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Optimal Codes for the Burst Erasure Channel

Jon Hamkins∗

We make the simple observation that the erasure burst correction capability of any (n, k)

code can be extended to arbitrary lengths above n with the use of a block interleaver, and

discuss nuances of this property when channel symbols are over GF(p) and the code is

defined over GF(pJ ), J > 1. The results imply that maximum distance separable codes

(e.g., Reed-Solomon) offer optimal burst erasure protection with linear complexity, and

that the optimality does not depend on the length of the code.

I. Introduction

This article makes the fairly straightforward observation that block interleaving a code to

depth I results in an approximate I-fold increase in burst erasure correction capability,

which implies that short, low-complexity maximum distance separable (MDS) codes

together with long interleavers maximize the length of resolvable erasure bursts among

signaling schemes of the same rate and total transmission duration.

This observation is simple enough that perhaps this article is unnecessary. Indeed, this

basic property of block interleaving on bursty channels has been made before, e.g., on the

related burst error channel [9] (the present article addresses the burst erasure channel).

However, the impact of the result has not been fully appreciated in the design of practical

systems, and the literature contains several imprecise or incorrect statements and is

continuing down a path of much more complicated designs that do not match the

performance of simpler systems.

This article aims to present practical linear-complexity designs for the burst erasure

channel, with the goal of maximizing the resolvable erasure burst length of a transmission.

Along the way, we provide an explicit accounting of the relationship between the length of

a channel symbol erasure burst and a code symbol erasure burst, both with and without

an interleaver. This leads to a theorem on the power of block interleavers to increase the

resolvable length of erasure bursts.

∗Communications Architectures and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space Administration.

1



II. Channel model and previous work

An erasure channel is one in which each transmitted symbol is either received correctly or

is corrupted so badly as to be considered erased. When the erasures are clustered together,

as shown in Fig. 1, we refer to the channel as a burst erasure channel.

In typical space communications systems currently deployed, incorrectly decoded frames of

data are flagged, either by a forward error correction (FEC) decoder or through a

subsequent cyclic redundancy check (CRC) code [2, 4]. Such damaged frames are removed

from the data stream before being handed up to higher layers, and the result is a stream of

correctly decoded data containing bursts of erasures. Note that in this application, there

are no other impairments other than the bursts of erasures.

A burst erasure channel model is also appropriate for several other communication

scenarios: in Ka-band space-Earth links, which experience weather-induced outages [14]; in

optical and magnetic storage (CD, DVD, hard disk drive, etc.), in which thermal asperity,

physical defects from scratches, or other impairments can erase a contiguous block of

symbols [15, 19]; in free space optical links operating in a low background light regime,

where detecting a background photon is a rare event and the primary channel impairment

is atmospheric events that prevent the detection of any signal photons for a duration of

time [6]; during operational outages at the receiver due to loss of carrier lock or frame

lock, or on-the-fly changes of code rate or modulation [4]; and in channels dynamically

impaired by large interferers [16].

The need for efficient solutions to the burst erasure problem for the space application has

led the Consultative Committee for Space Data Systems (CCSDS) to study it, primarily

with emphasis on the design of long, iteratively decoded LDPC codes or related structures,

including irregular repeat-accumulate (IRA) codes, generalized IRA codes, Tornado codes,

and protograph-based codes [4, 5].

The computational complexity of decoding (n, k) Reed-Solomon codes is O(n log2 n) [7],

and popular practical algorithms decode in n − k clock cycles and use less than 6(n − k)

multipliers, for an area-time complexity of O((n − k)2) [13]. Because of this quadratic

complexity, Reed-Solomon (RS) codes have been dismissed as a viable solution, and “the

impossibility of exploiting long codeword lengths represents a limit to the performance

achievable” [4]. In this article, our observations will show that a simple block interleaver

overcomes these complexity and length issues, making RS codes not only viable but an

optimal solution for the noiseless burst erasure channel application.

Figure 1. Burst erasure channel.
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Yang and Ryan [19] noted the power of block interleaved RS codes to resolve long bursts

of erasures (although the result was slightly misstated, as we will discuss later), and

compared several codes of similar lengths and rates on the basis of both coding gain and

resolvable erasure burst length. The channel model in that case was burst erasure plus

additive white Gaussian noise (AWGN), and the comparison included RS codes, an LDPC

code of Mackay , Euclidean geometry LDPC codes, extended IRA codes, and array codes

(see [19] for references). The authors concluded that “LDPC codes are very effective

against noise bursts and, in fact, are superior to RS codes in the regime simulated.” This

conclusion is appropriate for the burst erasure plus AWGN channel considered, where a

hybrid metric of both good erasure burst protection and coding gain are desired. A similar

conclusion was reached when comparing nonbinary LDPC codes and RS codes [15].

However, the fact is that neither LDPC codes nor RS codes are best at both metrics –

LDPC codes provide better coding gain, and as we shall see, interleaved RS codes provide

unbeatable burst erasure protection.

The length of burst erasure protection that an arbitrary linear block code has is bounded

by a certain value, called the zero-covering span, of its parity-check matrix [17]. This has

led to comparisons of quasi-cyclic LDPC codes to earlier designs [19], and later, to a

constructive technique for LDPC codes that approach maximum efficiency for

asymptotically long codeword lengths [8]. In another work [12], it was shown that codes

designed for the burst erasure channel achieve essentially the same performance on the

Rayleigh fading channel, which means that to design good codes on the Rayleigh channel,

the simpler process of designing codes for the burst erasure channel may be employed.

An LDPC code designed for the erasure channel can be block interleaved to achieve

excellent performance on the burst erasure channel [5]. Alternatively, without lengthening

the code, one may permute the variable nodes of an LDPC code in order to maximize the

maximum resolvable erasure burst length, either with a structured algorithm [10] or by

simulated annealing [16].

III. Preliminaries

This article assumes the channel transmits symbols from GF(p) and that J uses of the

channel are used to transmit a symbol from GF(pJ). A linear (n, k) code over GF(pJ)

takes each k information symbols in GF(pJ) and encodes them into a codeword of n

symbols in GF(pJ), n ≥ k. We say a code symbol in GF(pJ ) is fully erased if all J of its

channel symbols are erased, and partially erased if at least one but fewer than J of its

channel symbols are erased. In either case, such a code symbol is typically considered to be

erased by a conventional decoder operating over GF(pJ ). For example, if p = 2 and J > 1,

then a single binary channel symbol erasure would lead to the erasure of a J-bit code

symbol. Following, e.g., [19, 10, 12], the maximum resolvable erasure burst length, Lch
max, is

defined as the maximum number of consecutive erased channel symbols that the code is

guaranteed to correct regardless of where the burst begins. In the present article, we insert

the superscript ch to indicate that the length is measured in channel symbol erasures. We
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...
J(n − k − 1) + 1 bits

J(n − k) bits

J(n − k) bits

One codeword ofnJ bits

J bits

n − k code symbols

This burst erasesn − k code symbols (q = 0):

This burst erasesn − k + 1 code symbols (q = 1):

This burst erasesn − k code symbols:

One code symbol

Figure 2. A channel symbol erasure burst of length J(n − k − 1) + 1 erases n − k code symbols, regardless

of its alignment. A burst of length J(n − k) may erase n − k or n − k + 1 code symbols, depending on its

alignment.

use Lc
max to denote the maximum resolvable erasure burst length in code symbols.

The Singleton bound states that the minimum distance of any linear (n, k) code satisfies

d ≤ n− k + 1 [3], which is a consequence of the facts that every linear code is equivalent to

a systematic linear code and that changing one systematic code symbol can change at

most n − k parity symbols. Any code that satisfies the Singleton bound with equality is

maximum distance separable (MDS). It is well known that Reed-Solomon (RS) codes, for

example, are MDS.

For an MDS code, the maximum resolvable code symbol erasure burst length is

Lc
max = n − k, since an MDS code satisfies the Singleton bound with equality,

d = n− k + 1. This length is the fraction (n− k)/n = 1− r of the symbols in the codeword

where r = k/n is the code rate, and no linear (n, k) code has a larger Lc
max.

It has been noted that an (n, k) RS code over GF(2J) has maximum resolvable channel

symbol erasure burst length Lch
max = JLc

max = J(n − k) (e.g., [19]), but this assessment

glosses over the impact of misalignment between channel symbols and code symbols. As

illustrated in Fig. 2, some bursts of length J(n − k) result in n − k + 1 code symbol

erasures, which are uncorrectable in general. A moment’s reflection reveals that any MDS

code over GF(pJ ) has maximum resolvable erasure-burst length

Lch

max = J(n − k − 1) + 1, (1)

and when a burst is aligned to the J-bit code symbols the code can correct up to length

J(n − k).

More generally, for an arbitrary code over GF(pJ ), not necessarily MDS, we may replace

n − k above with the maximum resolvable code symbol erasure burst length Lc
max, and

conclude that

Lch

max = J(Lc

max − 1) + 1. (2)

Note that for J > 1 we have Lch
max = 1 mod J , a fact that we will use later in the article.
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When J = 1, (2) simplifies to Lch
max = Lc

max, as expected.

This article considers the block-interleaved coded system shown in Fig. 3. For each labeled

point in Figure 3, the format of the signal at that point is shown in Figure 4. For ease of

exposition, Figure 4 refers to “bits” (i.e., channel symbols from GF(2)) and code symbols

from GF(2J ), although the description applies equally to a channel transmitting symbols

from GF(p) and a code over GF(pJ ) by replacing “bit” with “p-ary symbol.” When an

(n, k) code over GF (2J) is used, messages at the input to the encoder are grouped into

blocks of kJ bits, as shown in Fig. 4(a), and then encoded to form codewords of nJ bits as

shown in Fig. 4(b). A block interleaver [1] can be viewed as a function that takes

codewords written in rows and reads them out by column, one code symbol (J bits) at a

time. The transmission order is shown in Fig. 4(c), with each small colored section on the

right-hand side representing J bits. The entire interleaved block comprises I codewords of

n symbols, each of J bits, for a total of InJ bits. After going through the channel, a

number of erasure bursts occur, one of which is shown in Fig. 4(d). After de-interleaving, a

single burst has the form shown in Fig. 4(e). If the burst is not too long, then the erasures

are corrected and the original message is recovered, as shown in Fig. 4(f).

IV. Burst Erasures on Block Interleaved Codes

A burst of binary channel symbol erasures results in a corresponding burst of code symbol

erasures in GF(pJ ). We now discuss the relationship between the lengths of these bursts,

and the effect of interleaving. Throughout the section, we assume an (n, k) code over

GF(pJ ) is block interleaved to depth I. To keep the accounting straight, we let Bch be the

length of a burst of channel symbol erasures, let B be the length of the corresponding code

symbol burst, and let B(i) denote the number of code symbols erased in the ith row (the

ith codeword) of the block interleaver.

The detailed counting done in this section can be seen graphically in Fig. 5. Each of the I

codewords in the interleaver is labeled 1, 2, . . . , I, and contains n symbols of J bits each.

As seen in the burst on the left, a channel symbol burst of length IJLc
max − J + 1 gives rise

to exactly Lc
max code symbol erasures in each codeword, and this count is unaffected by the

relative alignment of the channel symbol erasure burst to the code symbols. If an erasure

burst is aligned to the code symbols, as it is for the burst on the right, then a channel

Figure 3. Block interleaved RS coding on burst erasure channel. Letters refer to the formats shown in Fig. 4.

5



(a) Information messages.

(b) Codewords.

(c) Codewords in rows, and corresponding interleaver output.

(d) An erasure burst.

(e) An erasure burst after de-interleaving. (f) Decoder output.

Figure 4. The data format in positions (a) - (f) of Figure 3, when p = 2.

6



... ......

...

...

...

...

...
I − 1

I

Lc
max

Lc
max

will erase Lc
max code

symbols from every codeword

n

1

2

3

J

Minimum burst length that Maximum burst length for which
no more than Lc

max code symbols
in each codeword are erased

Figure 5. A graphical view of burst erasures.

symbol burst of length IJLc
max gives rise to Lc

max code symbol erasures in each codeword.

A. Length of de-interleaved code symbol erasure bursts

For each i, 1 ≤ i ≤ I, we have

B(i) ∈

{⌊

B

I

⌋

,

⌈

B

I

⌉}

. (3)

That is, a code interleaved to depth I that experiences a burst of B code symbol erasures

results in each codeword experiencing a code symbol erasure burst of the same length,

within one. This can be proved by induction by noting that when B < I, and regardless of

which row the erasure begins, each codeword in the interleaved block experiences either 0

or 1 code symbol erasure, i.e., B(i) ∈ {0, 1}, and each additional length of exactly I code

symbol erasures results in each codeword seeing one additional erasure. This

equal-erasures effect is illustrated in Figure 4(e), where B(1) = B(I) = ⌊B/I⌋ and

B(2) = · · · = B(I − 1) = ⌈B/I⌉.

B. Relationship to channel symbol erasure bursts

We now relate the pJ -ary code symbol erasures in (3) to the number of p-ary channel

symbol erasures. When B ≥ 2, all J channel symbols of the middle B − 2 code symbols

are erased and at least 1 channel symbol, and up to all J channel symbols, of each of the

two code symbols on the ends are erased, and thus it follows that

(B − 2)J + 2 ≤ Bch ≤ BJ, (4)

which can also be seen to apply when B < 2. Rearranging (4), we have

Bch

J
≤ B ≤

Bch

J
+ 2 −

2

J
. (5)

Since Bch/J < ⌊Bch/J⌋ + 1, we have

Bch

J
≤ B <

⌊

Bch

J

⌋

+ 3 −
2

J
. (6)
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Table 1. Allowable values of s.

Bch mod J Permissible s values

0 0, 1

1 1

2 to J − 1 1,2

The difference of the last two terms of (6) is at least one and strictly less than three, and

since B is an integer, we have only the three possibilities

B =

⌊

Bch

J

⌋

+ s, s ∈ {0, 1, 2}. (7)

Note that for fixed Bch and J , some values of s may be impossible, depending on the

relative alignment of the binary channel symbols to the code symbols. For example, when

J | Bch, we see from (5) that s 6= 2. The possible values of s, as a function of Bch mod J ,

are shown in Table 1. This allows the three possibilities to be reduced to two, as

B =

⌊

Bch

J

⌋

+ I{J∤Bch} + qI{Bch 6=1 mod J}, q = {0, 1} (8)

where I{c} is the indicator function, equal to 0 if c is false, and 1 if c is true. In (8), q may

be 0 or 1 for any values of Bch and J ≥ 2, and reflects an additional code symbol erasure

that may result from the misalignment of the binary channel symbol burst erasure to the

code symbols. The exception to this independence of q is that when J = 1, we can see

from (5) that q = 0, so that B = Bch. This alignment-dependency is illustrated in

Figure 2. Plugging (8) into (3), we have for each i, 1 ≤ i ≤ I,

B(i) ∈

{⌊

⌊

Bch

J

⌋

+ I{J∤Bch} + qI{Bch 6=1 mod J}

I

⌋

,

⌈

⌊

Bch

J

⌋

+ I{J∤Bch} + qI{Bch 6=1 mod J}

I

⌉}

.

(9)

In particular, the scenario in which all code symbols involved in the erasure burst are fully

erased corresponds to J | Bch and q = 0, and (9) reduces to

B(i) ∈

{⌊

Bch

JI

⌋

,

⌈

Bch

JI

⌉}

, (10)

and if in addition JI divides Bch, we have simply

B(i) =
Bch

JI
(11)

for all i.

C. Implications for interleaved codes

We are now ready to state the main result of the article, the effect of interleaving on the

maximum resolvable erasure burst length.
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Theorem 1. When an (n, k) code over GF(pJ) with maximum resolvable channel symbol

erasure burst length Lch
max is block interleaved to depth I, the overall transmission has

maximum resolvable channel symbol erasure burst length Lch
max(I) = Lch

maxI + (I − 1)(J − 1)

channel symbols, and some channel symbol erasure bursts as long as Lch
maxI + I(J − 1) are

correctable.

Proof. First consider J = 1. We must show that all channel symbol erasure bursts of

length Bch ≤ Lch
maxI are correctable. By (3), we have

B(i) ≤

⌈

B

I

⌉

=

⌈

Bch

I

⌉

≤ Lch

max = Lc

max

By definition, the code can correct the Lc
max code symbol erasures in each codeword.

In the remainder, we assume J > 1. Let Bch = Lch
maxI + I(J − 1). Using (2), we have

Bch = (JLc

max − (J − 1))I + I(J − 1) = Lc

maxIJ.

This is divisible by IJ and if the erasure burst alignment corresponds to q = 0 in (9) as

well, then (11) holds and we have B(i) = Lc
max for all i. By definition, the code can correct

the Lc
max code symbol erasures in each codeword.

To prove the guaranteed-correctability part of the theorem, we consider the two largest

values of Bch first, then prove it for smaller values. If Bch = Lch
maxI + (I − 1)(J − 1), then

by (2) we have Bch = Lc
maxIJ − J + 1. Since Bch = 1 mod J , the indicator functions in

(8) are 1 and 0, respectively. If Bch = Lc
maxIJ − J , then J | Bch and the indicator

functions in (8) are 0 and 1, respectively. In either case, at most one indicator function

contributes to B, regardless of q, and using (9) we have, for all i,

B(i) ≤









⌊

L
c

max
IJ−J+1
J

⌋

+ 1

I









=

⌈

Lc
maxI − 1 +

⌊

1
J

⌋

+ 1

I

⌉

= Lc

max.

If Bch ≤ Lc
maxIJ − J − 1, then assuming both indicator functions in (8) are 1 yields the

bound

B(i) ≤









⌊

L
c

max
IJ−J−1)

J

⌋

+ 2

I









=

⌈

Lc
maxI − 1 +

⌊

− 1
J

⌋

+ 2

I

⌉

= Lc

max.

Thus, for any Bch ≤ Lch
maxIJ − J + 1, every codeword has at most Lc

max code symbol

erasures, and such erasures are always correctable.

When Theorem 1 is applied to MDS codes, we have the following.

Corollary 1. An (n, k) MDS code over GF(pJ ) with block interleaving to depth I has

maximum resolvable channel symbol erasure burst length Lch
max = (n − k)IJ − J + 1

channel symbols, and can correct some erasure bursts as long as (n − k)IJ bits.

Proof. From (1), an MDS code has Lch
max = J(n − k) − J + 1. Plugging this into Theorem

1 gives the result.
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Corollary 1 implies that a channel symbol erasure burst with length between

(n − k)IJ − J + 2 and (n − k)IJ may or may not be correctable by an MDS code,

depending on it’s alignment with the code symbols. We are able to strengthen Corollary 1,

using an impressive theorem due to Xu:

Theorem 2. [18] An arbitrary (n, k) GF(pJ )-linear MDS code can be modified so that in

GF(p) it can correct all burst erasures of length up to J(n − k), while it is still MDS in

GF(pJ ).

This result is achieved by demonstrating that with careful ordering of the bit

representations of code symbols in GF(pJ ), it follows that every consecutive J(n − k)

channel symbols in the equivalent (nJ, kJ) code over GF(p) forms a basis for the code. Xu

showed that when this modification is performed for RS codes, the result is a generalized

RS code, in which each of the n coordinates of a RS code are multiplied by a (possibly

non-distinct) nonzero element of GF(pJ). Note that achieving the full burst erasure

correcting capability requires a decoder that operates in GF(p), not the higher field

GF(pJ ).

Using Theorem 2, we have the following corollary to Theorem 1:

Corollary 2. An arbitrary (n, k) GF(pJ)-linear MDS code can be modified so that when

block interleaved to depth I its maximum resolvable channel symbol erasure burst length is

Lmax(I) = (n − k)IJ bits.

Proof. When Bch = (n − k)IJ , exactly (n − k)J channel symbols are erased in each

codeword.

The Singleton bound implies that no (nIJ, kIJ) code over GF(p) has Lch
max > (n − k)IJ .

This means that Corollary 2 shows that a block interleaved MDS code, suitably modified

using Xu’s technique, provides optimal burst erasure protection among all codes of the

same rate and total transmission length.

V. Code Comparisons

A. Efficiency

The burst erasure efficiency η [19] of an (n, k) code as the ratio of the maximum resolvable

burst erasure length divided by n− k, the maximum indicated by the Singleton bound. An

(n, k) MDS code over GF(2J ) interleaved to depth I, then, is an (nIJ, kIJ) code over

GF(2) with efficiency

η =
(n − k)IJ − J + 1

(n − k)IJ
= 1 −

J − 1

(n − k)IJ
= 1 −

J − 1

nIJ(1 − r)
. (12)

The form of (12) suggests defining the inefficiency of a code by µ = 1 − η, which allows

comparisons of codes on a log scale. An inefficiency µ = 0 would correspond to an

optimum, MDS code.
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Figure 6. Comparison of inefficiency of various LDPC and interleaved RS codes.

For fixed n and k, the efficiency can be made as close to one as desired simply by using an

MDS code and increasing the interleaver length sufficiently. Furthermore, if J is an

increasing function of n, then codes are more efficient with smaller code lengths. For

example, among RS codes with a fixed rate r and fixed total transmission length nIJ ,

larger values of n in (12) reduces the efficiency, since J = log2(n + 1) and the denominator

of (12) is fixed. This result is consistent with the fact that larger field sizes allow a single

channel bit erasure (at the tail of a burst) to affect a larger code symbol.

In Figure 6, we compare the inefficiency of several RS codes with LDPC codes [19]

designed for the burst erasure channel. The inefficiency of a block interleaved (3,1) RS

code over GF(4)— the shortest nontrivial RS code— indicates an inefficiency about two

orders of magnitude better than those of rate 1/3 LDPC codes in [16], which were modified

for improved performance on the burst erasure channel. The inefficiencies of a block

interleaved (7,5) RS code over GF(8) and a block interleaved (15,13) RS code over GF(15)

indicate that increasing the code length does not improve efficiency. Lowering the rate

does improve efficiency, as seen with a block interleaved (127,43) RS code over GF(128).

We see that very short RS codes are less than 1% inefficient at many lengths of practical

interest.

B. Coding Gain on Noisy Channel

This article only addresses the burst erasure channel, when no other channel impairments

are present. This is directly applicable to scenarios of interest to NASA, where an inner

FEC code corrects errors and leaves erasures for codewords that could not be corrected.

When such a code is not present, an erasures plus noise channel is more appropriate, and

11



in those cases, block interleaved RS codes are substantially outperformed by LDPC or

other codes [19, 5, 10, 16].

C. Capacity bounds

A binary-input memoryless (not bursty) erasure channel with erasure rate ǫ has capacity

[3]

C = 1 − ǫ bits per channel use, (13)

where ǫ is the probability of erasure. Define a genie-aided encoder as one with perfect a

priori knowledge of the positions of erasures. Codes designed for such an (impossible)

encoder could not improve upon a non-genie aided encoder utilizing a

capacity-approaching code, because according to (13) erasures cause a loss in capacity

exactly equal to the fraction of symbols erased. That is, side information about the

positions of erasures does not increase capacity. Since the position of the erasures does not

affect capacity, it follows that the capacity of the burst erasure channel is the same as the

memoryless erasure channel, if the overall probability of erasures is the same.

If a probability of bit error Pb is acceptable, then by the converse to the channel coding

theorem for discrete memoryless channels, rates up to

r(Pb) =
C

1 −H(Pb)
bits / channel use

are achievable, where H(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function.

Equivalently, when coding at rate r > C, we have this bound on the probability of bit

error:

Pb ≥

{

H−1
(

1 − 1−ǫ

r

)

r > 1 − ǫ

0 r ≤ 1 − ǫ
(14)

The weak converse channel coding theorem also bounds the block decoding error (the

codeword error rate) of a binary-input erasure channel as [3]

Pw ≥

{

1
2

(

r − C − 1
n

)

r > 1 − ǫ

0 r ≤ 1 − ǫ
(15)

where n is the length of the codewords. This bounds Pw away from zero for sufficiently

large n, and hence for all values of n, because if Pw = 0 for small n we could use a

repetition code to achieve Pw = 0 for large n. This results in the simple bound

Pw ≥ 1
2 (r − C), which corresponds to guessing, with 50% chance of success, at all bits

transmitted at a rate above capacity.

D. Memoryless Erasure Channel

A convenient feature of burst erasures is that they fully erase code symbols over GF(pJ ),

except possibly at the tails of the burst. This allows the code symbol erasure rate to be

approximately equal to the channel symbol erasure rate.
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Figure 7. RS codes of rate 8/9, compared to capacity, on a memoryless erasure channel.

When erasures occur independently the code symbol erasure rate may be as much as J

times the channel symbol erasure rate. That worst case corresponds to a single channel

symbol erasure within each code symbol comprising J channel symbols. This worst case is

the typical behavior when ǫ ≪ 1/J , and it severely weakens the ability of a nonbinary

code, even if MDS, to correct erasures. Hence, we expect that MDS codes over GF(pJ )

would not be appropriate for the memoryless erasure channel. This remains true for long

codeword lengths, where the value of J may be even higher.

More explicitly, the erasure rate of code symbols in GF(pJ ) on a GF(p) erasure channel

with erasure probability ǫ is given by

Ps = 1 − (1 − ǫ)J , (16)

and the codeword error rate of an MDS code over GF(pJ) is

Pw =

n
∑

i=n−k+1

(

n

i

)

P i

s(1 − Ps)
n−i (17)

=

n
∑

i=n−k+1

(

n

i

)

(

1 − (1 − ǫ)J
)i

(1 − ǫ)J(n−i) (18)

The performance of several RS codes of approximately rate 8/9 is shown in Figure 7, along

with the capacity of the erasure channel restricted to rate 8/9. As can be seen, RS codes

can handle less than 10% of the erasure rate that is possible with a capacity-approaching

code. For this channel, LDPC codes discussed elsewhere [19, 5, 10, 16] would be a better

alternative.
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Figure 8. Channel model.

E. Complexity

It has been noted that while the burst erasure efficiency of an (n, k) Reed-Solomon (RS)

code is one, its encoding complexity grows quadratically in n, which places a “severe

limitation to the codeword length n of practical use” [11]. This sentiment is echoed in [4].

What has not been appreciated, however, is that low, fixed values of (n, k) may be used

together with a long interleaver. This results in a near optimal efficiency, as discussed

above, and an encoding and decoding complexity that grows linearly with the transmission

length nIJ , since with n fixed each codeword will takes a constant complexity to encode.

For example, among rate 6/7 codes with total transmission length approximately 5000, an

(7,6) RS code with a block interleaver of depth 238 results in a total transmission length of

4998 binary channel symbols and an efficiency of η = 0.997.

VI. Design Example

We now revisit a design example proposed by Calzolari [4], motivated by an application

involving a multiple Mbps deep space link in which in which 8 kbit packets are transferred

on a channel that produces erasure bursts with lengths between 10 and 15 packets. The

packet erasures result from undecodable frames of FEC encoded data, such as would

happen with a weather outage or with loss of synchronization by the receiver.

The channel is modeled as a Gilbert-like channel with one non-erasure (good) state and 15

erasure (bad) states. For each frame, the probability of remaining in the good state is

1 − b, and the probability of moving to the first bad state is b. Once in the first bad state,

a return to the good state occurs in B frames, with B uniformly distributed between 10

and 15. This is modeled by the Markov chain shown in Figure 8. Of interest are codes of

rate at least 9/10 and total transmission length of 2 to 4 million. The performance of

LDPC codes designed for this application [4] are shown in Figure 9.

To compare this to a RS code of the same rate and overall transmission length, we begin

with a (16,15) RS code over GF(16) (i.e., J = 4) and shorten it to a (10,9) code. This is

then block interleaved to depth 50,000 to achieve a transmission length of two million, and

to depth 100,000 to achieve a transmission length of four million. Aligning the packets to

the 4-bit code symbols is easy to do, so we do not need to consider that misalignment here.
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Figure 9. Comparison of interleaved (10,9) RS code to LDPC codes of length 2 million and 4 million.

Thus, the shorter code can correct a channel erasure burst IJ(n − k) = 200, 000 bits long,

and the longer code can correct a burst 400, 000 bits long. Erasures using the channel

model above were simulated, and result in the RS performance shown in Figure 9. It can

be seen that block interleaving a simple 40-bit RS code yields better performance than

long LDPC codes designed for the application, by more than an order of magnitude in b.

Also included in Figure 9 is the channel capacity of rate 9/10 codes, with no constraint on

the length of the code. Since the fraction of time in the non-erased state is approximately

12.5b, we set ǫ = 12.5b in (14) to determine the capacity.

VII. Conclusions

Block interleaved RS codes are optimal for the burst erasure channel. This optimality does

not depend on the length of the RS code, which suggests that short RS codes with long

interleavers are a good solution for this problem, as they outperform long LDPC codes

designed for this channel and are simpler to decode. When other impairments are on the

channel, the low coding gain of RS codes makes them a poor choice compared to other

codes.
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