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Robust Orbit Determination and Classification: A
Learning Theoretic Approach

Srinagesh Sharma∗ and James W. Cutler∗

Orbit determination involves estimation of a non-linear mapping from feature vectors associ-

ated with the position of the spacecraft to its orbital parameters. The de facto standard in

orbit determination in real-world scenarios for spacecraft has been linearized estimators such

as the extended Kalman filter. Such an estimator, while very accurate and convergent over

its linear region, is hard to generalize over arbitrary gravitational potentials and diverse sets

of measurements. It is also challenging to perform exact mathematical characterizations of

the Kalman filter performance over such general systems. Here we present a new approach

to orbit determination as a learning problem involving distribution regression and, also, for

the multiple-spacecraft scenario, a transfer learning system for classification of feature vectors

associated with spacecraft, and provide some associated analysis of such systems.

I. Introduction

In recent years, there has been an increased interest in space systems and exploration. This

has led to a rise in the number and scope of space missions, both near Earth and in deep space.

Furthermore, since the development of the CubeSat standard [1], these small spacecraft have

become increasingly crucial in science missions, technology demonstration, and in access to

space. In fact, recently, such space missions have forayed into technology demonstrations

for deep space technologies [2]. These spacecraft have a significantly smaller form factor and

they are used for essentially high-risk, low-cost missions with short development periods [1]. A

consequence is that the number of such spacecraft inserted into orbit per launch has increased.

These spacecraft are highly power constrained systems, whose operations, including those of

communications, are power constrained.
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A second line of development, which follows directly from the requirement of increased ca-

pacity in communication systems, is a ground station network. Ground station networks

allow increased downlink access times and, depending on orbit parameters, higher data rates

at specific locations [3]. These have become increasingly popular due to the development

of software-defined radios, which allow for autonomous ground station networks. A crucial

requirement, both for spacecraft deployment and for communication, is identification and

versatile, robust orbit determination.

A Keplerian orbit of a satellite around a spherical body can be described by 6 parameters,

denoted generically as a 6-element vector γ and modeled here as a corresponding 6-element

vector of random variables Γ. Examples of 6-parameter specifications of such orbits include

the traditional Keplerian elements, equinoctial elements, simple r, v vectors in the required

reference frame and, in the Hamiltonian setting, Poincaré elements. The position of the

satellite at time t for a spherical body with uniform density is given by the general form of

Kepler’s equation [4]
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where κ = GM, G is the universal gravitational constant, M is the mass of the Earth, χ̇ =

√
κ
r ,

and rP , vP are the position and velocity vectors at the periapsis.

Furthermore, in case of the Earth, due to its oblateness and to orbital perturbations, the pa-

rameters associated with Keplerian orbits vary over time (although the variation is negligible

over short periods such as a ground station pass). These perturbations are modeled by the

Laplace equations for spherical harmonics [4] . In addition, there are also perturbations of

the orbit due to air drag and solar radiation pressure. While there are infinite series sum-

mations that provide closed-form solutions for the position of the spacecraft as a function of

time and orbit parameters for certain values of eccentricity in the case of purely Keplerian

orbits (orbits that are described purely by Kepler’s equations), the perturbations are usually

computed using numerical integration techniques [4] .

Orbit determination (OD) is a non-linear filtering problem that estimates the orbital parame-

ters γ from observations of the highly non-linear trajectory resulting from Newton’s laws and

perturbations. Practical implementation of such estimation involves a two-step process of

first obtaining an initial estimate through a few observations and then an asymptotic series of

differential corrections to obtain orbital parameters [5, 6]. The standard technique for preci-

sion orbit determination is an extended Kalman filter (EKF) [4,7]. The EKF is a suboptimal

approximation of the Kalman filter for non-linear systems, which has been shown to converge

asymptotically when the initial state of the system is in the linear region [8]. A large number

of orbit determination implementations also use EKF techniques [5]. EKF techniques perform

orbit determination of spacecraft over specific scenarios, and the mathematical computation

of the gradient matrices governing OD systems is not easy to generalize (unless approximated

with finite differencing, which is an approximation) over arbitrary gravitational potentials and
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with a varying number of celestial bodies influencing the dynamics of the orbit. Secondly, the

performance of EKF techniques is influenced by the extent of non-linearity associated with

the system [9]. This makes modification of the estimation system for diverse sensor systems

a difficult proposition, and it is not necessarily guaranteed to converge. As a consequence, it

is also difficult to provide generalized bounds of convergence for the orbit estimation system

as a whole. A second popular method of filtering involves particle filters and similar Bayesian

techniques [10]. However, even in such cases, a Gaussian approximation regarding evolution

of the filter is made.

Recent techniques in orbit determination involve estimation over observations on very short

arcs [11–13]. These have become significantly more popular due to the requirements of es-

timating orbits of asteroids in celestial mechanics. For spacecraft in low Earth orbits, high-

precision orbit determination can be performed using GPS techniques [14]; however, GPS

techniques cannot be generalized for deep-space satellites.

This article serves as a proof of concept for a new and very general approach to the problem of

orbit determination. We show that when the characteristics of the spacecraft and the general

characteristics of the orbital parameters are known and observable, there exists a continuous

mapping from a subset of the space of probability distributions of feature vectors associated

with spacecraft position, such as RF transmissions observed at the ground station network, to

the orbital parameters of the spacecraft. While it is computationally prohibitive to perform

direct characterization of these probability distributions, it is possible to generate samples as-

sociated with these distributions, and perform two-stage sampled regression and classification

to obtain the orbital parameters. The framework presented can also be applied for tracking

deep-space missions with ground station networks as long as the orbit perturbations can be

modeled accurately.

Specifically, the contributions of this article are threefold:

1. We present a novel modeling and method using techniques recently developed in machine

learning to perform classification of RF transmissions and orbit determination of the

spacecraft.

2. We present conditions under which such a system can be applied.

3. We present an experimental result of orbit determination of the GRIFEX1 spacecraft

using such a system.

For the purposes of intuition, we consider orbit determination of the GRIFEX spacecraft as

1 The GEO-CAPE ROIC In-Flight Performance Experiment (GRIFEX) is a CubeSat developed by the Michi-

gan Exploration Laboratory (MXL) supporting the proposed Geostationary Coastal and Air Pollution Events

(GEO-CAPE) mission concept. GRIFEX performs engineering assessment of a JPL-developed all-digital

in-pixel high-frame-rate Read-Out Integrated Circuit (ROIC).
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a running example throughout this article. The GRIFEX CubeSat [15] was launched into

orbit on January 31, 2015. It contains a 9.6 kbps radio which beacons approximately once

every 10 seconds at 437.485 MHz with a random initial delay. The RF transmissions undergo

Doppler shifts, whose parameters are dependent on the evolution of the spacecraft orbit in

relation to a ground station. We have performed orbit determination of the GRIFEX CubeSat

based on RF transmissions received over two passes at the FXB Ground Station, University

of Michigan, Ann Arbor.

II. Background

A. Mathematical Preliminaries

In this section we introduce our mathematical notation, and some theoretical concepts in

probability and set theory that will be useful for analysis of the system.

Notation Upper-case symbols are used to denote random variables or sets. Scalars or

vectors are differentiated by context. Lower-case symbols are used to denote either instances

of the random variable or known/observed constants. Script letters such as X ,Y etc. are used

to denote a measurable space with FX ,FY etc., denoting the corresponding Borel σ-algebra

and PX , PY denoting the probability distributions, respectively. The symbol ŷ is used to

denote an estimate of the corresponding true value y. Subscript T refers to the test system.

Set distance We shall define the distance between two measurable sets A and B to be

dS(A,B) = m(A∆B), where m is the Lebesgue measure and A∆B = A \B ∪B \A.

Probability kernels and the Prokhorov metric The space of probability distributions

on a compact metric space (X , dX ) with Borel σ-algebra FX , is a metric space (BX , dP ) (weak

topology), where dP , the Prokhorov metric, is defined as

dP (P1, P2) = inf{a : P1(A) ≤ P2(Aa) + a ∀A ∈ FX and vice versa} (1)

where Aa = {s ∈ X : d(s,A) < a} and d(s,A) = inf{d(s, sA), sA ∈ A} For details see

Chapter 2 of [16]. Also, for any two random variablesX,Y defined on X and Y, the conditional

probability P (X|Y = y) is associated with a function µ : Y → BX (see lemma 1.37 and

Chapter 5 in [17]). We shall call this function a probability kernel function.

B. Recent Techniques from Machine Learning

Now we present a brief review of two machine learning techniques recently proposed in liter-

ature that we have applied to our problem: distribution regression [18] and transfer learning

[19].
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Distribution regression Distribution regression [18] is a technique to estimate the map-

pings from the space of distributions on a compact space X , BX to S, a compact subset of

R when the only access to the distribution is through samples drawn from it [18]. Say we

are given N training samples {{x(i)
j }

ni
j=1, si}Ni=1, drawn from a meta-distribution over BX ×S.

The objective is to estimate a function r : Φ(BX ) → S, where Φ(BX ) is the image of BX
under the mean embedding, such that

r∗ = arg min
r∈H

E[(r(Φ(PX))− S)2] + ξ2‖r‖2H, (2)

where ξ2 is a slack variable, and the mean embedding is defined as Φ(PX) =
∫
X k(·, x)dPX

for a kernel k. The resulting optimization and predictor is

r̂ξ2 = arg min
1

N

N∑
i=1

(r(Φ(P̂
(i)
X ))− si)2 + ξ2‖r‖2H ⇒ r̂ξ2(Φ(P̂X)) = sᵀ(K +Nξ2I)−1kr, (3)

where K is the kernel matrix and kr is the kernel vector for the given distribution [18]. It has

been shown that when the embedding is Hölder continuous with exponent h, this estimator

is consistent and upper bounds for convergence can be obtained [18]. Lastly, when space X
is a Polish space, universal kernels that are dense in the space of continuous functions over

compact metric spaces [20, 21] can be used. Distribution regression will be used to perform

non-parametric estimation of orbits.

Transfer learning Consider a Polish space X , a binary classification space Y = {−1,+1},
and a loss function L : R × Y → R+. Let the space of distributions over X × Y be BX×Y .

Assume that there exists a distribution λ over BX×Y such that λ = λY |XλX and λY |X = δD

almost everywhere, where δD is the Dirac-Delta function. For such functions, ∃h : BX×X → Y
such that y = h(PX , x). Let Hk be the reproducing kernel Hilbert space (RKHS) associated

with kernel k1 : X ×X → R. For Φ(BX ), the set of mean embeddings associated with BX , let

HkP be the RKHS associated with the kernel kP : Φ(BX )×Φ(BX )→ R. We seek an estimate

hH of h such that the following criterion is satisfied:

hH = arg min
h∈Hk̄

EPXY ∼λ,(X,Y )∼PXY [L(h(Φ(PX), X), Y )], (4)

where k̄ : (Φ(BX )×X )×(Φ(BX )×X )→ R and k̄((PX , X)(PX′ , X
′)) = kP (Φ(PX),Φ(PX′))k1(X,X ′).

The resulting regularized problem has the formulation [19]

ĥξ1 = arg min
h∈Hk̄

1

N

N∑
i=1

1

ni

ni∑
j=1

L(h(Φ(P̂
(i)
X ), Xij), Yij) + ξ1‖h‖2Hk̄ . (5)

We shall use transfer learning to perform classification of feature vectors of multiple spacecraft.

III. Problem Setup

Consider a spacecraft with orbit parameters Γ drawn from the space J according to a

probability distribution PΓ, which is known a priori and has compact support. There are
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nG synchronized ground stations that behave as sensors. The spacecraft produces vectors

F =
[
F1 F2 · · · FnG TS

]T
=
[
F̃ TS

]T
over a compact set F such that the connection

between F̃ and TS is governed by a parameter z specific to the spacecraft and the system

function associated with the dynamic system U described by

˙̃γ = g0(γ̃)

f̃ = h0(γ̃, z)

γ̃(0) = γ,

(6)

and TS ∼ PTS (z), a continuous distribution over T and a characteristic of the spacecraft

which is known. The ground stations produce measurements of these vectors F to produce

observations (feature vectors) X =
[
X̃1 X̃2 · · · X̃nG T

]T
, where X̃k, k = 1, 2, · · · , nG

are the features extracted per transmission at ground station k, and T is a time stamp.

For example, in the GRIFEX orbit determination scenario, F̃ represents the theoretical noise-

less vector of frequencies at the ground station at time TS , and X̃ represents the Doppler shifts

observed at the ground station. In this example, U is the dynamic system that controls the

Doppler shift (range rate), and z represents the parameters of the communication system

which are essential to draw samples of X, including bandwidth, thermal bias in crystal os-

cillator frequencies (which causes center frequency drift), and the probability of transmission

over [0, Tmax].

With this scenario, the orbit determination problem can be stated as follows. Given PΓ, U, z

over the time interval T , for feature vectors {x1, x2, · · · , xnT }, which are samples of X, we

would like to estimate γ, the orbit parameters.

This problem can be extended to two spacecraft labeled {−1,+1}, with orbit distributions

PΓ1,Γ−1 and feature vector characteristics z1, z−1 and corresponding system U , where given

this setup and feature vectors {x1, x2, · · · , xnT }, we would like to estimate the corresponding

labels {y1, y2, · · · , ynT } and orbit parameters γ−1, γ+1. The estimation of the labels {yi}nTi=1 is

the classification problem. Here we assume that there exists a mapping from the distribution

of PX to the label y. We consider two spacecraft, instead of a general nS-spacecraft scenario,

as it remains an open problem to develop the mathematical tools required for consistent

classification of nS spacecraft in the marginal transfer learning setting.

Remark Here we assume, for simplicity, that the feature vectors {x1, x2, · · · , xnT } are in-

dependent and identically distributed (i.i.d.). In most practical systems involving RF trans-

mission data, this is not necessarily the case as they are generated from a random process,

where data can at most be exchangeable and not necessarily i.i.d. and is a possible source of

sub-optimality.
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IV. Non-Parametric Orbit Estimation and Classification

We will now present an equivalent mathematical model of the system described above which

will provide insight into the characteristics of the system and the consequences of observability.

A. Probability Models

Consider the orbit determination scenario as detailed in section III. Given the communication

system parameters Z = z and the distribution of feature vectors with time P (TS |z), Γ induces

a probability distribution on F , as detailed later in the section. Samples of F generate samples

of X at the ground station network. It is to be noted that TS and TG are not necessarily the

same, especially when accounting for propagation delays through the channel. This results in

the graphical model shown in Figure 1(a).

(a) Single-Spacecraft Model (b) Two-Spacecraft Model

Figure 1. Graphical models.

The probability distribution can be split as

P (Γ, F,X|z) = P (Γ)P (F |Γ, z)P (X|F, z). (7)

The conditional probability distribution P (F |Γ, z) is shaped by a deterministic non-linear

dynamic model operating on TS . Consider the scenario where T = [0, Tmax]. For the moment,

let us assume that P (TS |γ, z) = P (TS |z). From the theories of astrodynamics [4] , it is possible

to describe the function that maps [0, Tmax] to F̃ , which is the space of frequencies observed

at the ground stations, using the following dynamic model

˙̃γ = g0(γ̃)

f̃ = h0(γ̃, z)

γ̃(0) = γ,

(8)

where ˙̃γ is the derivative of the orbital parameters with respect to time. We shall denote this
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system as U(γ). Such a dynamical system can be used to model perturbations associated

with orbit parameters and can also be used to perform orbit propagation given a particular

γ. For specific forms of these equations, see for example, Chapter 9 of [4].

The conditional distribution P (F |Γ, z) of a system can be written as

P (F̃ ∈ C, TS ∈ B|Γ = γ, z) = P (TS ∈ B
⋂
U(γ)−1(C)|Γ = γ, z), (9)

where C and B are sets in the corresponding σ-fields of F̃ and TS , and U(γ)−1 is the pre-image

of U(γ).

B. Mathematical Analysis

Now, for the system defined from Equations (7) through (9), we make the following assump-

tions regarding existence and uniqueness :

A I U is observable and Lipschitz continuous over the support of PΓ in T .

A II The probability kernel function from F → P(X ), for P(X ) ⊆ BX is bijective and

continuous.

We shall now discuss the origin and some physical consequences of these assumptions. Even

though the assumption A I is a significantly strong assumption regarding observability, it is

essential for the existence of a global estimator over the support of PΓ. While we do not aim

to prove this assumption holds for all low Earth orbits, we provide some evidence in such

a direction. Since there exist linearized estimators, the corresponding non-linear system is

also locally observable. In the setting of spacecraft, it also implies that the support of PΓ

cannot contain zero-eccentricity orbits, at least in this formulation using Keplerian elements,

due to singularity. For such cases, higher-fidelity models or generalized orbital parameters

(such as Poincaré elements), which guarantee observability and non-singularity, can be used.

Note here however, that the learning algorithm will provide solutions which are optimal only

specific to those elements and not necessarily in all of them due to the non-linear nature

of the transformation between these elements. The assumption of Lipschitz continuity is a

common assumption for existence and continuous dependence on initial parameters of the

system in control theory literature, which hold for spacecraft systems since the equations

governing perturbations of orbits due to the gravitational potential is a harmonic function

[7]. This assumption mostly holds except in cases of the effect of eclipses on radiation pressure

of large spacecraft (see section 14.3 of [7]), and even in such cases they can be modeled as a

C1 function with a very large Lipschitz constant [22]. Assumption A II is required for noise

characteristics of the system. For narrowband communication systems, it has been shown that

the correlation function S(f) from which the feature vector X is obtained can be written as
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S(f) = Q(fc + fd) + residual [23,24], where fc is the center frequency of the RF transmission

and fd is the Doppler, which satisfies the conditions of A II.

We now present a theorem that details the consequences of the assumptions on the framework:

Theorem IV.1 If Equations (7) - (9) hold along with A I and A II, then there exists a

continuous mapping λ : RF → J for RF ⊆ BX on the topology (BX , dP ).

Proof Sketch This follows from the observability and Lipschitz continuity properties of U .

Due to Lipschitz continuity the corresponding probability distribution P (F |γ, z) is continuous

in (BF , dP ). For the function to exist, the probability kernel function µ(γ) = P (F |γ, z) has

to be one-to-one. This holds as a result of observability of U and P (TS |z) being a continuous

distribution over [0, Tmax]. For detailed proof, see Subsection C of the Appendix.

This theorem can be extended to consider multiple passes, i.e., a set of time intervals in which

the orbits may be observable. To do so, we will model the influence of the orbital parameters

γ on PTS in a specific fashion. We will assume that the only effect γ has on TS is

P (TS |γ, z) := P (TS |TS ∈ T (γ), z), (10)

such that P (TS |γ, z) is continuous.

Generally the observed regions of the orbit are governed by the horizon of the ground stations.

Let us denote the dynamic equation associated with the elevation as V (γ)(t) over [0, Tmax].

Then for a closed set O, T (γ) is defined as

T (γ) = {t ∈ [0, Tmax] : V (γ)(t) ∈ O}. (11)

For γ to be estimable, we will need stronger assumptions on observability of U .

B I U is observable in T (γ), for every γ ∈ J , and U is Lipschitz continuous over the

support of PΓ in T .

Note that this is a significantly stronger assumption than observability over T . It is, however,

a weaker assumption compared to observability at every t ∈ T . A simple example for this

assumption in low Earth orbits occurs when estimating orbits with Doppler. In cases when

the right ascension of the ascending nodes differ by ε with all other parameters being identical

including the ground stations, there will exist regions where the doppler shifts are identical

for significant chunks of the two passes. They will, however, be observable as the point of

zero Doppler will differ in time.
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Corollary IV.2 If Equations (7) - (9), (10) - (11) hold for V continuous in γ and m({t :
∂V
∂t = 0}) = 0 along with assumptions B I and A II, then there exists a continuous mapping

λ : RF → J for RF ⊆ BX on the topology (BX , dP ).

Proof Sketch The proof follows from the fact that if T (γ) is continuous in γ and P (TS |z)
is absolutely continuous with respect to the Lebesgue measure then the mapping λ exists

and is continuous. T (γ) is continuous in γ when V is continuous in γ and an inverse exists

over all neighborhoods except on certain points of measure zero (which provides the condition

m({t : ∂V∂t = 0}) = 0). For detailed proof, see Subsection D of the Appendix.

The derivative conditions on V hold as a consequence of Newton’s laws except in cases of geo-

stationary orbits. However, for such orbits T (γgeo) = [0, Tmax], and therefore Theorem IV.1

holds.

This can now be extended to include the classification problem, with the label Y associated

with each feature vector X. For two spacecraft with Z1 = z1, Z−1 = z−1, the conditional

distribution can be modeled as depicted in Figure 1(b):

P (Γ1,Γ−1, Y, F,X|z1, z−1) = P (Γ1,Γ−1)P (Y |z1, z−1)P (F |Y,Γ1,Γ−1, z1, z−1)P (X|F, z1, z−1).

(12)

Consider the random variables Γ1,Γ−1, X, Y . There exists a probability kernel function ν :

J × J → BX×Y . A probability distribution PΓ1,Γ−1 induces the probability distribution

PΓ1,Γ−1
◦ν−1on BX×Y such that PΓ1,Γ−1

◦ν−1(ξ) = PΓ1,Γ−1
{(γ1, γ−1) ∈ J ×J ; ν(γ1, γ−1) ∈ ξ}

for ξ ∈ F(BX×Y); this is a consequence of the disintegration theorem. Also, i.i.d. draws from

PΓ1,Γ−1
will result in i.i.d draws from PΓ1,Γ−1

◦ ν−1. Therefore, PΓ1,Γ−1
induces a probability

distribution on BX×Y .

C. Observability and Probability Distribution Sampling

Theorem IV.1 and Corollary IV.2 imply that if the dynamic system controlling the evolution

of the observed random variables is observable and Lipschitz continuous, then there exists a

mapping from the probability distribution of the observations to the orbital parameters. In

the GRIFEX setting, this implies that if the observability and continuity conditions in B I and

A II are satisfied, then there exists a continuous mapping from the probability distributions

of the RF transmissions observed to the orbital parameters. This continuous mapping also

exists even when observations are spread across multiple ground stations in [0, Tmax].

While direct characterization of these probability distributions is prohibitive, it is possible

to draw samples from these distributions and estimate the kernel embedding associated with

the observed probability distributions and perform regression over the kernel embeddings

as detailed in [18]. Secondly, since the mapping exists and is continuous over a complete

topological space over a compact set, the convergence properties of continuous functions
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for the P(b, c) class hold, and therefore it is possible to estimate the function mapping the

probability distribution of the RF transmissions to orbital parameters γ arbitrarily close to

its estimate in the corresponding RKHS. When Universal kernels are used, the RKHS will be

dense in the space of continuous functions from BX to J .

For the mathematical model described in IV-A and IV-B, we are given nT observations

{xTj }
nT
j=1 and we would like to estimate the labels {yTj }

nT
j=1 and the orbital parameters γ. Gen-

erally, for probabilistic graphical models of this nature, Bayesian inference is applied, either

through direct computation of the posterior probabilities, the EM algorithm, or through tech-

niques such as Markov chain Monte Carlo inference methods. However, in this case, there are

two challenges. First, there exists no closed-form expression of the conditional distributions.

Second, while it is possible to sample from the prior conditional distribution, direct parametric

description of the posterior conditional is non-trivial and is also time variant. However, it is

possible to perform forward sampling, and from Theorem IV.1 there exists a continuous func-

tion from the space of probability distributions of X onto Γ. Based on this, we propose the

following. Perform sampling to generate {{x(i)
j }

ni
j=1, γi}Ni=1 or {{x(i)

j , y
(i)
j }

ni
j=1, γ1,i, γ−1,i}Ni=1.

The resulting system satisfies the underlying assumptions of transfer learning [19] and dis-

tribution regression [18]. Perform transfer learning to obtain an estimate of {yTj }
nT
j=1 and

distribution regression to obtain estimates of γ.

The sampling can be performed from the probabilistic graphical models described in the

mathematical formulation. It is crucial, however, that the probability distributions, especially

with regards to bias, are samples as expected to be seen in the experimental data. This is

not an impossibility as known sources can generally be characterized, especially artificial

spacecraft. It is also crucial that the orbit dynamical models are accurate in the limit for

consistency requirements to hold. For further details, see Section V.

D. Application of Distribution Regression

We use a vector extension to distribution regression. This technique is straightforward and

follows the same technique as detailed in [18] and [25]. The resulting optimization problem is

r∗ = arg min
r∈H

E[‖r(Φ(PX))− Γ‖2J ] + ξ2‖r‖2H. (13)

The kernel operator chosen on the embedding is in the form of a diagonal matrix, in which

the six kernel bandwidths are tuned separately. For multiple spacecraft, two scenarios arise.

When the probability distributions of Γ1 and Γ−1 are independent of each other, two different

functions r∗j , j = {+1,−1} can be estimated. However, in scenarios of constellation deploy-

ments, the kernel matrix can be used to take into account correlations associated with the

orbit parameters. This scenario occurs frequently in CubeSat deployments, where multiple

CubeSats are deployed with time offsets and small changes in deployment velocities. Note

that by construction, the distribution induced by γ lies in the P(b, c) class (see Appendix)
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and therefore convergence characteristics apply. The convergence properties of such systems

to the fundamental limits of estimation are based on the number of training data sets and

points available [18].

E. Application of Transfer Learning

The basic premise for the use of transfer learning is the following: When the constant charac-

teristics of RF transmissions are identical, or when SNR values are low such that decodability

is prohibitive, classification of a data point cannot be performed purely on the characteristics

of that data point alone. The entire distribution induced by the orbit parameters over time

period T has to be taken into consideration while performing classification of the data point.

We have training data such that

P (i)(X,Y |Γ1 = γ1,i,Γ−1 = γ−1,i) ∼ λ (14a)

(x
(i)
j , y

(i)
j ) ∼ P (i)(X,Y |Γ1 = γ1,i,Γ−1 = γ−1,i). (14b)

Transfer learning can now be used to perform classification. It ought to be noted that this

technique can also be used to classify and separate known local noise sources as well.

V. Test Results and Discussion

In this section we present our results from four test case scenarios. In one test we performed

orbit determination on experimental data based on the recent launch of the GRIFEX satellite

[15]. The other three test cases were created from synthetic orbital data. The first synthetic

test case performs Doppler-based orbit determination using distribution regression over two

ground stations. The second synthetic test case performs orbit determination on azimuth, el-

evation and range estimates over one ground station. The third synthetic test applies transfer

learning over pooled classification for a scenario of RF transmissions from two satellites to

one ground station. Before presenting our results from these tests, we briefly elaborate on the

processes and practical aspects of the generation of training data required for the application

of transfer learning and distribution regression.

Keplerian orbits were assumed for all four test scenarios, and the orbit parameters were taken

to be the six traditional Keplerian elements, Γ = (A, e, ω, I,Ω,M). In all of our test cases, the

priors on these orbit parameters PΓ were generally sufficiently broad to allow for significant

initial uncertainties in the values of the orbit parameters. For example, in the GRIFEX

orbit estimation scenario, the priors allowed the initial position vector to vary by around

1800 km. During post-launch orbit determination, the pre-launch orbit estimates can be used

with distributions based off accuracy of orbit insertion, energy imparted during launch, and a

uniform variation of perigee times based on launch window estimates. The orbit parameters

can also be drawn from mixture distributions, allowing different distributions for different

satellite systems.
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The communication systems of artificial satellites are generally well characterized. The sys-

tems parameters Z can take into considerations of bias due to thermal effects of oscillators;

if measurements exist for rate of de-tumbling, those can also be included for generation of

training data. Furthermore, effects of solar radiation pressure, air drag, and, in the case of an

attitude-determined spacecraft with pre-set orientation on orbit insertion, the corresponding

RF attenuation due to antenna positioning, can also be taken into account. The systems pa-

rameters also take into consideration the statistics of the data generated, the communication

systems parameters required for the generation of received signal samples, and the length of

the interval of RF transmissions.

The data are generated as per the graphical model described in Figure 1(a) or 1(b). The

training data are synthetically generated and are of the form {{xij , yij}nij=1, γ1,i, γ−1,i}Ni=1. For

a sample of the given prior PΓ, the orbit parameters generate time intervals of observability

on sight. Based on draws of time of transmission and resulting center frequency, the Doppler

parameters are computed from the draw of γ1, γ−1 using numerical techniques. Satellite

propagators can be used for estimation of Doppler shifts at various frequencies.

A. Orbit Determination of the GRIFEX Spacecraft

Orbit estimation for the GRIFEX CubeSat was performed over two passes (200-minute in-

terval) starting at 10 AM UTC, 2 Feb 2015, at the FXB ground station in Ann Arbor. The

following priors were assumed:

A ∼ Re + U(540, 570) km, e ∼ U(0.015, 0.02),

ω ∼ U(330◦, 345◦), I ∼ U(96◦, 101◦),

Ω ∼ U(35◦, 45◦), M = U(255◦, 275◦)

The orbit state being estimated was a TLE generated at 10 AM UTC, 2 Feb 2015. The

GRIFEX spacecraft transmits at approximately a 10-second interval a beacon of GMSK

modulation at 9.6 kbps with a random initial delay and therefore is stationary. A software-

defined radio system was used to filter a 50-kHz band of raw in-phase and quadrature samples

at 512 kHz at a baseband frequency of 437.479 MHz and then downsampled by a factor of 4.

The techniques proposed in cognitive radio literature [26] were used to extract the Doppler

shifts and the bandwidths. A further correction of 220.95 Hz for bias was performed by

filtering and estimation of frequency at the point of maximum slope. The raw IQ data were

corrupted by RF transmissions from the ground with significantly larger bandwidths and

power. Simple thresholding was used to extract Doppler feature vectors for the GRIFEX

spacecraft.

The training set consisted of 3000 orbits drawn from priors as described above. The training

data was assumed to be obtained from points with a one second resolution, due to computa-

tional feasibility. In true test systems, the number of transmissions per orbit would be much

13



higher due to higher sampling rates. The number of orbits for training and number of trans-

missions per orbit were limited by the computational capability of a Xeon 4 core processing

system. Five fold cross validation was performed. The resulting true and estimated Keplerian

elements are shown in Table 1. We assume that the estimates of GRIFEX orbital parameters

as given by Joint Space Operations Center (JSpOC) to be the ground truth.

Table 1. Keplerian elements of the GRIFEX spacecraft.

A(km) e I(deg) Ω(deg) ω(deg) M(deg)

True (JSpOC Estimates) 554.2014 0.0167974 99.1306 42.2363 334.6695 272.368

Estimated 551.0128 0.0161 99.3659 42.2911 339.9771 266.8452

B. Synthetic Test Case 1: Doppler-Based Orbit Determination

We performed orbit determination with synthetic data from two ground stations (Ann Arbor

and Chicago) estimating Doppler of one spacecraft over two orbits. The prior PΓ was chosen

as follows:

A ∼ Re + U(900, 1000) km, e ∼ U(0.07, 0.08),

ω ∼ U(16π/9, 33π/18), I ∼ U(2π/9, 5π/18),

Ω ∼ 4π/3 + U(0, π/18), M = π/4,

where U is the uniform distribution. With the stated prior, the maximum and average

variation in the radius vector were 1086 km and 470 km respectively. The probability of

transmission over the pass interval was chosen to be uniform. No sources of noise were added;

3000 orbits were used for training, with 100 orbits for testing orbit estimation. Probability

of transmission was chosen to be 0.08. Coarse fivefold cross-validation was performed. The

average error in the radius vector was 44 km. The root mean square radial, along-track and

cross-track position errors were found to be 2.7541 km, 54.54 km, and 27.4290 km, respectively.

Figure 2 shows the orbital parameters of the true values and estimates of the test orbits.

C. Synthetic Test Case 2: Orbit Determination Based on Range and Direction of Arrival (DOA)

Orbit determination was performed with direction of arrival and range estimates obtained

from synthetic data from one ground station over two passes (4-hour interval). The prior

on the orbit parameters was the same as that described in Synthetic Test Case 1, as were

the testing and training setups. The average error in the radius vector was 26 km and the

root mean square radial, along-track and cross-track position error estimates were found to

be 2.17 km, 34.8 km, and 8.04 km.

14



True and estimated orbital parameters

0 10 20 30 40 50 60 70 80 90 100
7260

7280

7300

7320

7340

7360

7380

test orbits

S
e
m

i−
m

a
jo

r 
A

x
is

 

 

Estimated True

10 20 30 40 50 60 70 80 90 100
44.9

44.92

44.94

44.96

44.98

45

45.02

45.04

45.06

45.08

45.1

test orbits

M
e
a
n
 M

o
ti
o
n

 

 

Estimated True

0 10 20 30 40 50 60 70 80 90 100
318

320

322

324

326

328

330

332

test orbits

ω

 

 

Estimated True

0 10 20 30 40 50 60 70 80 90 100
40

41

42

43

44

45

46

47

48

49

50

test orbits

In
c
lin

a
ti
o
n

 

 

Estimated True

0 10 20 30 40 50 60 70 80 90 100
240

242

244

246

248

250

252

test orbits

Ω

 

 

Estimated True

0 10 20 30 40 50 60 70 80 90 100
0.07

0.071

0.072

0.073

0.074

0.075

0.076

0.077

0.078

0.079

0.08

test orbits

E
c
c
e
n
tr

ic
it
y

 

 

Estimated True

Figure 2. True and estimated orbital parameters for Doppler-based estimation.

D. Comparison of Results from the GRIFEX Spacecraft and Synthetic Test Cases 1, 2

Table 2 gives a comparison of along-track, cross-track and radial position errors for the three

orbit determination test cases. Keplerian elements were used in all three estimates. For the

GRIFEX scenario, a synthetic test based on 100 orbits drawn from the GRIFEX priors was

also performed to obtain a better estimate of the errors seen for orbits with low eccentricity.

It is to be noted that, while the total position error for the GRIFEX spacecraft was 29.74 km

Table 2. Comparison of GRIFEX test error estimates (position errors) and synthetic test RMS errors.

Error
GRIFEX Test:

Real Data

GRIFEX Test:

Synthetic Data

Synthetic Test:

Case 1 (Doppler)

Synthetic Test:

Case 2 (DOA)

Radial (km) 7.55 9.83 2.7541 2.17

Along-track (km) 17.23 61.03 54.54 34.8

Cross-track (km) 23.04 160.5 27.429 8.04

Total Error (km) 29.74 172 61.1109 35.7825

based on real observations, the RMS error for draws of orbital parameters with the stated

priors and with training data of 3000 orbits with probability of transmission of 0.08 is 172 km,

due to the use of Keplerian elements at low eccentricity and due to low observability of certain

orbits in the Doppler domain.
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Another point to note is that the along-track and cross-track errors are higher in the Doppler-

based test cases. This is expected as this information is gained only from subtle variations

in the Doppler shift during the pass, whereas the radial position information can be gained

from the maximum Doppler shift variation.

E. Synthetic Test Case 3: Classification

This test case considers two satellites with identical modulation and data parameters of BPSK

and 10 kbps data rates with center frequencies differing by 10 kHz. Propagation of the satellite

orbits is performed using standard SGP4 propagators for a single ground station (Ann Arbor)

over a single pass. Synthetic datasets were generated with 40 data sets for training and 10

data sets for testing. The priors on orbit parameters were as follows:

A = 644.93 km,

e ∼ 1

E1
1{1×10−4≤e≤1×10−3}(N (4× 10−4, 1× 10−8) +N (−4× 10−4, 1× 10−8))

ω ∼ N (16π/9, (π/18)2), I ∼ N (2π/9, (π/1800)2),

Ω ∼ N (4π/3, (π/36)2), M ∼ N (π/4, (π/1800)2),

where E1 is the normalization factor. Note that for Gaussian priors the support was restricted

to 5 times the standard deviation. Training of both the pooled classification and transfer

learning systems was performed with fivefold cross-validation. All of the kernels chosen were

Gaussian. A projection of the training data with the corresponding support vectors onto three

dimensions is shown in Figure 3. It can be seen in Table 3 that the transfer learning system
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Figure 3. Training data for transfer learning system with support vectors marked.
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produces a classification error of 2.8% whereas the pooled classification system produces an

error of 6.83%.

Table 3. Classification error comparison.

Classification Method % Error

Transfer Learning 2.8

Pooled Classification 6.83

VI. Conclusion

It is possible, when the orbital parameters of a spacecraft are observable, to perform orbit

determination over orbital parameters defined over a compact space. The mapping will exist

when observability conditions required for the particular orbit are satisfied, and using non-

parametric estimation techniques, it is possible, theoretically, to perform orbit determination

with errors arbitrarily small from the true estimates.

It can be seen from the test cases that it is possible to estimate orbital parameters even when

they vary significantly. Linear region requirements are not necessary and initial estimates

are not required as long as they lie in a compact space, the characteristics of the spacecraft

are known and the parameters are observable. It is also possible to identify and classify

transmissions of known spacecraft.
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Appendix

A. Kernels and Reproducing Kernel Hilbert Spaces

Let X be a set. Consider the mapping k : X × X → R. This mapping is said to be symmetric if for

any two elements of X , x1, x2, we have k(x1, x2) = k(x2, x1). It is said to be positive definite if, for

any n elements, x1, x2, · · · , xn ∈ X , the matrix M with the i, j element M(i, j) = k(xi, xj) (known

as the Gram matrix) is positive definite. When the mapping k is symmetric and positive definite, it

is called a kernel. For every such kernel, there exists a Hilbert space H and a mapping φ : X → H
such that 〈φ(x1), φ(x2)〉 = k(x1, x2) [27] and the set Xf = {

∑
i αik(·, xi)|αi ∈ R, xi ∈ X} is dense in

H. Note that the set X can also be the set of probability distributions on a compact metric space

[20]. For every function f ∈ H, the following property holds: 〈f, k(·, x)〉 = f(x) for x ∈ X . Such a

Hilbert space is known as a reproducing kernel Hilbert space (RKHS). RKHSs provide elegant ways

of embedding probability distributions into Hilbert spaces.

B. Definition of P(b, c) Class

For the embedding Φ(PX) and estimates γ with the joint probability distribution ρ(Φ(PX), γ) if for

estimate fH ∈ H, given 1 < b ≤ +∞, 1 ≤ c ≤ 2, the following conditions:

1. γ is square integrable with respect to ρ(Φ(PX), γ) and ∃Σ > 0, G > 0 such that∫
R

(
e
‖γ−fH(Φ(PX ))‖Γ

G − ‖γ − fH(Φ(PX))‖Γ
G

− 1

)
dP (γ|Φ(PX)) ≤ Σ2

2G2

2. For T =
∫

Φ(BX )
kP (·,Φ(PX))δΦ(PX )(·)dP (Φ(PX)), ∃f̃ ∈ H such that fH = T (c−1)/2f̃ with

‖f̃‖2H ≤ R, for a fixed constant R.

3. T is such that the residuals {ti}Ii=1 of T in H satisfy

α ≤ ibti ≤ β

when b <∞ and I = +∞ and when b = +∞, I ≤ β <∞.

are satisfied then we say that ρ(Φ(PX), γ) ∈ P(b, c).
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C. Proof of Theorem IV.1

We need to prove continuity and uniqueness of the distribution for every γ ∈ J . We prove continuity

by using Lipschitz continuity of the function modulating a continuous probability distribution and

uniqueness by the observability property.

If U is observable and Lipschitz continuous then there exists a continuous bijective mapping from

J onto U(J ). For such a bijective mapping U , let the probability kernel function associated with

P (F ∈ ·|Γ = γ, z) = µ(γ). Then, by Lipschitz continuity, for a given δ we have ε such that: γ1, γ2 ∈ J
with ‖γ1 − γ2‖J < ε implies ‖U(γ1)(t)− U(γ2)(t)‖ < δ, ∀t ∈ [0, Tmax].

Consider sets C ∈ FF̃ , B ∈ FTS . For any t ∈ U(γ1)−1(C) we can find a point f ∈ U(γ2)(Cδ) such

that ‖U(γ1)(t) − f‖ < δ. This implies for every set D = C ⊗ B, we have D̃ = Cδ ⊗ B ⊆ Dδ such

that µ(γ1)(D) = µ(γ2)(D̃) and µ(γ1)(D) ≤ µ(γ2)(Dδ) + δ. Similarly µ(γ2)(D) ≤ µ(γ1)(Dδ) + δ. This

implies that

dP (µ(γ1), µ(γ2)) = inf{α : µ(γ1)(D) ≤ µ(γ2)(Dα) + α and µ(γ2) ≤ µ(γ1)(Dα) + α, ∀D ∈ FF}

< δ

(15)

Also, as U is observable over J , if γ1 6= γ2, then there exists D ∈ FF such that µ(γ1)(D) 6= µ(γ2)(D).

Therefore, there exists a continuous function from R̃F to J for R̃F ⊆ BF . Since the kernel function

from F to BX is bijective and continuous, the hypothesis holds.

D. Proof of Corollary IV.2

P (TS |z) is absolutely continuous with respect to the Lebesgue measure. If T (γ) is continuous in γ

and can be expressed as a union of intervals, we have for a given δ, ∃ε1, ε2 such that ‖γ1 − γ2‖ <
ε1 ⇒ dS(T (γ1), T (γ2)) < ε2 ⇒ dP (µ(γ1), µ(γ2)) < δ.

Let T ε(γ) = {t ∈ [0, Tmax] : V (γ)(t) ∈ Oε} and T −ε(γ) = {t ∈ [0, Tmax] : V (γ)(t) ∈ O−ε} where

Oε = {o ∈ Rn|d(o,O) < ε} and O−ε = ((Oc)ε)c. Since V is continuous in γ, we have T −2ε(γ1) ⊆
T −ε(γ2) ⊆ T (γ1) ⊆ T ε(γ2) ⊆ T 2ε(γ1). For a given γ, by definition, T (γ) ⊆ T ε(γ). If the two sets

T (γ) and T ε(γ) are equal for all γ, then the continuity condition is satisfied trivially and therefore

we only need to consider the case when T (γ) ⊂ T ε(γ). For a given ε consider T −ε(γ)∆T ε(γ)

i.e., the pre-image of O−ε∆Oε =
⋃
p∈Bd(O) Bε(p). We have, from the definition of the Lebesgue

measure, dS(T −ε(γ), T ε(γ)) ≤ m(RO,ε) + m(
⋃
Ci ∩ V (γ)−1(O−ε∆Oε)), where RO,ε is the set where

the derivative of V (γ) with respect to t is zero in O−ε∆Oε and Ci is a countable covering of the set

[0, Tmax]\RO,ε over the neighborhoods of points where the implicit function theorem can be applied.

Therefore, we have that when m(RO,ε) = 0, for any ε2 > 0, ∃ an ε3 such that dS(O−α, Oα) < ε3

implies dS(T −α(γ), T α(γ)) < ε2, which implies continuity of T (γ) with respect to γ.
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