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We consider here a single-frequency communication system consisting of K possibly
" moving users distributed in space simultaneously communicating with a central station
equipped with a computationally adapted array of n = K antennas. Such a configuration
could result if K spacecraft were to be simultgneously tracked by a single DSN complex
consisting of an n antennas array. The array employs K sets of n weights to segregate the
signals received from the K users. The weights are determined by direct computation
based on known position information of the K users. Currently known techniques require
(for n=K) about (4/3)K* computer “operations” (multiply and add) to perform such
computations. We develop here an improved technique that accomplishes this same goal
in 8 K3 operations, yielding a reduction by a factor of K/6.

' I. Introduction

Consider a narrow-band communication system consisting
of a central station trying to simultaneously receive signals
from K spatially distinct users sharing the same frequency.
Assume, further, that the continuously varying geometry of
the network (positions of the users relative to the central
station) is known to the central station. A reasonable approach
to such a multiple access system may be based on equipping
the central station with an n-element antenna array where!

n=zK, )

and providing this array with K processors, each of which
treats one specific signal source as the desired signal and the

“When n < K we do not have enough degrees of freedom to accom-
modate all K users (see Ref.4). In this preliminary analysis it is
reasonable to assume n = K. However, there are indications that a
somewhat larger n would decrease the incidence of momentary patho-
logical geometric configurations of the network (see Appendix). With
this in mind, we preserve the distinction between # and X throughout
this paper.
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remaining (K-1) sources as jammers. The kth processor would
thus enhance the message of source & while attenuating all
other sources (see Fig. 1).

The actual implementation of such a processor involves
multiplying the output of each array element by a complex
weight and summing these weighted outputs to deliver the
processor’s output. The crucial task here is the determination
of the nK weights (n weights for each one of the X proces-
sors). The equations yielding these weights as functions of the
system’s parameters have been known for quite some time
(Refs. 1,2) and have been widely applied in the field of
adaptive arrays. Here we propose to proceed differently and
apply these equations to solve for the weights directly. Let us
elaborate: An adaptive array usually operates under the prem-
ise that the locations of the various transmitters are unknown
to its processor. Its operation may be visualized as consisting,
in principle, of two distinct parts:

(1) Extracting from the received signals the unknown
parameters pertaining to the geometry of the network
(using cross-correlators).




(2) Using this information to set up and solve (iteratively)
the eigenvalue equation yielding the optimal weights.

In our case, the first step is superfluous since the network
geometry is assumed known at any instant of time. Further-
more, it is well known (Refs. 1, 2) that the eigenvalue equa-
tion for the weight of each processor is a particularly simple
one which reduces to a set of n linear equations (with complex
coefficients). It can be shown that a straightforward applica-
tion of these equations to our problem yields the Kn weights
with an investment of (4/3)Kn3 = (4/3)K* computer “opera-
tions.” (A computer “operation” is defined here as one real
addition plus one real multiplication.)

Now, it should be borne in mind that the feasibility and
ultimate limitation of the scheme proposed here depend on
the speed with which these computations can be carried out.
Assume that we have the proper weights for a given geometri-
cal configuration of sources. As time goes on, the sources
move, leading to a different configuration requiring a new set
of weights. The obvious speed constraint requires that the time
taken to compute a new set of weights should be shorter than
the time it takes the system geometry to change to such an
extent that the older weights lead to unacceptable reductions
in the SNR’s.

The fact that the computational load increases with the 4th
power of the number of members in the network imposes a
severe constraint on the network size that can be accom-
modated with this approach. Our main purpose here is to show
that by utilizing a recent analysis of adaptive arrays (Ref. 4)
we get a computational load that increases only as the 3rd
power of K. More specifically, the new scheme proposed here
reduces the number of computations by the factor X/6.

It should be pointed out that the value K/6 is arrived at
under the constraint K >> 1. Thus, the seeming implication
that for K <6 the new scheme is inferior to the old one is
false. As a matter of fact, the new scheme requires fewer
operations in all cases, saving at least (4/3)Kn3 (1- K2/n3)
operations each time we compute the weights. For n = K, this
is a saving of (4/3)K* (1 - 1/K) operations.

The weights are derived here in the context of a one-way
communication network — from the outlying members to the
central station. Thus, the array operates as a receiving antenna.
It should be pointed out, though, that there are well-known
techniques whereby the reception-mode weights can be uti-
lized to generate the same directivity pattern in a transmission

mode. Thus the method proposed here is applicable to a
two-way comnunication system. )

It should be apparent that a communication network of the
type considered here will require a number of detailed studies
before it materializes as an operational deployed system, Our
objective here is a limited one, namely, the development of the
new method of weights determination which makes such a
system feasible for a network of reasonable size.

Il. Formulation of the Problem

As our development here is based on the formulation devel-
oped in Ref. 4, we start with an introduction of the notation
and formalism used there. The reader interested in the under-
lying derivations should consult Ref. 4.

Let the array consist of n antennas and let G,(p) be the
voltage antenna pattern of element r of the array, where § is a
unit position vector. (Throughout this article, barred variables
and bold face variables represent vectors.) We assume that the
receivers fed by each antenna have identical thermal noise
characteristics and denote by o2 the thermal noise power
referred to the terminals of each antenna,

To prescribe the geometry of the array and the network, we
choose an arbitrary reference point in the array and use it as
the origin for two sets of position vectors {Er}f;l ) {ﬁk}’fﬂ )
where 8, is the position vector of the rth array element divided
by the wavelength, and p, is the unit vector pointing to source
k (see Fig. 2). To complete the description of the network, we
assume now a hypothetical isotropic antenna located at the
array’s reference point and use it to define the incident powers
of the network sources. Specifically, we denote by Vz the
power delivered from source k to the terminals of the refer-
ence antenna (V, is real positive). We see then that the overall
system is prescribed in terms of the following parameters

{Gr(ﬁ)}:;l ’fﬁr}ﬁq 02

8 P g

As shown in Ref. 4, the analysis of the system is most
conveniently handled in terms of entities derived from these
parameters, namely, a set of complex, normalized vectors
{uk}l,fq in an abstract n-dimensional space — the excitation
vectors, and a set of scalars{e k}’,f=1 , the power parameters.
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Let fgri'r;l be an orthonormal basis in the n-dimensional
space; that is,2

g g =8, Gj=12...,n @)
and let
n
v, = }: v, g8 (1<k<K) 3)
r=1
where

@

is the voltage at the terminals of the rth antenna due to source
k. The €, power parameters are defined as

2
€, = — (5)
SN C

u, is a normalized version of v, ; that is,

v

.
U = v, (6)
More explicitly, this means
n
uk = Z ukr gr : (7)
r=1i
with

Finally, we find that we have to deal with all possible scalar
products of the u,-vectors. Hence the notation

*

=uq, -u, C)

My =W W

Consider now the kth processor and let v, be its output
SNR defined as follows:

2The asterisk (*) denotes complex conjugation. In handling vectors
over the field of complex numbers, we adopt the approach of Morse
and~ Feshbach (Ref. 5). A short summary is given in Appendix A of
Ref. 4.
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[power of signal from source k]
[thermal noise power]
+

[power of signals from other (K-1)sources]

Ty = (10)

The basic task facing us is the determination of the optimal
weights in each of the K processors, that is, the weights that
maximize the v,’s. Here, we adopt a more meaningful design
parameter, namely,

(1)

<
a-
]
~e>, 2
&

where 7, is the “available SNR” (Ref. 4) of processor k, that
is, the maximal 7y, achieved when all other sources are
removed. We refer to v, as the normalized SNR. Obviously,

-0<Vk

<1 (12)
and the combination of weights that maximizes -y, will also
maximize v,

Let w,, be the optimal weight multiplying the output of
the rth antenna in the kth processor. We define now the
optimal weights-vector for the kth processor

n
w, = dowhkg  (I<k<K)  (13)
r=1

It is shown in Ref. 4 that these vectors lie in the subspace
spanned by the set {ukfl,fq. Therefore, we are at liberty to
adopt the following alternative representation for wy:

(14)

where Fis the rank of the {u,}¢_; set; that is, 7 is the size of its
largest subset which is linearly independent. (In (14) it is
implied that the sources are numbered in such a way that the
rank of {uk}g =1 is7)

It turns out that the value of 7 has far-reaching implications
for the system’s performance. We examine these in the Appen-
dix and proceed here under the assumption (shown there to be
reasonable)

r=K (15)




so that

Wi = Z Wi, U, (16)

In adopting the (16) representation we are transforming the
weights problem into that of finding the coefficients w,,. It
turns out that this simple change of representation is the
crucial step which ultimately leads to the significant speed
advantage mentioned in Section I. The underlying, more fun-
damental reason for the emergence of a different algorithm
(which, fortunately, happens to be more efficient) is that, in
adopting the (16) representation, we are led to a different set
of equations involving the wy,’s. This is explained more fully
at the end of Section III.

lll. The Weights Equation

We have shown in Ref. 4 that when the desired signal is
source number 1, the optimal w,,’s are given by3

K .

2. v 8 w, =0 (=1) (17)
j=1

K

D my+es)w =0 (2<i<K) (18)

j=1

Equations (17), (18) form a homogeneous set of equations for
the w, j’s. We now combine and reformulate them as the
following nonhomogeneous set:

K
Z (mij+el. 8i].) wy; =8, P te)w, (A<i<K)

= (19)

The generalization of (19) to the w) s of the kth processor is
trivial, namely,

K
Z (m;+e8,)w,
=1
=6, v, te)w, (G,k=1,2,...,K) (20)

3 These follow directly from (4.18)-(4.22) of Ref. 4 when we recall that
we proceed here under the assumption 7 = K.

Now, since the {w X i}}zl set is a solution of a homogeneous set
of equations, we may impose for each k the arbitrary condi-
tion#

o te)wy, =1 (1<k<K) @1)

thus, getting:
K

2, nyted)w, =8, (1<i<K)  (22)
j=1

Let us denote by M the K X K matrix whose (7, /) element is
Mz.,. =m, te, 61.]. (23)

Equation (22) now reads

K
DMy, =8, (24)
i=1
But this implies that
= 1
Wy = e )jk (25)

In other words, the w-weights of processor % are just the kth
column of M1, Inverting M will thus yield all the kj’s.

The validity of (21) (see footnote 4) can now be verified:
From (6), (9) we infer that

m, =1 (26)

Hence (23, A-2), |M] is closely approximated by the Gramian

(Ref. 6) of {u k}’,ﬁ =1 » Which is nonzero since 7 = K. This means
that a solution of (20) exists only if w,, # 0.

An incidental result of the obtained solution is simple

formulae for the SNR’s realized by the optimal weights. From
(21) we get

v, = ~-€ 27

Y =1 (28)

4There is an implied assumption here that wpp # 0. This is justified
later on.
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Having solved for the w,;’s, we now have to find the
corresponding physical weights {wl-j}. This follows in a straight-
forward manner from the two representations of w, (13, 16).
Starting with (13), we find that

n n
Wt B T Do Wt 8 = D Wi by = wiy (29)
r=1 =1 .

But (16), (17) yield
K
wk g] - E wkl uz g]
i=1
K n K
= Wi, 8,0 8 < Z Wiy Uy (30)
=1 r=1 i=1

Hence, combining these two results, we obtain
(1<k<K;1<j<n) 31

Let us now regard wy; as the (k, j) element of a K X n
matrix W. Similarly, let u;; be the (i, ) element of a K X n
matrix U. Recalling now that w,; is the (j, k) element of the
matrix M~1, we conclude that (3 13 is equivalent to3

we= @Y U =@y U (32)
But M is hermitian.® Hence
w=M1U" (33)
or equivalently,
(34)

This is our main result. We already know that (34) is much
more efficient than the result based on the direct approach.
But the w,;’s do not appear in (34) and if we recall definitions
(9), (23), we conclude that both approaches yield equations
relating “sz} to{u,-j}. What is the difference then between these

5The symbol ~ indicates transposition.
$From (23),

ok * * *
s = . 6., = .o u,) te,
M )l] m .+e18 (u] ul) ela

ji Ji ij

= uFeu. + = + =
u; u]. eiéz.j ™y eisij M,

g
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two sets of equations involving the same entities? An examina-
tion reveals a very simple answer: The kth equation of the
direct approach set involves the weights of all antenna ele-
ments in the kth processor, {wkr}fq. The rth equation of the
indirect approach involves all the weights in all the processors
connected to the rth antenna element, {wk ,}1,5 =1

IV. Operations Count

We propose now to solve (34) by the LU decomposition
method (Ref. 3). Specifically, we express the matrix M as

M=LU (35)

where & is a K X K lower triangular matrix with units along
the diagonal and %¢ is a K X K upper triangular matrix. This
decomposition requires (4/3)K3 operations? and transforms
(34) into

LUW = U" (36)

Denoting
UW = X, 37

we obtain
Zx =U" (38)

The solution now is quite simple: Starting with (38), we solve
for X. Since & is lower triangular, this solution is trivial
requiring 2K2n operations. Having done that, we substitute X
in (37), getting W trivially with an adcitional investment of
2K2n operations.

In addition to the above operations, we have to consider
the extra computations required to transform the physical
parameters into those of (34). Since the operations count for
the solution of (34) involves 31d order terms (K3, K2n), we
may ignore computations leading to lower order terms.
Strictly speaking, this leaves us with only the 2K3 operations

"Here and subsequently, the operations counts are actually multi-
nomials in K, ». Since in systems of interest n = K >> 1, we
approximate each multinomial by its highest order term. Note also
that multiplying two complex numbers and adding their product to
another complex number, requires 4 operations.




required to compute{mij}from{u k,}.s However, the computa-
tion of the u,,’s themselves requires Kn polar-cartesian conver-
sions.? Taking a conservative attitude, we allot (2/3)K2/n
operations per conversion, getting a grand total of 2K3(1 + 3
n/K) operations per set of weights. For n = K, this reduces to
8K3 operations.

Let us compare these results to the direct method. It can be
shown that, in this case, we have to perform LU decomposi-
tion on K different nth order complex matrices. Hence we
have here an investment of (4/3)Kn3 operations. The remain-
ing computations have 3rd order computation counts which,
however, are larger than the corresponding terms in the new
scheme. Therefore, the number of operations saved in the new
scheme is greater than

A 43 4.3 [ K
3Kn 3K 3Kn

n3

For n =K this reduces to a saving of at least (4/3)K* (1 - 1/K)
operations. Alternatively, for K >> 1, the ratio of the num-
ber of operations in the two scheme is

4.3 n
3Kn (K)
+

ol 5o

in favor of the new scheme. For n = K, this reduces to K/6.

V. Parallel Computation

Given the available hardware and the number of operations
as computed in the last section, we can easily get the fre-
quency of possible updates for a single arithmetic unit per-
forming all computations serially. If it turns out that knowl-
edge of the velocity vectors of the network members can yield
sufficiently accurate short-term predictions of their position
vectors, then pipelining can be employed to increase the fre-
quency of updates and/or increase the network size. Let us
examine the possibilities here. For n = K, the 8K operations

8We assume all array elements to be identical and aligned so that
G,(a;) in (4) is replaced by G(p 3 leading to only K pattern computa-
tions. Quite complex pattern formulae would thus have a negligibie
effect on the operations count. it

%u k18 initially computed in a polar form according to (8), (4) and then
converted to cartesian form for the subsequent computations.

are divided roughly equally among four tasks which can be
pipelined as follows:

(1) Computing M.
(2) LU decomposition of M.
(3) Solving for X,
(4) Solving for W.

We assign one arithmetic unit (AU) to each one of these
four tasks and allot them the time required to perform 2K3
operations. This is the correct value for tasks 1, 3, 4 if we
assign to task 1 an additional special-purpose chip for the K2
polar-cartesian conversions.!® It is longer than needed for
task 2 ((4/3)K3 operations) so we have the option of using
here a slower (and cheaper) AU.

With this scheme, we could update every 2K3 operations, It
is important to remember, though, that the mi]-’s computed in
task 1 should not be based on the current g,’s but rather on
the 5,’s predicted to hold when the corresponding W comes
out at the end of task 4. Thus, our prediction has to be good 4
pipelining cycles ahead.

It should be pointed out that tasks 3, 4 allow n-fold
paralleling. If other parts of the system call for a slow micro-
processor allotted to each antenna,!! then these # micro-
processors could perform tasks 3 and 4 as an additional duty.
To see this, consider equation (38): X, U™ are K X n matrices.
The microprocessor of the rth antenna can solve for the rth
column of X in K2 operations and, having done that, proceed
to equation (37) and solve for the rth column of W in another
K? operations. Thus, in 2K?2 operations this microprocessor
will have obtained all the weights needed by the rth antenna.
During that time, the fast processors assigned to tasks 1, 2
perform about 2K3 operations. We see, therefore, that the
antenna microprocessor may be quite slow and yet keep up
with the pipelining rthythm and its other tasks,

Needless to say, there is still much to be studied and
analyzed prior to embarking on the design of a multiple access
system of the type described here. We believe, though, that
sufficient merit and promise have been demonstrated here to
warrant such further studies.

19 These can be carried out in parallel with the main effort of task 1 —
computing My -

U por example, to digitally set the weights multiplying its output.
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Appendix A
Pathological Excitation-Vectors Configurations

The dimensionality of the w, vectors is n, whereas their
number is K <n. This implies that if we were to select the u,
vectors at random, they would most likely be linearly indepen-
dent and thus display 7 =K. However, in a constantly varying
geometrical configuration of sources, it is reasonable to expect
from time to time shortlived pathological configurations
which have 7<K. We refer to such configurations as rank-
deficient. A simple, obvious example is a configuration in
which the angular separation of two users (indexed i,/)
becomes small so that §, ~ 5; and hence u; ~ u;. Needless to
say, there are many situations where the cause of rank-
deficiency is not so obvious.

The effect of rank-deficiency on the system is two-fold:

(a) The system will fail to provide adequate services to
some users. Obviously, if we go to the extreme of
p;=p; in the above example, no choice of weights
could distinguish between users i and j.

(b) The whole system could collapse if we are not aware of
the rank-deficiency and are thus led to ill-conditioned
equations for the weights.

Let us consider (a) first: It is easy to show (Ref. 4) that ¥,
the “‘available SNR” of processor k, is given by

5 =L
7;‘- - ek (A'l)
Therefore, in the system design we must make sure that
€, <<1 (1<k<kK) (A2)

But, under these conditions, we can invoke theroem (8.15) of
Ref. 4, which may be rephrased to state that if u, of the
desired source is expressible as a linear combination of the u’s
of the other sources, then », <<1. Now, if the rank of
{uk}lk‘:l is ¥ <K, then atleast(K ~ 7) of the u,’s fall into this
category. Therefore, even if we succeed in obtaining error-free
values for the weights, the relevant (K - 7) processors will still
perform very poorly, delivering v, <<7%, (11). In other
words, (K - 7) of the links will be non-serviceable. But this
does not mean that the other 7 links will provide satisfactory
service. One could certainly conceive of a rank-deficient vector
set in which each and every member of the set is expressible as
a linear combination of the other members of the set. All we
can say here is that (K - 7) is a lower bound on the number of
malfunctioning links.
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We turn now to (b). First, let us point out that given ¥ and
given a specific set of 7 linearly independent vectors!? , we can
certainly modify our formulation so as to avoid the singular-
ity. We present here a brief sketch of this approach based on
the developments in Ref. 4: Equation (34) is still valid but M
is now an 7 X 7 matrix with

M =my+e (5,+3,) (A-3)
where13
K «
2 o (F<K)
Ziij - §=P*1 s (A-4)
0 F=K)
and o is defined by
+
u, = o, u F<s<K) (A-5)

i=

—

Finally, (21) is replaced by

7
v te) 2 @8, ) wy =1 (<K<
j=1

(A-6)

Equation (34) will now yield the {gr} components of %wk}?,;:l.
As we have indicated before, the (K -7) processors F+ 1,
7+2,...,K will yield unacceptably low SNR’s so there is no
need to compute {wk}l,fg;ﬂ and we see that (34) yields the
complete solution.

Though this approach is mathematically sound, it does raise
serious questions concerning the extra cost of determining 7
and selecting a corresponding set of linearly independent u,’s.
We have not looked into this in detail but, assuming the cost is
prohibitive, we propose here an alternative line of attack based
on a combination of three partial ““fixes” — one for a special
but rather important circumstance and the other two of more

general applicability.

~

12 We assume for convenience that they are numbered 1,2, ..., 7.

13 fz\i]- is a trivial modification of 4; of Ref. 4.




The special circumstance we consider is that of &, ~;
(i#7). This covers the example cited earlier but is more
general since the functional dependence of w; on p; is such that
widely different p,;’s may yield identical u,’s. Our strategy here
is to forego links 7, j altogether but combine their effect on the
rest of the system in a single vector (say) u, and a modified ¢;
to account for the combined power of both sources. Obvi-
ously, if the original rank deficiency was due to u, = u; then
removal of w; would rectify the situation.

The implementation of such a scheme is quite simple and
straightforward: In computing the m,;’s for the M matrix, we
set a gate to “sound the alarm” whenever |1 - m ,-j|2 falls below
a certain small tolerance!®. The reaction to this “alarm” is
simple too: Eliminate (say) ; and replace ¢; by €; where

¥ Recall that my; is complex.

_Mm‘l —_

~d,1
€, €
i

(A-7)
Note that this same algorithm is applicable to any number of
colinear u,’s.
The other two “fixes” are:
(1) Increase the difference (n- K). This increases the
dimensionality of each u, and thereby decreases the

likelihood of F< K.

(2) Devise a network protocol geared to overcome the
effects of short-term fading.

Obviously, these are just outlines and the whole subject merits
further study.
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