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GSSR Waveforms for Lunar Observations

Kevin J. Quirk* and Meera Srinivasan*

ABsTRACT. — To increase the resolution of the Goldstone Solar System Radar (GSSR) for lunar
observations, a new ranging waveform must be developed. Several candidate waveforms are
identified and analytically characterized, including the existing GSSR biphase-coded (BPC)
waveform; two commonly used waveforms, linear frequency modulation (LFM) and Costas
frequency-hopped (Costas-FH); and a novel minimum-shift keying (MSK) type waveform
developed during the course of this study. A set of requirements taking into consideration
the spectrum allocation of the GSSR, the limitations of the transmit power amplifier, and
the science objectives for a lunar observation were developed and used as selection criteria
for the candidate waveforms. Windowed LFM, windowed Costas-FH, and MSK were identi-
fied as suitable for development consideration as a new GSSR ranging waveform for lunar
observations.

I. Introduction

The Goldstone Solar System Radar (GSSR) is an instrument within the Deep Space Network
(DSN) that is used by scientists to investigate astronomical bodies within the solar system;
this includes planets, moons, asteroids, and debris orbiting Earth. Measurements of a body’s
ephemerides, dynamics, topography, and composition are enabled through the use of radio
detection and ranging (radar). Radar works by transmitting a known signal toward an object
and measuring the delay, amplitude, Doppler shift, and polarization of any returned echoes.
The GSSR is one of two solar system radars on the planet, and it has a number of unique
capabilities, including a fully steerable 70-m antenna and real-time signal processing, which
enable observations that would either otherwise not be possible or for which the science
return would be limited. The GSSR, with its unique capabilities, is crucial to many inves-
tigators, both scientific and programmatic. Currently, the primary uses of the instrument
are for asteroid investigation for NASA’s Science Mission Directorate (SMD), landing site
selection for the Human Exploration and Operations Mission Directorate (HEO), and orbital
debris investigation for the Office of Safety and Mission Assurance (OSMA).
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Currently the GSSR supports two radar waveforms for transmission and processing. The
first, continuous waveform (CW), consists of an unmodulated sinusoid that may be hopped
between two frequencies to aid in noise reduction. Measurements of amplitude, Doppler
shift, and polarization of the returned echoes are processed for the observer. The second
waveform is a biphase-coded (BPC) waveform; a pseudonoise (PN) sequence is used to rotate
the phase of a sinusoid between two phase offsets 180 deg apart. Measurements of ampli-
tude, Doppler, polarization, and range of the returned echoes are processed for the observer.
The BPC waveform, due to its discontinuous phase and large spectral sidelobes, is limited
to a main lobe of 16 MHz, providing a maximum range resolution of 18.75 m. Support-

ing digital elevation maps (DEMs) of the lunar surface with resolutions finer than this will
require the introduction of a new radar waveform to the GSSR.

To select the new radar waveform, several candidate waveforms are identified and analyti-
cally characterized. To determine their compatibility with GSSR lunar observations, a set

of requirements taking into consideration the spectrum allocation of the GSSR, the limita-
tions of the transmit power amplifier, and the science objectives for a lunar observation are
formed. Upon applying these requirements to the waveforms, several are identified for de-
velopment; in the development stage, further characterization of the waveform, including
degradation due to implementation impairments, will be undertaken and experimentation
performed prior to fielding it as an operational waveform in the GSSR.

We will begin in Section II with a discussion of properties the candidate waveforms should
possess and an identification of several candidate waveforms. In Sections III through VI, the
candidate waveforms are analyzed. This is followed by Section VII, where we determine the
set of requirements that the candidate waveforms must satisfy for GSSR lunar observations.
In Section VIII, the set of requirements is used to compare the candidate waveforms, identi-
fying those suitable for development consideration, followed by the conclusion, Section IX.

Il. Waveform Properties

To determine candidate waveforms, note that the distortion from the transmit waveform
of the returned echoes provides the measurements of delay, Doppler shift, amplitude, and
polarization of each echo. The ability to detect these echoes in noise and distinguish repli-
cas that have undergone distortion in both amplitude and time is paramount. The returned
echoes will be received in the presence of broadband thermal noise and will have unknown
arrival times and Doppler shifts to their spectral components; the time bandwidth product
of the waveform is assumed to be a fraction of the speed of light to range rate ratio, allow-
ing the Doppler shifts to be modeled as a uniform shift to each spectral component of the
waveform [1, pp. 56-65]. The optimal detection performance for a known waveform in
broadband thermal noise is achieved by passing the received signal through a filter matched
to the waveform. As the Doppler shift of an echo is unknown, and having a filter matched
to each possible Doppler offset is prohibitively complex, the received signal is typically
filtered with the nominal, zero-Doppler-shift waveform. The response of the nominal
matched filter to a delayed-Doppler-shifted waveform, referred to as the waveform ambigu-
ity function, is necessary in determining the resolution of the range estimate, the intervals



over which the Doppler and range estimates are unambiguous, and the potential for cou-
pling between the range and Doppler estimates of a given waveform.

For an echo, the matched filter output is the correlation of the waveform with that echo.
An estimate of the echo’s arrival time, and therefore range, is given by the time at which
this correlation reaches its maximum. The ability to distinguish between overlapping
echoes, the range resolution, is therefore dependent on the autocorrelation properties

of the waveform; waveforms with autocorrelation functions having narrow support and
consequently wide spectra provide finer resolution. The unambiguous range interval of the
range estimates will depend on the periodicity of the autocorrelation function, which is
ultimately limited by the duration of the waveform.

The Doppler frequency shift estimates are formed from the echoes of successive wave-
forms. For a given range, the Doppler shift estimate is formed by sampling the matched
filter output at the time corresponding to that range. This is done for a set of consecutive
waveforms, forming a sample sequence from which to estimate the spectrum for that range.
The set of Doppler frequencies that can be estimated from these samples is limited to the
rate at which the waveforms are transmitted, and the resolution is limited by the number
of waveform periods used in forming the estimate. A waveform with a shorter duration
provides a wider unambiguous frequency interval for the Doppler estimate; however, this is
in opposition to the wider unambiguous range interval of the range estimates provided by
a longer-duration waveform. Received echoes with Doppler shifts outside the Doppler esti-
mate frequency interval will be aliased into this interval, creating ambiguous estimates; the
matched filter response to waveforms with Doppler shifts greater than this would ideally be
limited and must be considered.

Considering the detectability of an echo and fidelity of the estimates of range and Doppler
of that echo, several criteria for the candidate waveforms are apparent. The detectability of
a signal in broadband thermal noise is proportional to its energy, and the ability to dis-
tinguish between delayed replicas (echoes) of a waveform is inversely proportional to the
waveform’s bandwidth; thus, for a fixed transmit power, waveforms with long durations
and large bandwidths are desired. In addition, the need for efficient RF amplification and
limited out-of-band power requires waveforms with a constant envelope and low spectral
sidelobes; various forms of phase and frequency modulation to meet this need are appli-
cable. The ability of a single matched filter output to unambiguously distinguish between
delay and Doppler offsets without coupling, providing fine range resolution and Doppler
aliasing rejection, is essential. The opposition between the unambiguous range interval, re-
quiring long-duration waveforms, and the unambiguous Doppler interval, requiring short-
duration waveforms, favors waveforms that can be easily extended or contracted to match
the range Doppler profile of the object to be observed.

The three most common categories of large time-bandwidth-product waveforms for ra-

dar are pulse-repetition frequency modulation (FM), BPC, and frequency-hopped spread
spectrum (FHSS). Pulse-repetition FM waveforms are characterized by having a duty cycle
less than or equal to unity: the waveform is nonzero for a fraction of its duration as an FM
waveform [1, pp. 226-286] [2, pp. 168-190] [3, pp. 583-634]. A duty cycle of less than unity
reduces the transmitted energy, thereby decreasing the detectability of the returned echoes.



These waveforms often have Doppler-to-range coupling, where the range estimate is biased
by the echo’s Doppler shift. A BPC waveform is constructed from a PN sequence by switch-
ing the waveform to plus or minus one depending on the PN sequence [3, pp. 533-578]

[2, pp. 100-164]. The discontinuous phase of the waveform can result in distortion by the
transmit power amplifier, due to amplitude modulation to phase modulation (AM-to-PM)
conversion, and the large spectral sidelobes, given limits on out-of-band power, can limit
the bandwidth and thus resolution of the waveform. To reduce the spectral sidelobes, allow-
ing increased bandwidth and thus finer range resolution, a polyphase code with band limit-
ing [4] or a more spectrally efficient modulation could be employed. An FHSS waveform is
generated by transmitting a sequence of frequencies such that each frequency is transmitted
once during a period of the waveform [1, pp. 316-324] [2, pp. 74-85]. The sequence order

is typically chosen to decouple the range and Doppler estimates [5,6]. We have chosen

four candidate waveforms from these categories: linear frequency modulation (LFM), also
known as chirp; minimum-shift keying (MSK); m-sequence BPC; and Costas-FHSS. LFM,
m-sequence BPC, and Costas frequency-hopped (Costas-FH) are commonly used forms of
pulse-repetition FM, BPC, and FHSS, respectively. MSK is a novel form of BPC developed
during the course of this study [7].

lll. BPC Waveform

The BPC waveform is described, and an analysis of the waveform’s autocorrelation, spec-
trum, and ambiguity functions is performed. A summary of the waveform characteristics in
terms of the duration and bandwidth of the waveform is given.

A. Waveform

A BPC waveform is constructed from a PN sequence by switching the waveform to plus or
minus one, depending on the PN sequence, every 7, seconds, as shown in Figure 1. The
transmitted signal, x(#), is formed by periodically extending the BPC waveform and modu-
lating it onto a radio frequency (RF) carrier with a frequency @.. Writing this in terms of the
baseband signal, we have

z2(t) = 9{{ i x(t— kMTL.)ej“’“’}, (1)
k=—oc0
where
M—1
x(t)= Y. c,p(t—nT,),
n=0

{c,} represents the elements of the PN sequence of length M, and p(¢) is a rectangular pulse
of duration 7,. As the waveform is periodically extended, the use of an m-sequence [8], with
its circular properties, for the PN sequence will result in a uniform autocorrelation sidelobe
level. The waveform has a discontinuous phase, which, with band limiting, will result in

a nonconstant envelope, leading to potential degradation from AM to PM conversion in a
transmit power amplifier operating in saturation [9, pp. 203-209].
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Figure 1. BPC waveform with a chip time T, and a duration MT_.

B. Autocorrelation

The autocorrelation function of z(#) is periodic; a single period is given by

MT,12
_ 1 _
@0 =4 [ w0ze+0)dt - MT12 <7 <MT./2
—MT,/2
=%mﬁ@nmﬂ — MT./]2 <7 <MT./2, @)

where the autocorrelation of the complex baseband signal, 7(z), assuming the use of an
m-sequence [8] for the PN sequence, is determined to be

|- M1,
3 M T,
7(r) = 1
M lTI1=T,.

The autocorrelation decays linearly from a peak at 7 = 0 to a constant — 1/M for delays
greater than 7,; the sidelobes are equal to the negative inverse of the code period. The
phase of the autocorrelation varies linearly in ¢ with a slope @w.. At © ==+7,./2, the autocor-
relation is 1/2, and at 7 = +(2 — /2) T./2 , the autocorrelation is 1/ v2. Using the 6 dB and
3 dB extent of the autocorrelation as measures of the delay resolution, we have

Do =T.

and

Asgp=(2— ﬁ)Tc-

The magnitude square of the autocorrelation of the complex baseband signal for a BPC
waveform with a code period of M = 2171 chips is plotted in Figures 2(a) and 2(b). In
Figure 2(a), the peak and the adjacent chip times are shown, and in Figure 2(b) the entire
unambiguous delay extent is shown. For |7 |= T, the autocorrelation is —-102.35 dB, corre-
sponding to — 1/M with M= 2'7— 1.
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Figure 2. Autocorrelation of the complex baseband BPC signal with M = 2'7-1 and T, = 0.125 ps:
(@) [t|<2T; (b) entire period.

C. Spectrum

To obtain the power spectral density (PSD) of z(#), we first represent the autocorrelation of
the complex baseband process in terms of its Fourier Series

. & gom
r(r) = Z age’ ur’,

k=—oc
where
1
7
a, = Sil’l2<ﬂ-—k>
=
M+ 1 M k0.
M (Lkz
i)

Transforming the Fourier Series to a continuous spectrum, we have the PSD of the baseband
signal:

2 M+l & Sin2<%> n2r
sclo) = Lo+ 2niGL 3 (o) 6<w_MTC>'
M

n#0

Using Equation (1), the PSD of the transmitted signal is therefore

S(w) = %Sc(a)— w,) + %S:(— w—w,).

The spectrum is composed of spectral lines spaced at harmonics of the waveform repetition
rate. As the period of the waveform increases, the spacing of the harmonics becomes closer,
and their associated power decreases; the total power is constant. The main lobe bandwidth
of the waveform is B = 2/T, Hz.



Figures 3(a) and 3(b) contain plots of the power of the signal in 1-Hz increments for a signal
with 7. = 0.125 microseconds (us) and a code length M = 215~ 1, as well as for a signal
with a code length four times greater, M = 27— 1.In Figure 3(a), the main lobe band-
widths of the two signals are both 2/7,. = 16 MHz. The spacing of the spectral lines for the
shorter code period is 244 Hz, and the longer code period has a spacing four times closer at
61 Hz. The power in the 1-Hz interval containing a spectral line for the longer code period
is therefore 6 dB lower, as demonstrated in Figure 3(b), where the line spacing is apparent.

T.=0.125pus T.=0.125pus

-10} M=2"%1— | ~10} M=2"_1— |
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Figure 3. The spectral power in 1-Hz intervals for a pair of BPC waveforms with equal bandwidths, T, = 0.125 ps,
with one having a code period M = 2151 and the other having a code period M = 217-1:
(a) entire spectrum allocation; (b) close up.

D. Ambiguity Function
The ambiguity function of a signal with period 7 is defined as

T2
E(t.fy é% 2Ozt + T)e?™Milgr — T2 <7 <T)2.
=T/2

Evaluating this with Equation (1), and defining 7 in terms of / integer multiples of 7, and a
residual 7,

|| = ,_
l—lTCj t=t—-1IT,

we have

£1.2f) = yR{eTEWLR L)} —T2<T <172,

where

= eIt sin(Tfyt) Mo
EWT.f) = ML 1,

c.c eI+ DTe e 10 Sin(”fd(TC — T))Mil oo el 2hanT
ﬂ'fd e ntn+1+1 MTC ﬂ'fd = nbtn+l .
To determine the domain of Doppler offsets that can be effectively detected, we consider
the 1 dB extent of the ambiguity function on the Doppler axis at 7 = 0. Setting ¢ = 0 and
[ = 0, the ambiguity function reduces to



sin(7fyT,) sin(7f;MT, )

£ ~ plalc(M=2)
£(0,0.0) = ™ AT AT

When f; <<M/T, the sin(x)/x response with the first null occurring at f; = 1/(MT,) is
dominant. Using the 1 dB extent of the main lobe as the effective Doppler domain, Doppler
shifts within

1 1
—__ < < _ 1
4MT, SJa= 4MT,

are detectable. Relating this to the bandpass signal, the effective Doppler bandwidth is

_ 1
Boy = omr

To find the peak ambiguity function sidelobe, in delay and Doppler, we take the magnitude
square of the complex baseband ambiguity function

Euefrr=—1 sin® () P

i2rfy(n+ DT,
= c e’

22 2 n+l1+I/
MT:  (7fy) =t

Cn

in2 T.— 7)) |M=1 ) 2
+ M21T2 o (?ff(‘ ); z-))i Cncn-%—leﬂmfdnTC
c d n=0
2 sin(ﬂfdf)sin(ﬂfd(TC— f))M_l M=1 i(2 _ _1
+ J ﬁﬁlTC<n m+1 ) )
MZT% { (ﬂ'fd)2 = m:OCnCn+1+lCmCm+l€ ( 2 )

For the region outside the main lobe, / # {— 1,0,1} and f; # 0, it can be shown, using Par-
seval’s relation, that
M—1

2
j +

D CpCpr @M OL o A1

n=0

Applying this approximation, we have

s (M) o SO(TE) 1), s (T~ B)
1EW L) = M1 ¢ (nfit) MPT2 VE 2 (nfy(T, = D))’

2MA+1) , . sin(7f,?)sin(7fy (T, — 7))
22 (T - )
VT (2 T~ )
M+ 1) . M+ 1) ~ 2(M+1) . R
< VT ? V2T (T.- T)2+ VT (T~ 7).

Maximizing this by setting ¢ = 7,/2, the peak ambiguity function sidelobe is given by

e =L
peak m

The magnitude square of the ambiguity function of the complex baseband signal is plot-

ted in Figure 4 for a BPC waveform with 7. = 0.125 us and a code period M = 27— 1. In

Figure 4, a domain encompassing the main lobe is shown in order to demonstrate the main
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Figure 4. The ambiguity function of the complex baseband BPC waveform, with 7,= 0.125 ps and M = 2171,
encompassing the main lobe: (a) 3-d plot; (b) contour plot.

lobe and peak sidelobe structure of the function. Considering the main lobe, the delay
1

resolution of Ag sz = T, is evident along with the effective Doppler resolution of B T

Outside of the main lobe, the peak sidelobes of -51 dB dominate.

E. Waveform Characteristics Summary

For a BPC waveform with a main lobe bandwidth B and a period T, the waveform charac-
teristics are summarized in terms of these parameters (Table 1):

Table 1. Summary of BPSK waveform characteristics.

B
Phase Switch Rate P)
T

Unambiguous Delay Depth

5 , A= 20-¥2)

elay Resolution 3dB B
Agup = %

Unambiguous Doppler Bandwidth %

Effective Doppler Bandwidth Dy = %

Peak Ambiguity Sidelobe & poak = \/%

IV. MSK Waveform

The MSK waveform is described, and an analysis of the waveform’s autocorrelation, spec-
trum, and ambiguity functions is performed. A summary of the waveform characteristics in
terms of the duration and bandwidth of the waveform is given.

A. Waveform

The transmitted signal, z(?), is formed by periodically extending a waveform that separately
modulates the in-phase and quadrature-phase components of the carrier with offset pulse-
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shaped PN sequences. To generate this waveform, a pair of periodic PN sequences, {c} and
{c{?}, are each passed through a pulse-shaping filter with a half sinusoid impulse response,
5(1). These shaped PN waveforms are then offset by half a chip time, 7,./2, and separately
modulated on the in-phase and quadrature phase components of an RF carrier, as shown in
Figure 5. Writing the transmitted signal in terms of the baseband signal, we have

2() = 9{{ > x- kMTC)ef‘”v’}, 3)
k=—o0c
where
M=1 T M—1
x(t)= Y, cﬁ,”s(t— nT. + 7L>— i > st — mT)),
n=0 m=0

. [t
L2 <
5(1) = s1n<TC> 0=:<T,

0 otherwise,

and M is the period of the PN sequences.
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Figure 5. MSK waveform generation, with a chip time T and a duration MT_.

To demonstrate the phase continuity and constant envelope properties of this waveform,
the transmitted waveform can equivalently be written as

Tt . (mt .
z(t) = d.(t) cos (Tc>cos (w 1)+ d(1) Sm(f) sm(a)ct), 4)
where
oo M—1 . T
A= > > (- 1)"c§;>p<z— nT,+ 5 = kMTC>
k=—o00 n=0
and

o  M—=1
d= 2 > (= "e’p(t— nT.— kMT,),

k=—o0ccn=0
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with p(?) representing a rectangular pulse of duration 7. Expressing Equation (4) in a mag-
nitude phase form and applying trigonometric identities and properties, we have

z(1) = cos(cz)ct— dc(t)ds(t)%+ ¢(1)), (5)

where

0 d)=1
W):{l 4.t =—1.

Note the waveform has a constant envelope and that the phase continuity can be demon-
strated by considering the phase transition at times equal to integer multiples of 7,./2. For
phase continuity, at the transition ¢ = k7,./2 we require

— d (KT, 12)d, (KT, 1)+ $UT12) = = d (k= DT.12d, (k= DT.12ZE+ (k- DT, /2).
(6)
When £k is odd, the data in the quadrature channel is unchanged; we must therefore satisty
(d(KT,/2) = d. (k= DT.12)) 2K = (T.12) - $(k = DT,/2).

which reduces to 0 = 0 when d.(kT,/2) = d.((k— 1)T./2 and +kx = + 7 otherwise. As the
arguments to the trigonometric function are modulo 27, any odd multiple of 7 is equiva-
lent to 77 and the expression is true:

(+hm)mod27r =+7 kisodd.
When £ is even, Equation (6) becomes

Tk _
(dy (KT, /2) = (k= DT,12)) " = 0,

which reduces to 0 = 0 when d(kT,./2) = d,((k— 1)T,./2) and +kz = 0 otherwise. As the
arguments to trigonometric function are modulo 27, an even multiple of 7 is equivalent to
0 and the expression is true:

(+km)mod 27 = 0.

The waveform therefore has a continuous phase that varies linearly i% rad each 7,./2 inter-
val. Using Equation (5), we also note that the frequency of the waveform changes by J_r%
every 7,./2 and can thus be viewed as an MSK-type waveform.

B. Autocorrelation

The autocorrelation function of z(#) is periodic; a single period is given by
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MT, /2
r(t) MTL _/ z(Oz(t+ T)dt — MT./2 <|1TI<MT,/2
C_mr.2

Le{r@e),

where 7(7) is the autocorrelation of the complex baseband signal. Defining 7 in terms of /
integer multiples of 7. and a residual 7,

l=l%J t=r1-1IT,
we have
F(,7) =
. T T 05?<%
a P DN _ e _ 2 _ Ze g a
Te n
j — =<7 <T
a N, @ A 37 . T :
P L=+ j‘;lp(mzjw[(ﬁz—ﬁlop(;—r)ﬂﬁm—ﬁzz)p(f—;> 2
le[_iail
272
(7)
where
2 cos(FENE 4 Lgn (2T
o(t) = cos( TC>TC+ ﬁsm( T, >,
= Y el
n=0
and

(1>

M=1 @
Bk z C£1l> qu+k;
n=0
the autocorrelation functions of the in-phase and quadrature-phase sequences are assumed

to be identical, @{’ = @{?, and the cross-correlation between the in-phase and quadrature-
phase sequences satisfies B-? = 7.

The autocorrelation has a main lobe, extending from [— 7, 7], dominated by

N T W=l A _ A

r(1,7) =— COS(TC(TC =T |)>T+ ;SIH(TC(TC =T |)) I==—1,0ITI=T,.
This function has a peak value at 7 = 0, is zero at 7 = +7,,, and has a cosine response near
T = 0, giving way to a more rapid decay as I7 | increases. The autocorrelation is equal to
1/2att=+04T.and 1/y2 att = +0.287,; the delay resolutions, given as the 6 dB and 3 dB
extents of the main lobe of the autocorrelation, are therefore

Aé dB — OSTC

and
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A3dB = 056T(-

The magnitude square of the autocorrelation function of the complex baseband signal, 7(7),
for delays less than +7, is plotted in Figure 6. Note that the slow roll-off near 7 = 0 gives
way to a rapid decay, reaching the 6 dB level at 7 = £0.47,. The autocorrelation of a BPC
waveform with an equal chip time, 7, is also shown. Comparing the two waveforms, the
autocorrelation of the MSK waveform exceeds that of the BPC for small 7 and drops off
more rapidly beyond the delay resolution.

-1 -0.5 0 0.5 1
T/TC

Figure 6. Autocorrelation of a complex baseband MSK waveform and a complex
baseband BPC waveform for |t|< 2T.

The peak sidelobe levels of the autocorrelation, Equation (7), are dependent on both the
autocorrelations and cross-correlation of the PN sequences; the proper choice of these
sequences is vital. One option is to use a preferred pair of m-sequences [8]. An m-sequence
has a period M = 2" — 1 for some integer n, and a two-valued autocorrelation,

" _{M k=0
K7 l=1 k#£0.

A set of preferred pair of m-sequences can be found having a three-valued cross-correlation

given by
nte o n—e=2
-1+ ZI%J occurs 2" 1+ 277 times
Br=1—1 occurs 2" — 2"7¢ — 1 times
n+e S n—e—2
—1- 2[?] occurs 2" ¢ — 277 times,

where we restrict ¢ = 1 for odd n and e = 2 for even n [8]. In the region outside the main
lobe, 17 1>T,, the cross-correlation terms will dominate, with local maximum values occur-
ring at odd multiples of half the chip time:
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2m+ DT,
T= s

To find the peak sidelobe value of the autocorrelation, we evaluate Equation (7) at these
delays, giving

-, T J M M
r<l,76>zm(51+1_3—1—2) ZE{—T,'“,—2,1,2,"'7— 1}- ®)
The cross-correlation difference term can take on one of five possible values

0
e
Bis1— B-—) =1 22/ M+ 1
+21% 5 M+ 1.

Using the cross-correlation that maximizes Equation (8), we have

e
17(7)1< 22yM+ 1 ”1{‘4“1 IT1=T,.
Consider a waveform formed using sequences of length M = 2'® — 1 with the preferred pair
of m-sequences represented by the linear-feedback shift registers 0x404A1 and 0x40081. The
magnitude square of the autocorrelation function of the complex baseband signal, 7(7), is
shown in Figure 7. The sidelobe structure shows peaks at odd multiples of 7,./2 with values
-54 dB and -48 dB, corresponding to iﬁ_l;‘l& and + 22 AA;I =

when the cross-correlation difference is O, the autocorrelation terms dominate, and the

, respectively. For the cases

resulting sidelobes at integer multiples of 7, with a level ~108 dB corresponding to — 1/M
are visible.

F A e mm el
il (i -
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0 10 20 30 40 50 60 70
T/TC

Figure 7. Autocorrelation of a complex baseband MSK waveform using a preferred pair of m-sequences,
represented by the linear feedback shift registers 0x404A1 and 0x40081, with length M = 2181,
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Another option to generate the two sequences is to use offset periods of a single m-sequence.
For the in-phase channel, use the m-sequence with no offset into the code sequence, and on
the quadrature channel use the m-sequence offset by a fraction of the period. In this case,
the auto and cross-correlation functions of the sequences will be two-valued:

o, = M kmodM— 0
7 1—1 otherwise,

8, = {M k= Kmod M
K7 1=1 otherwise.

where K is the offset into the sequence for the quadrature channel
e = i x. ©)

To determine the offset, K, we again consider the region outside the main lobe, I [>T,
where the cross-correlation terms will dominate, with local maximum values occurring at
odd multiples of half the chip time:

_2m+1

T

m==x1,+2,£3---.

The peak sidelobe values of the autocorrelation occurring at these delays, from Equation (8),
are

-, T J M M
r(Lf)*m(BHl ~Bp tef-M—2n2 M)

The cross-correlation difference, 5,+1 — B—,—», will be zero for all [ except when/+ 1= K or
(— [— 2) mod M = K, where the difference could evaluate to £(M + 1). If, however, we choose
K such that both

I+1=K

and
(=1—2)mod M=K
are satisfied, then ;4 — 8_;—, = 0 for all /. Writing (— [—2)mod M as M— [— 2 and solv-

ing for K, an offset of K = % will cancel the cross-correlation contributions, reducing the
autocorrelation of the complex baseband waveform, Equation (7), to

a1+
M

).

~ o M M
o(T) 0=<7<T, le[—7,7

- ~ a ~
FLE) = 50T~ O+

For Iz 1>T,, the sidelobe structure will have local maximum values occurring at integer mul-
tiples of 7:

t=ml, m==%1,£2,£3---.
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The peak sidelobe values of the autocorrelation in this region are given by

HLT)=—17 le{—%+1,~--,—2,1,2,--~%—2}.
Local minima will occur at odd integer multiples of 7,./2,
r=2m?:r1 m=+1,42, 43,
giving
?<l,%>=—Miﬂ re{- Mt m202 M0k

The use of a pair of codes, generated from a single m-sequence with a code offset of MTil
between the in-phase and quadrature-phase, can thus achieve both ideal auto and cross-cor-
relation properties when used in this configuration; there will be no further consideration
of using a preferred pair of m-sequences.

Consider using a sequence length of M = 2'® — 1, and the m-sequence represented by the
linear-feedback shift register 0x404A1. The magnitude square of the autocorrelation of the
complex baseband signal, 7(z), is shown in Figures 8(a) and 8(b) for delays near zero and

at half the period, respectively. The peak sidelobe levels of —-108 dB occurring every integer
multiple of T,, corresponding to — 1/M and the minimum sidelobe levels of -112 dB every
odd integer multiple of 7,./2, corresponding to — ﬁ, are evident in both plots. In Fig-

ure 8(b), the magnitude square of the autocorrelation for a domain about 7 = —- is shown,

demonstrating the cross-correlation cancellation due to the choice of code offset K = %

(@) (b)
0 T T T T T T T T
M=2"%4 M=2"%4
-20
— —40
=
Sy
% -60
(2]
e)
o
- -80
-100} ! 1
N e e \e e e e e e
-120 L L L L . . . . . . L L L L
0 05 1 15 2 25 3 35 4 45 5 131066 131068 131070 131072 131074 131076

/T, /T,

Figure 8. The autocorrelation of the complex baseband MSK waveform generated using a single
m-sequence with an offset period of K = (M-1)/2, where M = 218—1:
(@) It|<75T,; (b) (M-5)/2T < t<(M+5)/2T,.
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C. Spectrum

The PSD of a waveform, S(w), is given by the Fourier transform of its autocorrelation, r(7).
Representing the periodic waveform in terms of its Fourier series, solving for the autocorre-
lation, and then taking the Fourier transform, we have

S(w) = iF(w - w,)+ %F*(— w— w,),

where
< 2r
Flw) = la | 22776(a) + k
2. I,
with
cosz(”—k 2
M kM o Ml _2
la,|? = 4 226JMZCEJ)eJM”k—]Zcf,‘{)e/M’”k .
n=0 m=0

Using Parseval’s relation, an upper bound to la; | ? can be obtained, giving

2 k=0
2 < 10
| _{2(M+ ) k=%1,%2, . (10)

The spectrum is composed of spectral lines spaced at harmonics of the waveform repeti-
tion rate. As the period of the waveform increases, the spacing of these harmonics becomes
closer, and their associated power decreases. The main lobe bandwidth of the waveform is
B= % Hz, and the spectral sidelobes decay more quickly than those of a corresponding
BPC v;aveform.

Figure 9 contains a plot of the power of the waveform in 1-Hz increments for a signal with
a period M = 2'8 — ] using the m-sequence formed by the linear feedback shift register
0x40081, and a chip time 7, = 0.075 us; the curve formed from the PSD and a curve formed
from the bound Equation (10) are shown. The main lobe bandwidth is B = % =40 MHz.

D. Ambiguity Function

The ambiguity function of a signal with period 7 is defined as

T/2
E(T.f) é% f 2Dzt + TVl gr — T2 <t <T)2.
=T/2

Evaluating this with Equation (3), and defining 7 in terms of / integer multiples of 7, and a
residual 7,

2 P
l_hj f=r-1T,
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Figure 9. The spectral power in 1-Hz intervals for an MSK waveform with
T,=0.075 ps and M = 2181,
we have
.2f) = yx{Ewtfeest —m2<c <,
where
[ intit NG N ()
M [7(TC_ z-’fdal + 7(Z',fd)e NS
+ 7(Tc - f’fd)ejﬂ-deCagq) + 7(fafd)ej”fd2Tca§?F)1
T . el o o Te A i3 (o
—17(76 - r,fd)e’”fd 2 B0 —17(76+ r,fd)e’”ﬁi 2 Bt}
T, n el (T, ~ e e . T
+j7<76 — Z',fd)e Jnfas [)’E';ql) +]7<76+ Z',fd)ef”f‘i 2 BE”")] 07 <70
EWTf)=
e_jﬂfdf R . R PTG
M [7(Tc - Tafd>a§l) + 7(T’fd)eﬂrfd Cagl-i)—l

+7(Te = e f)e™ @ + 7 (2. f)e ™y
(3T N e (e Te o\ e
—17( ‘- r,fd)e’”fd 2 b’ﬁ?—n’(r— fﬁz)e’”fd 2 Bi%)

2
37, 4 e ol (- T h e o T. _ 4~
+j7(76— r,fd)ef”fd 2617 +17<f - f,fd)ej”fd 2 BE’:’B] 5 <E<T,




with

. 1 . 1
cos(%z‘)sin(ﬁfdf) 51”(”(T+fd)f> 51ﬂ<7f<_7+fd>7)
- c + ‘ + : f1#0
. T, ¢
Y(T,fd) = ﬂfd ¢ 21 i +fd T(‘ 2| — l +fd TC
T, T,
T\ T 1 . (xT _
cos( TC>TL-+ n_sm( TL) Ja=0,
- N M-1 @ o
) a Z (’)cfjlkeﬂmn”, al@ =3¢ cﬁﬂkeﬂ”fﬂ-”,
n= n=0 n

B}(i,q) Z C(z) (q) ej27fden and B(q ) & Z C(q) (1) eJZEdeCn‘
n=0

Assuming the code sequences {c{’} and {c{’} are generated from a single m-sequence, with
a period offset, Equation (9), of K = %and fu << TM, the cross-correlation terms cancel,
giving

e—jﬂifd‘?

é([,f,fd) = i [7(TC — f,fd)am + 7( ’fd) JrfaTe a/(l) + 7’(T f) JTtfa (a(l]) + V(Tf) Jfa 2T, E‘i)l]

A M M
< MM
0<7<T, le [ ) )
To determine the domain of Doppler offsets that can be effectively detected, we consider
the 1 dB extent of the ambiguity function on the Doppler axis at 7 = 0. Setting 7 = 0 and

[ =0, the ambiguity function reduces to

£(0,0,f,) ~ e/

_1y\|sin(zfyT,)  sin(x(fT.+ D) sin(x(fT.— 1) fdﬂ,\sin(nfdMTc)
(-3) T T+ T 2 T— 1) COS(” 2 ) xLMT,

For f; << f , the sin(x) /x response with the first null occurring at f; = 1/(MT,) dominates.
Using the 1 dB extent of the main lobe as the effective Doppler domain, Doppler shifts
within

1 <f < 1
~ 4MT, —74 = 4MT,

are detectable. Relating this to the bandpass signal, the effective Doppler bandwidth is

_ 1
Boy = amr,-

To find the peak ambiguity function sidelobe, in delay and Doppler, we take the magnitude
of the complex baseband ambiguity function evaluated at 7 = 7,:

Ié(l,TC,fd) |= LM‘V(O,fd a'(’) + elﬂdeca,Eq)>+ V(chfd)<ejﬂdeca§i4)—l + ejﬂdeTcaggr)l)‘

< 2}\4‘<am+ oI ca(cp)‘
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For the region outside the main lobe, [ # {— 1,0,1} and f; # 0, it can be shown, using Parse-
val’s relation, that for an m-sequence, {c,},

M—=1

CnCn+1+1
n=0

2
G2 VT 1

Applying this approximation, we have

g 1 (@) T (@2 M+ 1 1
< 1 Jnfy T, — ~_a _
EUTefi) 1= 535 | + e/™ile g7 T~ [#{=1,0,1} f;#0.

The peak ambiguity function sidelobe is therefore given by

1

épeak = W

The magnitude square of the ambiguity function of the complex baseband signal is plot-
ted in Figure 10 and Figure 11 for the MSK waveform with 7, = 0.075 us and a code pe-
riod M= 2"—1 generated from the linear feedback shift register 0x40081. In Figure 10, a
domain encompassing the main lobe is shown in order to demonstrate the main lobe and
peak sidelobe structure of the function. Considering the main lobe, the delay resolution of
A 5 = 0.8T. is evident along with the effective Doppler resolution of B Dy = % Outside of
the main lobe, the peak sidelobes of —-54 dB dominate. In Figure 10, a domain in the vicinity
of r = L; ! T, is shown to demonstrate the cross-correlation cancellation at a delay corre-

. . M-1
sponding to the code sequence period offset —5—.

(@) 10*log, ol&(t.fy)I? (b) 10*log, ol&(t.fy)I?
0 4 pr——— 0
;
-10 -10
2
-20 ; -20
3 o -30
40 40
-2
-50 s -50
-60 - -60

4
-4 3 -2 1 0 1 2 3 4
T,

Figure 10. The ambiguity function of the complex baseband MSK waveform, generated using a single
m-sequence of length M = 2'8—1 with offset K = 0 for the in-phase and K = (M-1)/2 for the
quadrature-phase sequence, encompassing the main lobe: (a) 3-d plot; (b) contour plot.
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(@) 10%log, ol&(t,fy)I° (b) 10%log, ol&(t,fy)I°

1.3108
1.3108

x 10° 4
1.3107 /T, 1.3107 1.3107 1.3107 1.3108

T, x 10°

Figure 11. The ambiguity function of the complex baseband MSK waveform, generated using a single
m-sequence of length M = 218—1 with offset K = 0 for the in-phase and K = (M-1)/2 for the
quadrature-phase sequence, about = (M-1)/2T: (a) 3-d plot; (b) contour plot.

E. Waveform Characteristics Summary

For the MSK waveform with a main lobe bandwidth B and a period 7, the waveform char-
acteristics are summarized in terms of these parameters (Table 2):

Table 2. Summary of MSK waveform characteristics.

Unambiguous Delay Depth T
A, — 168
Delay Resolution 3dB~ T p
_ 24
Asap =
Unambiguous Doppler Bandwidth T
. . =L
Effective Doppler Bandwidth Bp, v o7
Peak Ambiguity Sidelobe & peat = /é

V. Costas F-H Waveform

The Costas-FH waveform is described, and an analysis of the waveform'’s autocorrelation,
spectrum, and ambiguity functions is performed. A summary of the waveform characteris-
tics in terms of the duration and bandwidth of the waveform is given.

A. Waveform

An FH waveform is generated by dividing the allocated bandwidth B into N frequencies,
and then transmitting the sequence of frequencies in some predetermined order, dwelling
at each for a duration of 7, seconds, so that one period of the FH waveform is 7'= NT), as
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shown in Figure 12. The bandpass waveform is formed by periodically modulating this pat-
tern onto an RF carrier, giving us

2(t) = sn{ i x(t— mefwcf},

k=—o0
where x(?) is given by

x(0) = NZI p(t—nT,)e .

n=0
Here, p(t) is a rectangular pulse of duration 7},, and the nth hop frequency is w, = 270, /T,
where the hop pattern, {6,}, is a permutation of the integers {0,1,...,N— 1}. In order to
minimize range-Doppler ambiguity, the frequency hop pattern is chosen from among the
class of Costas codes [5]. Note that the Costas code is repeated cyclically in this applica-
tion, which differs from the usage in [5]. The number of hops, N, is completely determined
by noting that the separation between adjacent frequencies is Af = 1/7), so that the total
bandwidth is B = NT%, and that 7'= NT,, leading to the relationship

N=BT.

NT,

A
\

Figure 12. FH waveform with N frequencies and a duration NT,

B. Autocorrelation

The autocorrelation function of z(?) is periodic, with a single period given by
— Ixlzmypiort T T
r(r) = 2E)t{r(r)e } 7 <T=75,

where 7(7) is the complex baseband autocorrelation function. Letting t = 7, + 7,0 <7 <7,
ie,l= [TLJ and 7 = 7 — IT,, we can write
P



7(r)=7(,7)
Tp —17] N=1 jx@,+0,:)IT\/T,

in(Nz |71 /T, -
M-ﬁ-ﬂZe sinc((0,4,— 0)1£1/T,) 1=—1,0
NTanO

pITIN=DIEIT,
NT, sin(7121/7),)

P

~ N1 . ~ . ~

% 3 (sinc(Bs o1 = B,)EIT,) 7O Ot VB0 Ginc (8,1, — 6,)21T,) e/ Ot 0n0T/TP)  otherwise.
n=0

Note that as the frequency hop pattern is periodic, 8, = 8, noan -

If we consider the region 17 1<T),, then [ = 0, and the magnitude of the autocorrelation is

approximated as

T,— ¢ sin(Naé/T,) |
T, Nsin(x7/T,)

g

17(0,7) 1=

which has sidelobe nulls occurring at

. T,

TZHW, n==+1,+2,
and sidelobe peaks at

;= b

T—(2n+1)ﬁ, _1,_2,"'

The first sidelobe thus has a level of -13.4 dB with respect to the peak, independent of the
value of N. Figure 13 shows the magnitude square of the autocorrelation function when
T,=17.25 us and N = 690. Note that Figure 13(b) shows that away from the main lobe

(t >T,), the autocorrelation peaks do not exceed 2/N, or approximate -50 dB, with N = 690,
in power relative to the center peak, as expected for Costas codes [5].

(@) (b)
T T 0 T
N = 690, N =690,
T,=1725ps — | _10l T,=17.25s — |
N o -20
= =
o o
S S 30
3 3
S ko)
2 S 40
50} ]
-60 W
-0.4 -0.2 0 0.2 0.4
‘EN/TP /T

Figure 13. FH waveform autocorrelation function with Costas code, N = 690, Tp =17.25 ps:
(@) T<< Tp; (b) entire period.
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The delay resolution, defined by the 6 dB and 3 dB widths of the autocorrelation main lobe,
is approximately

A 1.2 L
6a8 = L2737
and
A, 3= 0.88 .
3dB — VY- W
C. Spectrum

The PSD of z(?) is given by

S(w) = %F(a) - w,)+ %F*(— w— w,),

where F'(w) is the Fourier transform of the autocorrelation of the complex baseband wave-
form, given by

Flw) = i Iak|22n6<w+ ]\%[77{]{)

C

k=—o0

and the Fourier series coefficients of the baseband waveform are given by

sin(%k - n6,T,)

n=0 %— 270,

N—1
_ 2 —jnkIN > i70,T, , j27n0,T, —~j2ankiN
a= e e e e

Figure 14 shows a plot of the power spectrum for 7, = 17.25 us and N = 690 where the ori-
gin has been shifted by — %
»

D. Ambiguity Function

The ambiguity function of a signal with period 7" is defined as

T/2
E(T.f) é% f 2Dzt + ) ilgr — T2 <7 <T)2
—T/2

= 2x{E@pe).

Again letting [ = lTLpJ and T = 7 — IT,,, we can write the ambiguity function of the baseband
FH waveform as

Bt = 1 Nil PRt VT, (o~ f)F) _ 127 (a4 foi)
&)= NT

Pn=0 jzﬂ'vd'i-frﬁrl_ﬁz)
| NSl pP27Gan+ DTy i) _ 27 Galn+ DT, —f)7)
+ — n s
NTpn:() ]2”(fd+f;L+l+l _fn)
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-20 N =690

dBc/Hz

-100

Figure 14. The spectral power in 1-Hz intervals for an FH waveform with Costas code N = 690, T,=17.25 ps.

where f, = % The behavior of this function along the delay axis (f; = 0) is described in
the autocorrelation section. On the other hand, when 7 = 0, the magnitude of the ambigu-
ity function is

1E(0.f,) 1= sinc(f;NT).

So along the Doppler axis, the sidelobe nulls occur at

fo= g n=EL £
p
and the sidelobe peaks occur at
fo= G £1,22,

The effective Doppler domain is defined as the 1-dB extent of the main lobe of the ambigu-
ity function along the Doppler axis at a delay of 7 = 0, and is given by

Bp Hz.

1
ar 2NT,
A plot of the magnitude square of the ambiguity function near the central peak is shown in
Figure 15. The sinc function structure is evident from this figure, with its high peak sidelobe
level of -13.4 dB. The delay resolution of 0.88 7},/N and effective Doppler resolution of
0.5/T are evident from Figure 15 as well. The ambiguity peaks far from the main lobe are
not visible in this figure; however, we conjecture that their values are the same as those of

the standard Costas ambiguity function described in [5], i.e., 2/N.
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Figure 15. Ambiguity function of FH waveform with Costas code, N = 690, Tp =17.25 ps, 1<< Tp:
(a) 3-d plot; (b) contour plot.

E. Windowing

The relatively high ambiguity function sidelobe levels, starting at —-13.4 dB, can be reduced
through the use of windowing functions. In spectral analysis, one often applies a window
function to the time series to reduce the spectral sidelobes, which allows the identification
of spectra with large dynamic ranges [10]. The dual technique can be applied to reduce the
time domain sidelobes by applying a window function to the frequency response of the
waveform. This will result in a reduction of the ambiguity function sidelobes at the expense
of a wider main lobe and resulting loss in resolution. As we wish to maintain the constant
envelope properties of the transmitted signal, the windowed frequency response cannot be
split between the transmitted waveform and received correlator. This will result in a loss in
the signal-to-noise ratio (SNR) as the receiver will no longer be matched to the transmitted
waveform. Several options are available, including Taylor and Hamming window functions,
that will reduce the peak sidelobe to less than —40 dB at the cost of less than 1.5 dB in SNR
and an increase in the main lobe width, degrading the resolution by at most 150 percent
[11, p. 345] [3, pp. 612-618]. We now verify this for the frequency-hopping case by using a
Hamming window and analyzing the effect upon the autocorrelation function.

As shown earlier, in the region T <<T, the autocorrelation function may be approximated
as

F(r) = ™"V isine (NT/T,).

If we apply a Hamming window with frequency response

< N

H(f) = 0.08 + 0.92cos*(zfT,/N), IfI< 5T
p

(11)

to the received signal in the frequency domain, then the windowed autocorrelation func-
tion 7,,(r) will be given by
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= )
e a4

N
T o, .
27 (0.08++ 0.92 cos’ afT, 1) )y
27,

_ 0.46 . (Nz‘)
=10.08 + —————— |sinc| =},
- 1A% T, (12)
T,

where F denotes the Fourier transform. This windowed autocorrelation function is plotted
along with the original function in Figure 16. We see that the first sidelobes are reduced to
—-43.5 dB with respect to the peak, while the main lobe is broadened at the 6 dB point to ap-
proximately 1.8 7),/N, a factor of 1.5 increase. The SNR loss can be calculated from

I7,(0)12
Agyp = :<—>2
[ ar

~(0.08+ 0.46)2
- 0.4
=—1.344dB. (13)

N =690, Tp = 17.25 us
0 T T T L T

Cé)stas—FH —_—
\Windowed Costas-FH m——— |

10log, o(I1)1%)

0
N/ Tp

Figure 16. FH autocorrelation function with and without Hamming window,
N=690, T,=17.25 ps.
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F. Waveform Characteristics Summary

For the Costas-FH waveform with main lobe bandwidth B and period T, the waveform
characteristics are summarized in terms of these parameters for the standard and windowed
cases (Table 3):

Table 3. Summary of Costas-FH waveform characteristics.

Costas-FH Windowed Costas-FH
Unambiguous Delay Depth T T
0.88 1.3
A3dB=73 Ade:?
Delay Resolution 12 18
Agap = B Asap = B
Unambiguous Doppler Bandwidth % L
T
Effective Doppler Bandwidth Dy = 2717“ —
Peak Ambiguity Sidelobe & pear = — 134 dB & pear = —43.5dB

Note that the effective Doppler bandwidth has not been given for the windowed Costas-FH
case, as no closed-form expression has yet been obtained.

VI. LFM Waveform

The LFM waveform is described, and an analysis of the waveform’s autocorrelation, spec-
trum, and ambiguity functions is performed. A summary of the waveform characteristics in
terms of the duration and bandwidth of the waveform is given.

A. Waveform

The LEM waveform, also known as the chirp waveform, has a linearly increasing or decreas-
ing frequency during the nonzero portion of the waveform, as shown in Figure 17. The
transmitted signal, z(7), is formed by periodically extending the waveform and modulat-
ing it onto an RF carrier. Writing the transmitted signal in terms of the complex baseband
signal, we have

2(t) = 9{{ i x(t— meff”cf},

k=—o0

where
B,
x() =1, (u(t) = u(t—T,)),

u(t) denotes the unit step function, 7 is the period of the waveform, 7,/T is the duty cycle
of the waveform, and /3/7), is the rate of the frequency change. The waveform has a con-
stant envelope and a continuous phase.
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A
\

A
\/

Figure 17. LFM waveform with a duty cycle of Tpl T and duration T.

B. Autocorrelation
The autocorrelation function of z(¢) is periodic; a single period is given by

T2
(@ =1 [ 20+ 0d — T2 <7 <2
=172

= 2ali@es} —T2<c <2, (14)
where

Fo)=p@+D(uc+D—ulc+ T—T,))+ @) u(c+T,)—ult—T),))
+o@—D(uc—T—=T,)—ulc—T)) 17I1<T/2

with
(B )
sin| t—7(T,—I7l)
p(z‘) a 677{,81' (Tp—|2'|) TP i
T B '
npt(T,=1l)

p

This is the superposition of truncated sin(x) /x-type responses centered at — 7', 0, and 7. The
extent of each response is determined by the duty cycle of the waveform. For a duty cycle
of less than 50 percent, there is no overlap between the responses; only a single response
exists in [— 7/2,7/2]. For a duty cycle of greater than 50 percent, the responses overlap;
however, even in the case of 100 percent duty cycle, T}, = 7, the overlap has contributions

sin(n’%)
—

4

from sidelobes with levels less than

which for BT >> 1 is negligible.

Examining Equation (14), we note the sin(x) /x response with a peak value occurring at
7 = 0. For BTP >>1, the response is independent of the BT;; product, and we have sidelobe
nulls occurring at
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n
— n==%1,%£2,
B
and peaks occurring at
2n+ 1
=4+1.+2. ...
26 n==+1,+2,---.

The first sidelobe will have a level at —-13.4 dB with respect to the peak, and the subsequent
sidelobes will decay as the inverse distance from the origin. For 7, >> 1, the 3 dB and 6 dB
widths of the main lobe are approximately 0.88/8 and 1.2/, respectively. Using these as a
measure of the delay resolution, we have

Asip= %
and
Agap = %
The phase of the autocorrelation,
(w.+ Bz,

varies linearly in ¢ with a slope, excluding the carrier contribution, of /.

In Figures 18(a) and (b), the magnitude square of the autocorrelation of the complex base-
band signal for an LFM waveform with a 100 percent duty cycle, 7, = 7, and a 57, product
of 480000 as well as a waveform with a 10 percent duty cycle, 7, = 7/10 and a 57}, prod-
uct of 48000 are plotted. In Figure 18(a), the main lobe and several adjacent sidelobes are
shown; note, as demonstrated in Equation (18), with BTP >> 1 the responses differ only in
their relative level, the 10 percent duty cycle being down by 20 dB. The entire unambiguous

delay extent is shown in Figure 18(b); note the 10 percent duty cycle has support only for
ITI=T,.

10log, (/A1) P)

-0.4 -0.2 0 0.2 0.4
B /T

Figure 18. Autocorrelation of complex baseband LFM waveforms with 3 = 40 MHz, T= 12 ms, and
duty cycles 7,/T=1and 7,/T= 0.1: (a) |t|< 2f3; (b) entire period.
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C. Spectrum

The PSD of a waveform, S(®), is given by the Fourier transform of its autocorrelation, r (7).
Representing the periodic waveform in terms of its Fourier series, solving for the autocorre-
lation, and then taking the Fourier transform, we have

S@) = jF@=w)+1F (- 0-w,),

wher
F(a))=k§:oolakl22ﬂ8( w0+ 24|
i
el e of- )
o ST ] 1o
A - )
A ] v
0 e S e
oA [T

where the Fresnel integrals [12, p. 615] are defined as

C()Af/cos dx and S(z)“[fsm

The spectrum is composed of spectral lines spaced at harmonics of the waveform repetition
rate. The main lobe bandwidth of the waveform is approximately 8 Hz. Figure 19(a) con-
tains a plot of the power of the signal in 1-Hz increments for a waveform with 5 = 40 MHz,
T =12 ms, and a 100 percent duty cycle where the origin has been shifted from /2 to 0.
The 7T, product of this signal is very large at 480000, resulting in a nearly ideal rectangular
spectrum. Reducing the duty cycle to 10 percent reduces the 57}, product; however, at such
a large value, little change in the rectangular spectrum is evident, as shown in Figure 19(b).
The reduction in the duty cycle does, however, reduce the power by 10 dB. Reducing the
waveform duration to 7' = 8 us with a 50 percent duty cycle reduces the 87, product to
160, with a noticeable degradation in the rectangular shape of the spectrum, as shown in
Figure 20. The shorter duration also increases the line spacing, resulting in sparser spectral
lines of higher power.
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Figure 19. The spectral power in 1-Hz intervals for a pair of LFM waveforms with equal bandwidths, 3= 40 MHz,
and periods T=12ms: (a) T,/T=1; (b) T,/T=01.
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Figure 20. The power spectrum of the LFM waveform evaluated in 1-Hz intervals.
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D. Ambiguity Function
The ambiguity function of a signal with period T is defined as

T2
w2t [ 2026+ Dear — T2 <7 <T)2.
T
=T/2

Evaluating this, we have

12
Eaf) =1k [ 0zt ndr ~T2<7 <172
112
_ 1 g Jjw.T <
—jm{f(r,fd)e } ITI<T/2, (15)

where

E@fp) = 7@+ TL)(u@+D—ul+ (T=T)))+ 7@ f)(u+ T,) — u(r = T,))
+y@ =T ) uc—T=T))—uc="1) 1TI<T/2,

with

~ _ B\ -
Tp—lrl) sm(n’(fd Tpt)(Tp IZ'I))
T )

e g = el pe i
7T<fd - %Z’))(Tp =zl

Examining Equation (15), we note, as with the autocorrelation, that the ambiguity function
is dominated by a sin(x) /x-type response with respect to the delay. The peak value of the
sin(x) /x term occurs at

dep
Z-peak = T

A return with a Doppler offset will elicit nearly the same response, sans the 1 —|7 | scal-

T,
ing, as a return at delay 7 = fdﬁ”. This Doppler delay coupling is the salient feature (or bane

depending on your perspective) of LFM and will appear as ridge running through the origin
of the delay Doppler plane with an attenuation of 1 —| 7 | away from the origin. Taking into
consideration that the period of the waveform is 7, unambiguous Doppler measurements
can be made between -1/27 and 1/27, giving an effective Doppler bandwidth, due to the
delay Doppler coupling, of

_ 1
BDe/f_T'

Assuming the Doppler extent of the object is on this order, we note that a Doppler offset of
fa= 1/(27) will result in a delay coupling of
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This falls within the delay resolution of the waveform and can be reduced, at the cost of
returned energy, by reducing the duty cycle of the waveform. Turning to the sidelobe struc-
ture, for BT,; >> 1, the sidelobes moving away from the ridge have sidelobe nulls occurring

at
T,6—n
M n=+1,4+2,---
Jat B
and peaks occurring at
2n+1
depB_ n2 1 )
——————— n==%1,%+2,
Jat B

The first sidelobe will have a level at —-13.4 dB with respect to the corresponding ridge, and
the subsequent sidelobes will decay with the inverse distance to the ridge. The phase of the
ambiguity function,

n[(w.+ B+ [T+ fiT,],
varies linearly with respect to ¢ with a slop of w.+ 8+ f;.

The magnitude square of the ambiguity function of the complex baseband signal is plotted
in Figure 21 for an LFM waveform with a 100 percent duty cycle, T, = T, and a 8T, product
of 48000. The domain encompassing the main lobe is shown in order to demonstrate the
ridge and sidelobe structure of the function. The delay Doppler coupling that provides an
effective Doppler bandwidth equal to the unambiguous Doppler bandwidth is evident. The
first sidelobe from the ridge has a level of —-13.4 dB, and subsequent sidelobes decay from
the ridge as a sinc function.
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Figure 21. Ambiguity function of LFM waveform with 3= 40 MHz, T,=12ms, T=12ms:
(a) 3-d plot; (b) contour plot.
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E. Windowing

As with Costas-FH in Section V.E, the relatively high sidelobe levels of the LFM ambiguity
function, starting at -13.4 dB, can be reduced through the use of windowing functions.
Several options are available, including Taylor and Hamming window functions, which
will reduce the peak sidelobe to less than —40 dB at the cost of less than 1.5 dB in SNR and
increase in the main lobe width, degrading the resolution, by at most 150 percent [11,

p- 345][3, pp. 612-618]. To verify this, we consider the effect of a Hamming window on the
autocorrelation function.

The complex baseband autocorrelation, Equation (14), in the region |7 |< T),, and assuming
BT >>1, can be approximated as

. T, sin(7B7)
() s pImBr P2\
M) =~e T rfr
Applying a Hamming window H(w), Equation (11), to the received signal in the frequency
domain will result in an autocorrelation, 7,,(7), of

= 5[5

F! {%rect(% - %)H(f— g)}
Ly it / : (o 08 + 0.92 cosz(ﬁi>)eﬂ”frdf
7 N . 5

0.46 \sin(zpr)
1—(1’8)2} BT

In Figure 22, the complex baseband autocorrelation, Equation (14), along with the auto-

= ef'”ﬂf(o.os + (16)

correlation of the windowed system, Equation (16), is shown. The windowed system has
sidelobes at —43.5 dB with respect to the peak. The 3 dB and 6 dB extents of the main lobe
are approximately 1.5 times wider than that of the unwindowed system; the corresponding
delay resolutions are therefore

1.3
Asgp= _,8

1.8
Agap = 7

The loss in SNR for this Hamming window was given in Equation (13) at -1.34 dB.

F. Waveform Characteristics Summary

For the LFM waveform with a main lobe bandwidth B, a period 7', and a full duty cycle,
T, = T, the waveform characteristics are summarized in terms of these parameters (Table 4):
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B =40MHz, T =12 ms, Tp= T
LFM
Windowed LFM e -