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Photon Jitter Mitigation for the
Optical Channel

B. Moision1

We consider a pulse-position-modulated (PPM) optical communications channel
where photon arrival times are offset by a random jitter. This models jitter intro-
duced by timing synchronization or detector delay, which is a significant degrada-
tion for very short slot widths. We derive the symbol likelihoods in the presence of
inter-slot interference (ITI) as well as a number of practical approximations to the
likelihoods. The impact on performance of a coded system is illustrated, where we
show that using the proper likelihoods yields large gains over a conventional receiver
that does not model the ITI. We show that, for large PPM orders and moderate
jitter, inter-symbol interference (ISI) may be ignored in the receiver while incurring
only small losses.

I. Introduction

On an ideal optical communications channel, the throughput may be increased without bound by
decreasing the slot width while keeping the average power constant. However, this would require a
laser transmitter that could confine a pulse to an arbitrarily short slot, a detector that could precisely
reproduce the photon arrival times, and a receiver that could precisely allocate photon counts to bins
corresponding to signal or noise slots. Each of these components has physical limitations that don’t
allow transmission and reproduction of arbitrarily short slots. Peak power constraints limit the minimum
pulse width a laser can produce without sacrificing average power. At the detector, each incident photon
experiences a random delay from the time of arrival to the time the detector produces a pulse in response
to that photon; hence, the arrival time may only be estimated—see, e.g., [1,2] or a report by Moision
and Farr2 for characterizations of this jitter for practical detectors. Finally, the receiver introduces
errors in attempting to partition time into slots corresponding to the pulsed laser slots. Errors in this
synchronization contribute to uncertainty in the location of a photon relative to the symbol boundaries.

These uncertainties, which we collectively refer to as photon jitter, are negligible for channels with
sufficiently long slots. However, in the push to extend the communications channel throughput by nar-
rowing the slot width, photon jitter will lead to significant degradation if ignored. In this article, we
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2 B. Moision and W. Farr, “Communication Limits due to Photon Detector Jitter,” JPL Technical Report (internal docu-
ment), Jet Propulsion Laboratory, Pasadena, California, June 2007.
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derive symbol likelihoods for a Poisson pulse-position-modulation (PPM) channel in the presence of pho-
ton jitter. We also find several approximations to these likelihoods. We illustrate the impact of photon
jitter on the capacity and on the performance of a coded system.

Sequence detection for PPM in the presence of inter-symbol interference (ISI) or inter-slot interference
(ITI) has been treated for the indoor wireless infrared channel; see, e.g., [3]. On the indoor wireless
channel, the photon counts are large and the channel is modeled as having a deterministic pulse shape
with additive white Gaussian noise. Our channel of interest differs in that we operate in a low-photon-
count regime with photon-counting detectors, where the statistics are appropriately modeled as Poisson.
In [5], ISI introduced by a detector pulse response that extends over several slots was considered. Webb
statistics were used to model the output of the detector, but random timing jitter was presumed negligible.
A number of articles have treated the transmission and reception of overlapped-PPM, originally studied
in [6], wherein ITI is intentionally introduced in order to expand the number of symbols per second.
In all of these prior analyses, jitter is presumed negligible when deriving optimum receivers or symbol
likelihoods.

In [7,8], sequence detection is performed in the absence of slot or symbol synchronization, jointly
estimating the timing offset and the data sequence. Our model differs in that an independent offset is
observed each symbol, modeling the output from a synchronization algorithm utilizing a symbol-decision-
based feedback loop. It also accommodates non-ideal transmitted laser pulse shapes and detector jitter.
This model most closely captures the dominant constraints on current technology for a deep-space optical
channel.

Recent work by Kachelmyer and Boroson [9] investigated the capacity in detector jitter for a photon-
counting channel. They assumed a receiver restricted to quantizing photon arrival times to a slot, that
photons are equally likely to fall outside a slot boundary independent of their arrival time, and that the
magnitude of the jitter is less than the duration of a slot. We lift these assumptions in computing the
capacity, putting detector and synchronization jitter in a common framework and, furthermore, focus on
the mitigation of ISI/ITI. The impact of ISI is treated in [9] by computing a series of approximations to
the ISI capacity. We do not address capacity in ISI, but determine bounds on the performance of a coded
system using maximum a posteriori detection of PPM in ISI, illustrating the impact of ignoring ISI is
small for large PPM orders and moderate ISI.

This article is organized as follows. In Section II, we introduce the channel models and derive the
symbol likelihoods as well as several approximations to the likelihoods. In Section III, we discuss compu-
tation of the channel capacity. In Section IV, we illustrate numerical results, comparing the performance
of detector and timing jitter, the use of various approximations to the likelihoods, and the impact of ISI.

II. Channel Model/Symbol Likelihoods

In each channel use, one of M PPM symbols is transmitted by sending a pulse in the ith slot of an
M slot word. Throughout, the slot width is normalized to 1. Let λi(t) = nsp(t− i + 1) + nb, the incident
photon intensity function when the ith slot, i ∈ {1, · · · , M}, is pulsed, where p(t) is a unit pulse on [0, 1]
(a more accurate pulse shape may be substituted without loss of generality in the following analysis). A
collection of photons arrive at times {sj}, j = 1, 2, · · · , N . In the presence of timing jitter, each photon is
observed at time tj = sj + δ, where δ is independent of the photon arrivals and drawn from density fδ.

The distribution of observed signal photon arrival times for a pulse transmitted in the first slot is
given by f(t) = (p � fδ)(t). The observed intensity (as opposed to the incident) when the ith symbol is
transmitted is λ′

i(t) = nsf(t − i + 1) + nb. We model only inter-slot-interference and assume there is no
inter-symbol-interference. This simplifies the analysis and complexity of the resulting maximum-likelihood
receiver. In Section IV.B, ISI is introduced, and we show that the loss in making the assumption of no
ISI is small.
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Throughout, we model the jitter offset with an exponential distribution

fδ(δ) =
1
2α

e−|δ|/α

which yields

f(t) =

⎧⎨
⎩

et/α(1 − e−1/α)/2, t < 0(
2 − e(t−1)/α − e−t/α

)
/2, 0 ≤ t ≤ 1

e−t/α(e1/α − 1)/2, t > 1

Figure 1 illustrates f(t) for α ∈ {0, 0.1, 0.2, 0.4}.

Suppose the receiver partitions time into bins of duration ∆t, and counts the number of photon arrivals
in each bin. Let ∆j = [(j − 1)∆t, j∆t], the jth bin, and kj be the photon count in that bin. The symbol
likelihoods given the observed photon counts, {p({kj}|λi)}M

i=1, are given by

p({kj}|λi) =
∫

p({kj}, δ|λi)dδ

=
∫

p({kj}|λi, δ)fδ(δ)dδ

=
∫ ∏

j

exp
(
−

∫
∆j

λi(u − δ)du
)

(
∫
∆j

λi(u − δ)du)kj

kj !
fδ(δ)dδ (1)

In the following sections we consider two cases: when the bins are infinitesimal and when they are finite.
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Fig. 1.  f (t ) for α      {0.0, 0.1, 0.2, 0.4}.
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A. Infinitesimal Bins

Let ∆t approach 0 so that λi(t) is constant over a bin and the probability of more than one photon in
a bin is negligible. At the receiver we observe the photon arrival times {tj}, j = 1, · · · , N , from which we
obtain the symbol likelihoods

p({tj}, N |λi) =
∫

p({tj}, N |λi, δ)fδ(δ)dδ

= exp
(
−

∫
λ(t)dt

) ∫
fδ(δ)

N∏
j=1

λi(tj − δ)dδ

= K

∫
fδ(δ)

N∏
j=1

(
1 +

ns

nb
p(tj − δ − i + 1)

)
dδ (2)

where, throughout, K denotes any constant that is not a function of λi and, hence, may be factored
out of comparisons of conditional symbol likelihoods. We will refer to a receiver using Eq. (2) as an
energy-matched filter.

1. Detector Jitter. Detector jitter may be modeled as an independent offset to each photon arrival:
tj = sj + δj , where the δj are independent of one another as well as of the arrival times {sj}, and are
identically distributed. In the presence of detector jitter, we have

p
(
{tj}, N |λi

)
=

∫
· · ·

∫
p
(
{tj}, N |{δj}, λi

)
p
(
{δj}

)
d{δj}

= exp
(
−

∫
λ(t)dt

) ∫
· · ·

∫ N∏
j=1

λi(tj − δj)p(δj)d{δj}

= K
∏
j

(
1 +

ns

nb
f(tj − i + 1)

)
(3)

Analogous to the case of timing jitter, we refer to a receiver using Eq. (3) in the presence of detector jitter
as an energy-matched filter. In the presence of timing jitter, Eq. (3) may be used as an approximation to
Eq. (2). We refer to a receiver using Eq. (3) in timing jitter as an approximate matched filter.

B. Finite Bins

Practical considerations, e.g., the bandwidth required to transmit the arrival times of all pho-
ton arrivals, and limitations on locating distinct photon arrival times, will force the bins to have
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finite durations. In this section, we derive the symbol likelihoods for the case of finite bins and find some
useful approximations. Let m = j∆t − i, l = m + 1 − δ. Conditioned on δ and λi, kj is Poisson, with
mean

λi,j(δ) =
∫

∆j

λi(u − δ)du

=
∫ j∆t

(j−1)∆t

(
nb + nsp(u − i − δ + 1)

)
du

= nb∆t + ns

∫ l

l−∆t

p(t)dt

= nb∆t + ns

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, l ≤ 0

l, 0 < l ≤ min(∆t, 1)

1, min(∆t, 1) < l < ∆t

∆t, ∆t < l < max(∆t, 1)

1 − l + ∆t, max(∆t, 1) < l ≤ 1 + ∆t

0, 1 + ∆t < l

Solving for the marginals yields

p(kj |λi) =
1

kj !

∫ ∞

−∞
exp

(
− λi,j(δ)

)(
λi,j(δ)

)kj
fδ(δ)dδ

=
1

2αkj !

(
e(m+1)/α

∫ ∞

m+1

(
λi,j(m + 1 − l)

)kj exp
(
− λi,j(m + 1 − l) − l/α

)
dl

+e−(m+1)/α

∫ m+1

−∞

(
λi,j(m + 1 − l)

)kj exp
(
− λi,j(m + 1 − l) + l/α

)
dl

)

In a conventional receiver, ∆t = 1 and the distributions reduce to

p(kj = k|λi) = p0(k)p(k;m), j = i + m, i − m

where
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p(k;m) =

⎧⎪⎨
⎪⎩

e−1/α + e−1/αenb e−nb/αns

αns
h(k; b), m = 0

1 + e−|m|/α(e−1/α−e1/α)
2 + e−(|m|+1)/αenb

2αns

(
e−nb/αnsh(k; b) + e2/αenb/αnsh(k; a)

)
, |m| ≥ 1

p0(k) = e−nbnk
b/k!

h(k; a) =
1
nk

b

∫ ns+nb

nb

λkeaλdλ

a = (αns + 1)/(αns)

b = (αns − 1)/(αns)

The contributions of signal photons to the likelihoods decay exponentially as −|m|/α. For α sufficiently
small, the probability of a signal photon arrival two slots from the signal slot is negligible, i.e., p(kj |λi) ≈
p0(k) for |m| > 1. Making the approximation that the symbol likelihoods factor, i.e., that p({kj}|λi) ≈∏

j p(kj |λi), we have

p
(
{kj}|λi

)
≈ Kp(ki−1; 1)p(ki; 0)p(ki+1; 1) (4)

We refer to a receiver using Approximation (4) as a finite bin receiver.

1. Poisson Approximation. The mean photons in the jth bin, conditioned on λi (but not on δ)
are given by

λ′
i,j =

∫ j∆t

(j−1)∆t

λ′
i(t)dt

= nb∆t +
αns

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

em/α(e1/α − 1)(1 − e−∆t/α), m ≤ −1

2(m+1)
α + e−(m+1)/α + em/α(e−∆t/α − e(1−∆t)/α − 1), −1 < m ≤ min(0,∆t − 1)

2∆t
α + e−(m+1)/α(1 − e∆t/α) + em/α(e−∆t/α − 1), min(0,∆t − 1) < m < 0

2
α + e(m−∆t)/α(1 − e1/α) + e−m/α(e−1/α − 1), 0 < m < max(0,∆t − 1)

2(∆t−m)
α + e(m−∆t)/α + e−(m+1)/α(1 − e∆t/α − e1/α), max(0,∆t − 1) ≤ m < ∆t

e−m/α(1 − e−1/α)(e∆t/α − 1), ∆t ≤ m

In a conventional receiver, ∆t = 1, in which case the means reduce to

λ′
i,j = nb +

αns

2

⎧⎨
⎩

2
α + 2e−1/α − 2, m = 0

e−|m|/α
(
e1/α − 1

)
(1 − e−1/α), |m| ≥ 1

(5)
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We may approximate the photon count in the jth bin as Poisson, with mean λ′
i,j . In practice, this

would allow one to estimate just the mean λ′
i,j of the bin, rather than the distributions p(kj |λi). For

sufficiently small α, we may also take λ′
i,j ≈ nb for |m| > 1. Using Eq. (5) for the means, and assuming

the symbol likelihoods factor and that λ′
i,j ≈ nb for |m| > 1, yields the approximation

p
(
{kj}|λi

)
≈ K

(
1 +

ns

nb

(
1 + α(e−1/α − 1)

))ki
(

1 +
αns

2nb

(
1 − e−1/α

)2
)ki+1+ki−1

(6)

where K is a constant independent of i. By assuming the photon intensity is deterministic and the counts
Poisson, we obtain the energy matching receiver of [10]. We refer to a receiver using Approximation (6)
as a Poisson approximation receiver.

III. Capacity

Let X ∈ {1, · · · , M} be the random transmitted PPM symbol, N the number of observed photons, and
T the random vector of photon arrival times. The mutual information of the Poisson-PPM ITI channel
with equally likely transmitted PPM symbols is given by

I(X;T, N) = EX,T,N log2

Mp(T, N |X)∑M
i=1 p(T, N |X = i)

bits/symbol (7)

The equiprobable-input mutual information corresponds to the capacity of the channel with input symbols
restricted to being transmitted equiprobably. In the presence of ITI (and no ISI), symbols should not be
sent equiprobably if one wants to maximize the mutual information, since pulses in the first and last slots
are more likely to be received with good reliability. However, our interest is in applying a receiver derived
for the ITI channel to a practical channel with ISI. Moreover, in practice, system constraints may enforce
an equiprobable distribution. With a slight abuse of notation, we refer to Eq. (7) as the capacity of the
channel: CITI(α, ns, nb, M) = I(X;T, N) for the ITI channel or CISI(α, ns, nb) = I(X;T, N) for the ISI
channel, where the statistics of T reflect the channel model. In numerical results, Eq. (7) is estimated
by means of a sample mean. Since the ISI channel can be generated by summing the outputs of the ITI
channel, we have CITI(α, ns, nb, M) ≥ CISI(α, ns, nb).

IV. Error Rates, Losses

All simulation results in this section are reported for an M = 16 Poisson PPM channel with
nb = 0.2 and exponentially distributed jitter with α = 0.2. Figure 2 illustrates symbol-error rates
(SERs) obtained using the energy-matched filter given by Eq. (2), as well as four approximations: no
modeling or compensation for the ISI, using the approximate matched filter of Eq. (3), the finite-bin
receiver of Approximation (4), and the Poisson approximation of Approximation (6). In the case of no
compensation, the receiver computes symbol likelihoods assuming no ITI and Poisson statistics:

p
(
{kj}|λi

)
≈ K

(
1 +

n̂s

n̂b

)ki

(8)

where the means are estimated as
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Fig. 2.  Symbol-error rates, ITI, α = 0.2, M = 16, nb = 0.2.

2

n̂b =
1

M − 1

∑
j �=i

λ′
i,j

≈ nb +
αns

(M − 1)

(
1 − e−1/α

)2

n̂s = λ′
i,i − n̂b

≈ nb + ns

(
1 + α(e−1/α − 1)

)
− n̂b

corresponding to the perfect knowledge of the observed means in a signal and (average) non-signal slot.
The performance in the absence of ITI is also illustrated for comparison.

An asymptote occurs in the SER at ≈0.077, which can be seen as follows. Suppose a pulse is trans-
mitted in position i. In the limit of large signal power, if |δ| > 0.5 for i /∈ {1, M}, δ > 0.5 for i = 1, or
δ < −0.5 for i = M , a symbol error will be made. Since the SER is non-increasing in the signal power,
this yields a bound on the symbol-error rate,

SER ≥
(

M − 1
M

)
e−1/(2α)

which is approached as ns → ∞. For M = 16, α = 0.2, the symbol-error rate approaches the asymp-
tote 0.077, as illustrated in Fig. 2. This presumes α is not a function of ns, whereas in a practical system
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jitter would decrease with increasing signal power. Nonetheless, there would remain some mean residual
jitter even at high signal powers.

Symbol-error rates alone can be misleading, as we are typically interested in the performance of a
coded system. Figure 3 illustrates codeword-error rates for a coded system consisting of the serial con-
catenation of a convolutional code and accumulator, mapped through a bit interleaver (see [11] for a
detailed description of the code). One codeword corresponds to 3780 M = 16 PPM symbols. Measured
relative to the no-ITI case at a word-error rate (WER) of 10−4, there is a loss of 2.2 dB with no com-
pensation. The energy-matched filter recovers 1.2 dB of this loss. Using Eq. (3), Approximation (4), or
Approximation (6) costs, respectively, 0.2, 0.35, and 0.45 dB relative to a matched filter. Note that the
relative gains are not predicted by the SER curves. Relative gains in SER and WER may differ since
the SER depends only on the sign of the difference of the likelihoods, whereas the WER for a soft-input
decoder will depend on the sign and magnitude of the difference. Figure 3 also illustrates the capacity of
the ITI-free and the ITI channels. The loss in capacity when ITI is introduced is 0.91 dB, mirroring the
loss in system performance of 0.97 dB. This suggests using the capacity loss to quantify the degradation
due to ITI.

A. Detector Jitter

The word-error rate in the presence of detector jitter using either no compensation, Approximation (8),
or the matched filter, Eq. (3), is illustrated in Fig. 4, along with the corresponding data for timing jitter.
Since the photon offsets within a symbol are independent, the loss for the same jitter statistics are less
than for timing jitter. There is no asymptote in the log domain for the SER since the statistics approach
a deterministic waveform in the presence of Gaussian noise with large ns, for which the SER decreases.
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Fig. 3.  Word-error rates, ITI, α = 0.2, M = 16, nb = 0.2.
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B. The Effects of Inter-Symbol Interference

We have to now neglect ISI, modeling only ITI. This essentially assumes that each symbol is observed
over an independent, parallel channel. In this section, we examine the loss when using the receiver derived
for the ITI channel on a channel with ISI (ITI is always presumed present). Let {xi} denote the sequence
of transmitted pulse locations, where each xi ∈ {1, · · · , M}, and let the received intensity of the Poisson
process be given by

nb + ns

∑
i

p(t − xi + 1 − iM)

Maximum a posteriori (MAP) detection of PPM in the presence of ISI follows as an extension to our
prior results by incorporating memory into the decoding trellis; see, e.g., [4,12]. However, the number of
states goes as Mν , where ν is the memory, in symbols, of the ISI, which would be prohibitively complex
for a high-order PPM channel (this assumes a trellis defined over PPM symbols—one could alternately
use a trellis over slots, but we do not address that here).

We bound the performance of a code concatenated with MAP detection of PPM in ISI as follows.
Let MAP-ISI and MAP-ITI refer to the MAP receivers for PPM in ISI and ITI, respectively (the MAP-
ITI receiver is the energy-matched filter described earlier). We assume that, since CISI ≤ CITI, the
performance of a coded system concatenated with MAP-ISI on the ISI channel will be worse than coded
performance with MAP-ITI on the ITI channel. Furthermore, it is clear that MAP-ISI on the ISI channel
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will perform better than MAP-ITI on the ISI channel. This yields upper and lower bounds on the
performance of MAP-ISI on the ISI channel. Figure 5 overlays several of the error rates illustrated in
Fig. 3 with the performance of the same receivers in ISI. The losses incurred for this case are bounded
by ≈0.1 dB for the approximate matched filter; 0.2 dB for the energy-matched filter, finite bins, or the
Poisson approximation; and 0.05 dB for no compensation. Hence, ignoring intersymbol interference in this
case costs no more than 0.2 dB. This loss will decrease with increasing M and increase with increasing α.
Modulations that insert an inter-symbol guard time between symbols, e.g., for slot synchronization, would
further reduce the gap between ITI and ISI performance.

C. Loss as a Function of RMS Jitter

Simulation results illustrated in Figs. 3 and 4 demonstrate that the degradation in performance tracks
well with the loss in capacity. Figure 6 illustrates the loss in capacity as a function of the root-mean-square
(RMS) of the jitter, α

√
2, for timing and detector jitter. The loss is defined as

lossdB = 10 log10

ns

n′
s

(9)

where ns, n
′
s are the signal powers satisfying CITI(0, ns, nb, M) = CITI(α, n′

s, nb, M) = M/(2 log2 M), i.e.,
the capacity corresponding to a rate 1/2 error-correction-code. Note that Eq. (9) gives a lower bound on
the loss. There is also a small additional loss when ISI is introduced, and there would be larger losses if
approximations to the likelihoods were used.
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Fig. 5.  Word-error rates, ITI (solid) and ISI (dashed), α = 0.2, M = 16, nb = 0.2.  MAP performance 
in ISI is bounded by the solid and dashed lines for the energy-matched filter.
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We observe a threshold in the tolerable RMS timing jitter for a given code rate beyond which no
increase in the signal power will allow us to close the link. This appears for a similar reason as that for
the SER asymptote. Suppose that the channel mutual information is non-decreasing in ns. At sufficiently
large ns, the only uncertainty in the pulse position comes from random jitter. In the limit of large ns, the
channel is equivalent to the transmission of an integer X ∈ {1, 2, · · · , M} in the presence of jitter, where
the received sample is Y = X + δ. The mutual information of this channel, I(X;Y |α), yields the largest
supportable data rate as a function of α (for any signal power ns). We find that I(X;Y |α = 0.89) = 0.5.
Hence, for α ≥ 0.89, no additional signal power will allow us to close the link with a rate 1/2 code and
lossdB → ∞, an asymptote illustrated in Fig. 6. The location of the asymptote is a function of α and M
but has no dependence on nb. We observe no such asymptote for detector jitter.

V. Conclusions

In the presence of ITI introduced by random jitter, utilizing the exact symbol likelihoods can lead to
significant gains over a conventional receiver that assumes no ITI is present. The exact symbol likelihoods
are, however, complex. A sequence of approximations to the likelihoods was introduced that trade off
complexity and performance. The maximum-likelihood receiver for the ITI channel may be used on the
ISI channel with small losses, while saving significantly on complexity.
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