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A theoretical analysis of the problem of beam steering of semiconductor injection
lasers is presented. The required modifications of the dielectric constant profile of the
laser structure are derived, and a practical method for implementing the needed modifica-

tions is outlined.

l. Introduction

Many applications of lasers in general, and semiconductor
injection lasers in particular, call for the controlled deflection,
or steering, of the radiation pattern emitted by them. That is
the case, for example, in pointing and tracking subsystems of
optical communication links or optical radars and in systems
for optical data recording and retrieval.

In many cases the beam steering is performed by optical-
mechanical systems of mirrors, lenses and scanners. Several
physical phenomena such as the electrooptic, acoustooptic or
piezoelectric effects can also be utilized for building beam
deflectors (Ref. 1). In this paper we present a theoretical
analysis of yet another important way of achieving this goal
by incorporating the steering mechanism within the semicon-
ductor laser itself via the modification of its index of refrac-
tion. Such a monolithic configuration has the potential advan-
tages of higher reliability and considerable savings in size and
weight of the system. Another method, which is a subject of a
separate publication, is by controlling the individual phases of
lasers in a phase-locked array configuration, in a similar
fashion to microwave phased arrays (Ref. 2).

In a paper published recently (Ref. 3) electronic steering
of a semiconductor laser beam via the modification of the
dielectric constant has been demonstrated. The radiation
pattern was deflected +14° with respect to the normal of the
laser facet. Since the far field radiation pattern was about 6°,
this represents deflection of about *2 beamwidths.

The purpose of this paper is twofold: first, to provide a
theoretical analysis of the problem, and second, to outline
the approach for implementing the beam steering method.

Section 11 reviews the relation between the far-field radia-
tion pattern of the laser (i.e., the beam to be deflected) and
the near-field pattern (i.e., the field distribution at the laser
facet), which is basically a Fourier transform relation. Then
the wave equations for the modified laser field are derived,
establishing the general relation between the unperturbed .
dielectric constant profile of the laser cavity, the desired
amount of beam deflection and the specific modifications
of the dielectric constant profile that must be implemented.
Section III gives several specific examples of dielectric con-
stant profiles which represent several types of semiconductor
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lasers. In all cases it is found that an antisymmetric modifica-
tion of the imaginary part of the dielectric constant can cause
beam deflection. Finally, Section IV outlines a method for
achieving the desired modification of the dielectric constant
profile, thus serving as a general guideline for this application.

Il. Modification of the Laser Field
and Dielectric Constant Needed
for Beam Deflection

In this section we establish the relations between the
desired beam deflection and the modifications of the laser
field that need to be employed for this purpose. The schematic
configuration (Fig. 1) shows a top view of a semiconductor
injection laser and its emitted radiation pattern. Deflection
of the beam by angle 6 is equivalent to shifting the far-field
pattern by this angle.

The relation between the far-field radiation pattern and the
near-field radiation pattern (i.e., the field distribution at the
laser facet — the (xy) plane) has been thoroughly investigated
(Refs. 4-9). Basically it is found that the far-field pattern is
the Fourier transform of the near-field pattern times an oblig-
uity function g(¢):

U($) o g(9) f i E(y) e @y 1)

where ¢ is a general angle in the (¥z) plane (see Fig. 1), Eand
U are the near-and far-field patterns, respectively, and k(¢) is
given by

k(¢) = %ZT'sin ¢ ()

The different works cited above give different forms for
g(¢). A good approximation, commonly used in the literature
(Ref. 10) is g(¢) ~ cos ¢. In the following analysis we will not
take this factor into account since the additional attenuation
caused by it when the beam is deflected can be compensated,
in principle, by increasing the total current through the device.

The equation governing the near-field distribution of the
laser near field £'is the Helmholtz equation:

2
LE o\ (er?-E = 0 3)

dy
where € is the dielectric constant profile along the y direction,
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B is the propagation constant, k = 2z/X and X is the wavelength
of the radiation in vacuum. The notations needed in this paper
and the relations between the dielectric constant, index of
refraction and gain and loss coefficients of a particular mater-
ial are summarized in Appendix A. The reduction of the gen-
eral three-dimensional formulation of the wave equation in the
laser structure to the one-dimensional problem considered here
(as implied by Eq. 3) is outlined in Appendix B. In all the
following analysis, the superscript O indicates the value of the
unperturbed parameter, i.e., its value when the laser beam is
not deflected, and all unsuperscripted parameters are valued
in the deflected case. Also the subscripts » and i refer to the
real and imaginary parts, respectively, of the parameter.

Using the well-known rules of the Fourier transform we
know that in order to obtain a beam deflection by an angle
0,ie.,

Ulk(9)] = U° [k(9) - k(6)] )

the near-field pattern has to be multiplied by a phase factor,
namely,

E(y) = E%(y) *(®) ®)

It is clear that in order for such an operation to take place, the
dielectric constant profile of the laser has to be modified, so
that the modified waveguide will support the modified near-
field pattern. The magnitude and shape of the modification
are derived below:

Using Eq. (5) in Eq. (3), noting that E° by definition satis-
fies the following equation:

2
ek P = 0 ©
we obtain
[e° kK2 - (8°)? + k2(8)] E°(y)- 21'k(6)%-0
€ k2 - ﬁ2 - Y

E%(y)
(7

Equating the real and imaginary parts of Eq. (7) and using
the results of Appendix C which establishes the relations




between the propagation constants of the optical mode in the
laser waveguide and the field distribution, we obtain the fol-
lowing basic equations, relating the needed modification of
the real and imaginary parts of the dielectric constant to the
desired amount of beam deflection:

f Ac |E®[2dy )
R _ _2k@) ay TP rody

¥ oo k2 (E0)2 + (E0)2
f B0 dy ’ ‘

—00

Ae

(8
and
i 0E° a5 — B9
where
A, = e e 100
A, = ¢ - (10b)
A8, = 8, 8 (10¢)
A, = 6,- 8 (10d)

are the changes of the corresponding parameters from the
unmodified case.

As noted in Appendix C, significant simplification of Egs.
(8) and (9) results if the modifications of the dielectric func-
tion is an antisymmetric function; i.e.,

86,0) = - Ae(-y) (11a)
86 () = - Acfy) (11b)
In this case Eq. (8) is reduced to
dE? dE;

EY - E0—

¥
Aé’r - 2k(0) dy ’ dy (12)

K ED &)

while Eq. (9) is reduced to

dE? dE°
T E?
AEi - 2k(9) dy — d}(’) - (13)
% (E,) +(E})

Equations (12) and (13) give explicit expressions for Ae,
and Ag;, respectively, while Egs. (8) and (9) are integral equa-
tions for these quantities.

In the following section we will apply Egs. (12) and (13) to
several specific examples of semiconductor laser waveguides.

lll. Specific Examples of Dielectric
Constant Modification

In this section we present three examples of beam-steering
in one-dimensional waveguide structures. In the first example
the unperturbed waveguide has a pure real index guiding; in
the second case, a pure imaginary index guiding, and in the last
example, a general complex index guiding. It is found that in
all cases the beam deflection can be achieved by establishing
an antisymmetric modification of the imaginary part of the
dielectric constant profile along the laser junction plane (i.e., y
direction in Fig. 1).

A. Pure Real Index Guiding —
the “Sech?®” Profile

We consider the following dielectric constant profile, shown

in Fig 2a:
@) = ?[1 +6 - (sech2 /% ky):l (14)
where € is the dielectric constant at y — #o0 and & is a

constant. Although this profile represents only a first-order
approximation to real life devices, it is analyzed here since the
simple analytic solution that one obtains in this case serves to
flluminate the basic underlying requirements of beam steering.

Defining the dimensionless coordinate

§-¢
£= 0" € ky (15)
the wave equation (6) is reduced to

d2E20 +2 sech?(§) E°C) = 32__[@ )?

- €]E°(§) (16)
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which is known to have a solution of the form
0/ _ _ 8¢
E%°(y) = sech(§) = sech —2—ky 17
with the propagation constant 0 given by
0\2 = 7227 &
B = k*€ (1 +7) (18)

Using Eqs. (17) and (18) in Eqgs. (12) and (13) we obtain

fe, = 0 (19)
Ae ) = \/;E%ﬁ) tanh( % ky) (20)

or, using the definition of Eq. (2):
Ae(y) = /268 (sin 6) tanh( %5 ky) @1)

The profile of Ae; (Eq. 21) is shown in Fig. 2b. It is an
antisymmetric function, as expected. In this case there is no
change in the real part of the dielectric constant profile.

B. Pure Imaginary Index Guiding —
the Quadratic Profile

We consider the following dielectric constant profile:

e(0) - a%y* Iyl <§2—
0) = ) (22)
-3 >3

This example describes with a reasonable accuracy the
guiding mechanism of a contact-siripe laser with “medium”
stripe widths S (Ref. 10, Ch. 7.10). In the following we will
neglect the effects of the field distribution tails at |y {>S/2,
which is a good approximation for not too narrow stripe
widths.

The complex parameter  is given by Ref. 10, Ch. 7.10

Ae g,
a=a+igg = 1+ [—— (23)
1S

where g, is the gain in the center of the laser stripe. The
parameters in Eq. (23) are depicted in Figs. 3a and 3b.
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The fundamental mode of the electric field in this wave-
guide is given by

2.2 .
) = VN0 ) 52 (24)
where K is defined by
kg
Ki=—7"1"1 (25)
252 :

Using the results of Appendix C, we find the real and
imaginary parts of the wave propagation constant:

@y = e -K 26)
Ve, -
A . @)
262

It is interesting to note from Eq. (26) that because of the
gain guiding, a wave can propagate although its velocity is
higher than the velocity of light in the material, a phenomenon
that is impossible in real index waveguides.

Using Egs. (2), (24)-(27) in Egs. (12), (13) we obtain the
needed modification in the dielectric profile:

N SA T S
Ae, = 4(16) Gsin @) -y Iy|<2 (28)

and

K? . S
Ae, = - Ae, = 4(7) +(sind) -y Iy|<—2— (29)

We note again that antisymmetrical modifications of the index
of refraction are needed. Another interesting feature is that in
this case the modification in the real part of the dielectric
constant has the same magnitude and the opposite sign as the
modification of the imaginary part of the dielectric constant.

C. Complex Index Guiding —
Slab Waveguide Profile

This example can be used to describe the behavior of many
generic types of lasers such as the Buried-Heterostructure laser

~ (Ref. 11), the Channelled-Substrate-Planar laser (Ref. 12), and




the Deep Diffusion Stripe laser (Ref. 13). The dielectric con-
stant profile in such structures, as shown in Fig. 4, is given by

S
€,y |y|<7 (30a2)
Er =
pI>S (30b)
erl Y 2
S
VLS (30¢)
€. =
]
>3 (30d)
€& V-3

where €., €,,, ¢, and €;, are constants. Typical stripe widths
in lasers of these types are usually — although not always —
narrower than in gain-guided lasers described in the previous
example (2-5 um vs 5-15um).

In this case the field solutions are given by

cos h%y (31a)

E%(y) =

0
cos (h°%) ¢'512 g=a’ly| (31b)

where k£ and g are, in general, complex numbers, and their
values are determined by the eigenvalue equation (Ref. 1,

Ch. 19):
(h°§) tan (k"%) - (qﬂ %) (32)

Following the calculations outlined in Appendix C, the
propagation constant is given by

B = 6, K-GO = ¢, +@  (33)

2
8 = 2’°—ﬁo e + (e - €, T, ] (34)

v

where I" , is the fraction of the mode energy contained under
the stripe width S.

Using Egs. (33), (34) in Eqgs. (12), (13) we obtain

2k(6)n°
et (00 +35m 2 m <3
cos? (h%y
Ae = ’
¥
2q%%(6) S
+ ;2 |y|>-2—
(35a, 35b)
and
2k(0)hf S
2 tan (hfy) Iy|<-2— (36a)
Ae, =
1
24 k(6) S
F r ly |>5 (36b)

Note that in this case the modification of the real part of
the dielectric constant is much smaller than the modification
of the imaginary part of the dielectric constant, since |h?| <<
R and lg?| <<q?.

IV. Implementation of Beam Steering
via Asymmetric Current Injection
Across the Laser Stripe

In the last sections it has been shown that antisymmetric
modifications of the dielectric constant have to be established
across the laser structure if its beam is to be deflected. The
major contribution- to the beam deflection comes from
modifying the imaginary part of the dielectric constant, since
it is a well-known fact that Fourier transform of real functions
are always symmetric, regardless of the nature of the (real)
function. As shown in Appendix A (Eq. A-6), the imaginary
part of the dielectric constant ¢ is related to the gain in the
laser medium g:

2 & &

= — =k-._._

W e

(37)

In addition, it is known that the gain in the laser medium is
related to the carrier density AV in its active layer. A commonly
used formula is (Ref. 14)

) = 2w-N,,) (38)
8

r

where 4 is a proportionality constant and N, is the carrier
density needed for transparency (ie., g=0). For GaAs at
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room temperature 4 = 1.6 » 1076 cm3sec™! and N, =
7.5+ 1017 ¢m~3.

Equations (37), (38) suggest a possible method for modify-
ing the dielectric constant via modifying the distribution of
the carrier density across the laser structure. This can be done
by splitting the stripe contact of the laser to several parallel
stripes, and passing different amounts of current through each
stripe, as shown schematically in Fig. 5. Although the exact
formulas are quite lengthy (Ref. 10, Ch. 7.7), the carrier
density profile in the active region due to current injection in a
stripe contact is basically a bell-shaped function whose width
and height are roughly proportional to the stripe width and to
the current density through the stripe, respectively.

An example of carrier distribution is shown in Fig. 6, where
the total current of 250 mA is divided between two stripe
contacts whose width is 2 um and whose center-to-center
separation is 8 um (the diffusion length is taken to be 3.6 um).
The currents ratio in the two stripes is y:(1 ~ ¥). For y=0.5,
the distribution is symmetric and no beam deflection is
expected. However, for ¥ < 1/2, an antisymmetric component
whose shape is shown in Fig. 7 is established across the struc-
ture, resulting in a beam deflection. If we approximate the
laser structure by the quadratic gain medium (example 2 of
previous section), and assume that we want to deflect the
beam by 0.1 rad (5.7°), and that g, = 100 cm™1, \/€, = 3.6
and A= 0.9 um, then we need a gain difference between the
two edges of the stripe of (see Egs. 25, 29 and 37)

e =hil-3)

kg
" sin 6 = 140 cm™!

Ve,

From Eq. (38) we see that the requirement of Eq. (39)
corresponds to establishing a carrier density difference of
about AN =8 + 1017 ecm™3, Using the results of Figs. 6 and 7
we see that a current splitting ratio of approximately 3:7 is
needed (see Appendix D for a detailed derivation). From
Eq. (28) we see that a change in the real part of the dielectric
constant has also to be established. This change may be auto-
matically effected through the plasma effect, where, for GaAs
we have (Ref. 10, Ch 2):

(39

~ . 10~20
Se, 2~ 1.1+ 10720 AN (40)

30

It is seen that AN = 8« 1017 translates to e, ~ 9+ 1073,
which reasonably compares with the needed value of 3¢, =
2+1072,

In other structures, such as the slab waveguide (example 3
in the previous section), the requirements for beam deflection
are even less stringent in terms of the gain and carrier gradients
that need to be established across the laser structure, and thus
larger beam deflection angles are feasible.

As a final note it should be emphasized that it is virtually
impossible to achieve the exact modification, as required by
equations such as (28), (29), (35), (36), since we do not have a
direct local access and control to the active region. Further-
more, the above equations were derived using simplified laser
models and thus are also not exact. However, the experimental
results reported in Ref. 3, where beam deflection was obtained
using only a double-stripe contact, indicate that practical
structures which adequately approximate the exact theoretical
requirements are feasible. Since the results of Ref. 3 also show
that the amount of beam deflection depends on both the
current ratio and magnitude, a more refined model of the laser
operation above threshold (see, for example, Ref. 15) must
also be incorporated into the analysis.

V. Conclusions

Electronic beam steering of semiconductor lasers is very
useful in many applications, and thus it is important to under-
stand the underlying relationships between the physical param-
eters of the device and the amount of deflection of its radia-
tion pattern.

In this report the problem of beam deflection of semicon-
ductor injection lasers has been theoretically investigated. It
was found that beam deflection can be achieved by tailoring
the profile of the current injected into the laser active region
via the modifications in the dielectric constant that accom-
pany such current distribution changes. The magnitude of the
modifications possible are sufficient for beam deflections of
several degrees and in certain laser structures even more.
Among the systems that could greatly benefit — in terms of
size and weight reduction — from the application of electronic
beam steering are pointing and tracking subsystems of optical
communication links, optical radars, and optical data
recording/retrieval systems.




SEMICONDUCTOR
LASER (TOP VIEW)

Fig. 1. Schematic configuration of
semiconductor laser beam steering
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Fig. 2. (a) A sech?-law dielectric constant distribution; (b) modifi-
cation of the dielectric constant needed for a beam deflection of
an angle ¢
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Fig. 3. Dielectric constant distribution in a
quadratic index pure gain guiding medium:
(a) real part, (b) imaginary part
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Fig. 4. Dielectric constant distribution in a one-
dimensional three-layer slab waveguide: (a) real
part, (b) imaginary part
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CARRIER DENSITY IN THE ACTIVE REGION x 10'8 cm=3

Fig. 6. Distribution of the carrier density inthe GaAs active region due to currentinjection
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Fig. 5. Schematic configuration of multiple stripe laser structure
which makes carrier density profiling possible
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in a double-stripe structure; the currents ratio is y:(1—7)




ANTISYMMETRIC COMPONENT OF CARRIER
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Fig. 7. Distribution of the antisymmetric component of the carrier density in the case of
maximum asymmetry (i.e., y—0)
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Appendix A

In this appendix we establish the notations used in the text
for describing the dielectric properties of the material. A
material is characterized by a dielectric constant €, whose
relation to the index of refraction n of the material is given

by
e = n? (A-1)

Since both € and » are generally complex quantities, Eq. (A-1)
can be rewritten as

S » N2

€, tie; = (n,+in) (A-2)

where the subscripts # and i refer to the real and imaginary

parts, respectively, of each quantity. Since in virtually all the

relevant applications involving dielectric waveguides the condi-

tion [¢;] << ¢, (and hence also |n;| << n,) is met, we can use

the following approximate relations between the real and
imaginary part of € and n:

n, /e (A-3a)
€
n, = A-3b
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and

(A-4a)

o
4
=

~

€,=2nn, (A-4b)

The meaning of the imaginary part of the index of refrac-
tion is readily understood when the propagation of a plane
wave through a medium with an index of refraction » along
the Z direction is considered) '

o glet-knz) _ ekniZ ei(wt——kan) (A5)

where k = w/c. We see that n, determines the phase velocity of
the wave, and r,; determines if the medium is lossy (#, <0) or
with gain (r; > 0).

The magnitude of the power gain (or loss) coefficients,
expressed in units of (length™1), is given by

4 2 &
A

T Je

g=2kn, = (A-6)
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Appendix B

In this appendix we briefly outline the derivation of the
wave equation (3) used in this paper. This outline also serves as
a good demonstration on how real life three-dimensional prob-
lems, which usually do not have analytic solutions, can be
reduced to tractable one-dimensional problems. Here we fol-
low the treatment of Ref. 10, Ch. 7.10.

The laser structure cross-section is depicted in Fig. B-1.Its
active region has a width d and a dielectric constant e(y). It is
sandwiched between two low index of refraction cladding
layers whose dielectric constant is assumed to be fixed at
€.aq- The laser cavity is along the z axis. Since we are
interested in variations along the y direction, we want to
factor out the x and z dependence in the problem. In the
following we explain how this is done.

We start with the general three-dimensional wave equation.
Since semiconductor lasers are known to emit light predomi-
nantly in the TE modes, only the equation for & y I8
considered:

. 28
V2£ - _ J

Yoo a2

(B-1)

where ¢ is the dielectric constant of the medium and c is the
light velocity in vacuum.

Next we assume solutions with harmonic time dependence
that are propagating along the laser cavity z with a propagation
constant §:

i(wt—ﬁzz)

&, (6,2, = E(x,y)e (B-2)

Using Eq. (B-2) in Eq. (B-1), with the definition

o

we obtain the following equation, which does not contain any
z dependence:

V2 G, ) (k- ) E,(x,) =0 (BI)
where
2 2
ax?  ay?

In order to factor out the x dependence, we can, to a first
approximation, assume field solutions of the form:

& ,(x,) = EX(x) EX) (B-4)

This approximation is good for modes that are not too
close to cutoff (i.e., modes that are “reasonably” well guided).
Furthermore, since the variation of € along the x direction
occurs over distances much shorter than along the y direction
(typically fractions of a micron vs several microns), we can
neglect the small y dependence of E} [as implied in
Eq. (B-4)], and use separation of variables and write the fol-
lowing equation for EJ(x):

2 px
] Ey(x)

B-5
o2 (8-5)

+BLES(x) = 0

where 5?: is a separation constant. Using Eqs. (B-4), (B-5) in
(B-3), multiplying the resulting equation by [E7(x)]* (where
* denotes complex conjugation) and integrating over x, results
in the following equation:

e,
—j;—+ [6° Te) + (1~ T ey = B2 - 671 B0) = 0
(B-6)

where I' is the fraction of the field intensity confined to the
active region, i.e.,

s
f IE;‘](x)I2 dx

r = —d/2

x v
j IE;(x)l2 dx

Equation (B-6) is the desired one-dimensional wave equa-
tion. The following few notational changes are employed in
order to bring it to the form used in the text (Eq. 3). First, we
drop the subscript and the superscript from the field notation
since it is clear to which component we are referring. Second,
we scale the actual dielectric constant of the active region and

(B-7)
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use the effective quantity: e(y) in the text refer to €esf of this
appendix, where

€opr = Le)+(1-T)e,, (B-8)

and last, the propagation constant 8 in the text is given by

36

¢ = 39)

It is worthwhile noting that as the mode becomes more
confined to the active region (either by increasing d or by
increasing the difference between e(y) and ey ), T
approaches unity, and then €, ~ €(y) and -~ §,.
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Fig. B-1. Schematic cross section of a semiconductor injection laser
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Appendix C

In this appendix we derive the relations between the pro-
pagation constants and the field distributions. These relations
are required for evaluating some of the effects of the modifica-
tion of the dielectric constant ¢, that are needed for beam
steering,

We start with the wave equation for the unperturbed field
E° (Eq. 6):

2 10
fl_Ez__l_ [eokz_ (50)2] EO =0

dy

(€D

where the superscript 0 denotes the unperturbed quantities.
Multiplying Eq. (C-1) by (£°)*, integrating over y and assum-
ing along the reasoning of Appendix A that

(8°) = (82 +i80)* = (80)* + 2iB°8? (C-2)
we obtain
N R N dE°|?
k J:werIEl dy J; & dy
@) = - ©3)
f |E®1? dy
and
k? f e |E°1% dy
g =— (C4

260 f EO dy

where €0 = €0 + ie? is the unperturbed dielectric constant of
the medium.

The modified (perturbed) field is given by [Eq. (5)]
E = E° %0 (C-3)

From Eq. (C-5) we see that
|EI* = |E°] (C-6)

38

(i.e., the magnitude of the field is not changed), and that

dE|* _ ., o 4 |9E°|? .
'dy = kX)) |EY|* + p; c-7

From Egs. (C-3), (C-4) we can write equivalent equations for
Fi@ 2

B, and 8,
2 2 g
k J: e |E* dy J:w 5 dy

2= (C-8)

h =
f B> dy
K? f e|E dy

B, = —
26, f \E? dy

(C9)

Using Egs. (C-3), (C-4), (C-6) and (C-7) in Egs. (C-8), (C-9), we
obtain:

00

Ae [E°1? dy
B2 = (B2 - K2(O) + K2 — (C-10)
|E°% ay
and
Ae|EC1?2 dy
AB, 0 .[m !
ﬁt = 1- —6—0—- ﬁt’ ” (C-ll)
v J‘ |E°2 dy
where
Ae = e~ e = (e,- ) +i(e,~ €)= Ae, tile,
(C-12)




is the perturbation on the dielectric constant, and Af, can be
calculated from Eq. (C-10) using the approximation $? -
(89)* =267 AB,:

I Ae |EO1? dy
1 —o0
A8, =8, B = | - K0)

0 oo
%y I [E°P dy

(C-13)

A special case is when the real and/or the imaginary parts of
the perturbation on the dielectric constant are antisymmetric
functions.

First, if
Ae,(¥) = - Ae,(-¥)

then, from Eq. (C-13) we see that

AR, =~ —-——k2(0)
26°

v

If furthermore we also have

Aefy) = - Bef-y)

then from Eq. (C-11) we see that

_ a0 K0
£ 2807

A8,

(C-14)

(C-15)

(C-16)

(C-17)
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Appendik D

In this appendix we derive the current ratio needed to
establish a given antisymmetric carrier density. Let us denote
by F({) the carrier profile resulting from current injection
through a single stripe centered at { = 0. From Ref. 10 Ch. 7.7
we can see that

F(§) = F(-%) (D-1)
As a first approximation we assume that the problem is linear
(for a detailed analysis, refer to Ref, 10, Ch. 7.7) and thus we
have two stripes whose centers are separated a distance of 2a
apart and the currents ratio through the stripes is v:(1 ~ ),
then the resulting carrier profile is

@) = yFO-a)+(1-1NFQy ta) (®-2)

Decomposing f(y) into its symmetric and antisymmetric
components, making use of Eq. (D-1), we obtain

FO) = fop @)+ fon @) ®-3)

sym.
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where

Fom =5 [FO+0)+ F(y - a)] (D-4)
fo = (3" ) (76 + ) -Fy -] (-5)
sym.
From Fig. 7 we see that
max |F(y +a)- F(y-a)| =4 - 1018cm™3 (D-6)

and from the discussion following Eq. (39) we see that we
need AN =8 + 1017 ¢m~3, Solving

8-+ 1017 g(—éu 7)4~ 1018

we obtain y=0.3.
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