleaved entropy coder. Times were obtained on
an Intel Pentium-4 3.0-GHz processor running Linux.

No. of
Image Edge-based Pattern-based

classes

Map 1 4 0.05 0.07

Map 2 7 0.06 0.07

Map 3 9 0.07 0.08

Map 4 17 0.10 0.10

Map 5 32 0.16 0.17
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