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FEight water vapor radiometers (WVRs) have been constructed as research and develop-
ment tools to support the Advanced Systems Program in the Deep Space Network and
the Crustal Dynamics Project. These instruments are intended to operate at the stations
of the Deep Space Network (DSN), various radio observatories, and mobile facilities that
participate in very long baseline interferometric (VLBI) experiments. It is expected that
the WVRs will operate in a wide range of meteorological conditions. Several algorithms
are discussed that can be used to estimate the line-of-sight path delay due to water
vapor and columnar liquid water from the observed microwave brighiness temperatures
provided by the WVRs. In particular, systematic effects due to site and seasonal varia-
tions are examined. The accuracy of the estimation qs indicated by a simulation calcula-
tion is approximately 0.3 em for a noiseless WVR in clear and moderately cloudy weather.
With a realistic noise model of WVR behavior, the inversion accuracy is approximately

0.6 cm.

l. Introduction

The applications that concern the DSN are contained in the
general areas of radio geodesy and spacecraft navigation
(Ref. 1). The experimental techniques utilize microwave
signals from extraterrestrial radio sources to measure a differ-
ential — time of arrival, doppler, or range. Propagation effects
imposed by the Earth’s atmosphere are treated as unknown
time delays or an increase in range and must be calibrated. In
this section the water vapor problem is reviewed, and it is
noted that the excess path length can be expressed as an
integral of the vapor density divided by the temperature
integrated along the line of sight. In Section II, the equation
of radiative transfer is solved, and it is shown that, given cer-
tain assumptions, the brightness temperature or opacity of
the atmosphere can be used to estimate the excess path delay
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due to water vapor. In Section III, a cross section of meteoro-
logical data is used to solve for the constants in several formu-
lations of the inversion algorithm, and site and seasonal
variations are discussed.

The primary atmospheric propagation effect that concerns
the geodesist or navigator is refraction. The apparent or

electrical path length Z,, along some atmospheric path L, is
defined as

L = fn(s)ds 1
L

where n(s) is the refractive index at the position s.



As a matter of convenience we will work with the excess
path length AL =L, ~ L or

AL = f(n-l)a"s 2
L

Since the refractive index of the atmosphere departs from
unity by only a few parts per ten thousand (or less), it is
customary to use the refractivity &, defined as

N = (n-1)10° 3)

so that the refractivity of a unit volume is characterized by
this number of & units, typically on the order of 320 at sea
level. Bean and Dutton (Ref. 2) discuss several formulations
of N as a function of atmospheric parameters. Used here is
the form given by Smith and Weintraub (Ref. 3),

N =716 (ﬁ) +3.73X 10° (—f’—) )
T T2

where P = total pressure (mb), T = temperature (K), and e =
partial pressure of water vapor (mb). This expression is con-
sidered accurate to 0.5% for frequencies less than 30 GHz in
normal ranges of temperature, pressure, and relative humidity.
Note that the total refractivity can be written as the sum of a
“dry” term N; = 77.6 (P/T) and a “wet” term N, = 3.73 X
10% (e/T?) that yields both a dry, AL,, and wet, AL,, path
delay correction:

AL, = 77.6 X 10“6f—}% ds ©)
AL, = 373X 10“1f-—e-—ds (6)
T2

The concern here is with the wet term, and elementary defini-
tions (e.g., see Ref. 4) can be used to express the vapor partial
pressure as the vapor density p,, to get the expression

p
AL (em) = 1.723 X 1073 f *jl:—ds (7)
L

where p,, is measured in units g/ma, 5 is in meters, and a line of
sight through the entire atmosphere is assumed. Since water
vapor is not a well mixed constituent of the atmosphere, AL,
will vary according to site, season, and local meteorological
conditions. Both the point value of the vapor density and its
distribution vertically and horizontally will vary on a variety

of time and spatial scales. Zenith values of AL, vary from 3 to
20 c¢m and scale approximately as the cosecant of the elevation
angle for other line-of-sight paths. In applications, observa-
tions are not usually made at the zenith but over a wide range
of elevation angles for which El = 30° might be an average
value. The path delay might therefore vary between 3 and
40 cm as extremes, Clearly, if accuracy goals are on the order
of 3 m, water vapor effects can be ignored. If the accuracy
goal is 30 cm, somehow the water vapor effect must be esti-
mated but the estimate of AL, does not have to be very good,
e.g., if Eq. (7) could be estimated with an accuracy of 50%,
the system accuracy requirement might well be satisfied. In
order to make this estimate a nominal model of the vapor
distribution pv(s) might be used and vertical and horizontal
fluctuations might simply be ignored. If the goal is a 3 cm sys-
tem accuracy, then the temporal and spatial variation of p,
along the line of sight is no longer ignorable. The integral in
Eq. (7) must be estimated while observing with the geodetic
system. Accurate estimates of the line-of-sight path delay must
be made from direct measurements or by use of the techniques
of remote sensing. In this paper, a microwave technique of
passive remote sensing that utilizes a water vapor radiometer
(WVR) is described.

When a radio wave from an extraterrestrial source impinges
upon the Earth’s atmosphere at other than normal incidence,
Snell’s law tells us that the direction of propagation will be
changed. At the Earth’s surface, » ~ 1.0003 and approaches
unity with increasing height so that in general the ray path
has a curvature that is concave downward. To an observer on
the Earth’s surface, an extraterrestrial radio source will appear
at a slightly higher elevation than he would calculate from an
ephemeris. The difference between the observed elevation of
the source and the true elevation is called the angular refrac-
tion and represents a rough measure of the curvature in the
ray path. At high elevations the curvature is negligible and the
path L in Eq. (1) is equivalent to the geometric line of sight
to the source. However, at low elevations the path curvature
becomes appreciable; Eq. (1) must be expressed in spherical
coordinates and is solved using ray tracing methods (e.g., see
Ref. 2) which require full specification of the total refrac-
tivity in both vertical and horizontal planes. Intuitively, we
can see that at low elevations the actual propagation path
becomes very dependent upon gradients in the vertical refrac-
tivity profile. Most of the refraction occurs in the lowest
10 km of the atmosphere so that a ray entering at say 5°
elevation will travel a path whose projected length on the
Earth’s surface is about 115 km. Even if we knew the distri-
bution of refractivity above the observing site, it is highly
unlikely that this distribution would apply along the entire
projected path. Depending on our system accuracy require-
ments, there will be some elevation angle below which these
effects defy our current calibration ability. Our current
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approach is to avoid these problems by restricting observa-
tions to elevation angles greater than 15°.

. Formulation of the Algorithm

The prev1ous section established the problem as the estima-

AL = 1.723X 1073 i”-d
v—1.73 TS

A suggestion of how this quantity might be estimated can be
gotten from consideration of Fig. 1. In this figure is plotted
the calculated brightness temperature of a model atmosphere
in the frequency range 10 to 40 GHz for three cases. The first
case is for a standard atmosphere containing no water, i.e.,
M, = M; = 0 where M, and M, are the precipitable vapor and
11qu1d respectively, in units of g/cm?. The precipitable vapor
or liquid is defined as that mass of vapor or liquid that would
be precipitated from a column extending through the entire
atmosphere with a cross section of 1 cm?. The second case
shows the spectrum of an atmosphere containing M, =2 g/cm?
distributed exponentially with a scale height of 2 km. The
third case shows the same atmosphere with an additional
liquid M; = 0.1 g/cm? that is assumed to exist in small drop-
lets. The “bump” in the curves for cases (2) and (3) is due to
emission from the water vapor molecule, and it is apparent
that the brightness temperatures is a strong function of the
amount of water vapor. Thus, a measurement of the bright-
ness temperature is effectively an estimate of the integrated
vapor density which constitutes a major portion of the integral
in Eq. (7). The problem then is to find the explicit form of
the relationship between brightness temperature and vapor
path delay and to subtract out the effect of liquid water. In
order to do this, the techniques of passive remote sensing will
be used.

We will consider the emission and absorption properties
of the atmosphere in terms of a gaseous medium in local
thermodynamic equilibrium. For a nonscattering, nonrefrac-
tive medium, the equation of radiative transfer given by
Chandrasekhar (ref. 5) can be transformed using the Rayleigh-
Jeans approximation of Planck’s law of radiation to the form,

T,(s) = T,(0) exp [-7 (s, 0)]

+fT (&) a (f, s) exp [-7(s, s)] ds (8)
which is shown schematically in Fig. 2. Radiation at a fre-

quency f, of apparent blackbody temperature 7, (s) is detected
at position s from a medium that both emits and absorbs.
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Radiation T}(0) is incident on the medium at 5 =
attenuated by the factor exp [-7 (5, 0)].
the medium at a physical temperature 7'(s), characterized by
an absorption coefficient & (f; s) will emit radiation at fre-
quency f, which is attenuated by the factor exp [-7 (s, 8.
The optical thickness 7 (or opacity) is defined as

’
Xy

T(58) = j o (, sy ds" ()

By the mean value theorem of integral calculus the integral
in Eq. (8) can be written

fTa exp(-r)ds = T, fa exp (-7) ds (10)

where Ty, is termed the mean radiating temperature of the
atmosphere. Using this definition the solution to Eq. (8) is

T, = T,exp(-n)+ T, [1-exp (-1} (11)

For low values of the opacity (r K1) T, ~ T,, ie., the
medium is transparent and we simply “see” the incident
radiation which in this case is T, the cosmic blackbody back-
ground at an apparent temperature of 2.9 K. For large values
of the opacity (r >>1) T, ~ T}, the medium is opaque and.
we “see” the gas radiating at its effective temperature. It is
convenient to solve Eq. (11) for the opacity in the form

T, -T,
_ M~
T = —loge(—-—-—TM_Tc ) (12)

We can express the total atmospheric absorption in Eq. (9)
as the sum of its three primary contributors, a water vapor
term, o, a liquid term, oy, and a “dry” term, oy, that
descnbes the background radiation primarily from the wings
of a series of oxygen resonance lines near 60 GHz:

£
1

= f(av+aL ta,)ds
(13)

Tv+TL+Td

Explicit formulations of the absorption coefficients can be
found in the literature. This study uses Waters’ form of the
water vapor absorption coefficient (Ref. 6), Snider and West-
water’s form for oxygen (Ref. 7), and Staelin’s form for
liquid water (Ref. 8). Since the water vapor absorption is a




linear function of the vapor density we can write the vapor

opacity term as
o, avT
T = -_— ds
-JEE

Thus, the opacity due to water vapor can be expressed in a
form that contains the functional form (i.e., Eq. [7]) of the
path delay integral.

(14)

To express the vapor opacity as a linear function of the
path delay, 7, = G(AL,) where G should be constant with
respect to s but may be a function of frequency f, implies

oaT
G(f s) = (5.803 X 10%) (p“ ) (15)

v

Let us suppose that we measure the brightness temperature at
two frequencies f; and f, and transform the observables
T,,, Ty, using Eq. (12) to estimate the total opacity. At each
frequency Eq. (12) can be written

-3
]

G, (ALv)+7'Ll+'rd1 (16)

-3
I

= G, (AL +1;, + 74, an

Staelin (Ref. 8) has given an expression for the absorption
coefficient for liquid water which varies as frequency squared
so that 7, =kf2, or 7,, = (,/f;)? 7. In a similar manner
the dry opacities scale by frequency according to 7,, =
B(f,/f)? 74,, where the parameter § depends on f] and f,.
Thus, Eq. (17) is transformed to

fé 2
n = G@L) +(F (TL1+ﬁTd1) (18)

which, together with Eq. (16), can be solved to give

f 2
X |7 - (f—:) 72—(1-[3)le (19)

(20)

As we did with the vapor term, we can assume that T, =
ZyM; , where Z; is the weighting function for liquid water,
and M; is the precipitable liquid. Thus,
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Equations (19) and (21) represent the formal solutions for the
excess path delay due to water vapor AL , and the integrated
liquid content M, , in terms of the transformed observables
7, and 7, defined by Eq. (12).

If we are able to measure the brightness temperatures
T,, and T, ,, then in principle we can estimate the vapor path
delay AL and integrated liquid content M, . The accuracy of
these estimates is limited by our ability to measure the bright-
ness temperatures and the quality of our assumptions, namely,
(1) that the quantities TM, Gl, Gz’ Ty and ZL are constant
and (2) that the radiation from liquid water varies as f2.
Accurate measurement of T, is primarily an instrumental
calibration problem. In the next section the overall quality

of these assumptions is examined directly.

lil. Determination of Constants
in the Algorithm

In order to use the inversion algorithms given in Eqgs. (19)
and (21), we must determine the mean radiating temperature
of the atmosphere, the vapor weighting functions, the liquid
weighting function, and the opacity due to the dry component
of the atmosphere. These quantities have been assumed to be
constant in the derivation of the algorithm, but in a real
atmosphere they exhibit variation and correlation with other
atmospheric parameters. While these variations are not so
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large as to invalidate the basic assumptions, they clearly indi-
cate some level of error in the algorithm. This implies that
we must always expect some level of “algorithm noise,” and
our efforts must be directed towards its reduction. Further-
more, some fraction of this algorithm noise is likely to repre-
sent systernatic variations that are a function of site and
season. If we were given a meteorological history of each
WVR site, we might be able to develop the constants in our
algorithms in such a way that would be optimized for that
site and hopefully reduce the seasonal variations. However,
this procedure presents potential operational problems:
(1) The meteorological history may not be available or easy
to obtain; (2) it is a fair amount of work if there are many
sites (e.g., as with mobile VLBI); and (3) someone must keep
careful track of which algorithm goes with a particular site,
and if that someone mixes the algorithms, the error could
be compounded. A far simpler procedure would be to derive
a single formulation of the algorithm in which the “con-
stants” were no longer constant but instead some simple func-
tion of site and seasonal parameters, i.e., in effect we would
use a mode] to reduce the site and seasonal systematic errors
in the algorithm. Any WVR user must decide on which
approach to use based on his accuracy requirements as well
as cost and operational reliability. The interpretation adopted
here is to use a single algorithm for all sites and to demonstrate
that the residual site and season dependencies are less that the
currently required level of accuracy.

We can best evaluate the level of algorithm noise as well as
site and seasonal variations by determining the constants in a
given formulation of the algorithm by using a regression analy-
sis. That is, we will use meteorological data (e.g., radiosonde
data) to compute the path delay and to solve the equation of
radiative transfer for the associated brightness temperatures at
20.7 and 31.4 GHz for a relatively large number of cases. This
data base will then be used to determine the value of the
constants in an inversion algorithm that will minimize the
residuals in a least squares sense. Of course, as a practical
matter, we will still be left with the problem of relating
the temperature scale of our WVRs to the temperature scale
defined in Eq. (8). Since our knowledge of fundamental
quantities like the absorption coefficients as well as our
calibration of the radiometers will always be less than perfect,
we must accept the fact that ultimately the WVRs must be
compared directly with some independent method of measur-
ing path delay if we wish an absolute calibration.

A data base of radiosonde data was assembled from five
sites in the United States during the year 1976. The sites —
Portland, Maine; Pittsburgh, Pennsylvania; El Paso, Texas;
San Diego, California; and Oakland, California — were chosen
to represent a cross section of meteorological conditions.
Each radiosonde launch provides an approximately vertical
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profile of pressure, temperature, and relative humidity that is
used to calculate the vapor path delay and to numerically
solve the equation of radiative transfer for the brightness
temperature, mean radiating temperature, and the opacity.
One launch out of eight was selected from each site so as to
obtain equal amounts of data from both 0 and 12 hours
Universal Time and to cover seasonal trends in the data. Thus,
for each radiosonde site we have 92 values of the vapor path
delay AL,; and 92 pairs of brightness temperatures I'1; (20.7
GHz) and T2, (31.4 GHz). We use the latter to estimate the
path delay (AL), = f(T1, T2;) and in a straightforward
manner solve for the constants in any given functional form
f(T1, T2, that minimizes the difference AL, - (AL,
in a least squares sense.

The radiosonde data does not provide any direct indica-
tion of the presence or amount of liquid water. As we noted
previously, the presence of even small amounts of liquid (as
in clouds) has a pronounced effect on the brightness tempera-
tures measured by the WVR. Hence, it is essential that we
evaluate the performance of the vapor retrieval algorithm
in the presence of liquid. In order to simulate the presence
of clouds the data from each radiosonde launch are scanned
for an indication that the relative humidity is greater than
95%, which we assume indicates an equilibrium condition
with liquid. The points at which the relative humidity falls
below 94% define the top and bottom of the cloud, and
the altitude of these points is calculated by simple linear
interpolation, Given the cloud thickness and altitude, we
use all three of the models for the cloud liquid density given
by Decker et al. (Ref. 9) which we denote by CMODEL = 1, 2,
or 3 (CMODEL = 0 denotes no liquid). The temperature of
the liquid was taken to be the interpolated temperature of
the radiosonde in the cloud, and the absorption coefficient
of liquid water given by Staelin (Ref. 8) is used to calculate
the brightness temperature. Using this criterion, a total of
121 radiosonde launches from the 5 sites was found that
suggests the presence of liquid water. Thus, for each cloud
model there were 121 values of the precipitable liquid M;,,
and 121 pairs of observables T1; and 72, The regression
analysis for the liquid water retrieval then proceeds in a
manner that is completely analogous to analysis used for the
vapor algorithm. For the vapor algorithm, the constants are
derived in the regression analysis using clear-sky data and
tested with the cloud data. For the liquid algorithm, the
constants are derived with the cloud data and tested with
the clear-sky data,

Generally, the zenith brightness temperature in clear-sky
conditions at both of our frequencies will be less than S0K
and the corresponding opacity less than 0.2 neper. This
suggests that we could expand the logarithm in Eq, (20) and
keep only the first order term in T}, i.e., a low opacity approx-




imation. The estimated path delay would then be of the
form

(AL, = Ag+A, [T1-04346X T2];,  (22)

where T'1 and T2 are the brightness temperatures at 20.7 and
31.4 GHz, respectively. Table 1 summarizes the best fit
parameters for this estimate. First, note that since we are
using noise free data, the RMS of the fit represents the quality
of the assumptions that have gone into the estimate, ie.,
“algorithm noise.” We would expect a larger RMS than
shown if we actually compared WVR data with real radio-
sondes for in that case we would be comparing two noisy
observables and the RMS would represent the quadratic sum
of the radiosonde error and WVR error. Second, note that the
values of the “constants” 4, and 4, vary from site to site by
more than their standard errors, clearly indicating systematic
effects are present in the data. This is further emphasized by
the fact that the RMS of the fit for all sites is larger than the
RMS from any single site, Progressive degradation of the
algorithm can be seen in the increasing RMS under cloudy
conditions, i.e., increasing opacity. Analysis of the residuals
indicates that they correlate with surface values of the pres-
sure, temperature, and the opacity. Of these correlations the
opacity is by far the most important. Since our data base
represents only zenith values, both the variation and the
absolute values of the opacity tend to be small. In a real
experiment, the WVR may be pointed down to an elevation
angle of ~15° and the range of opacities will vary accordingly.
Still, the RMS of the fit for all sites is not too bad so that
Eq. (22), since it is particularly simple, is adequate for a
quick estimate of the delay.

In order to obtain some idea as to the performance of our
algorithms in actual operation, we must know the instru-
mental noise spectrum imposed on the observables and must
include an estimate of its magnitude in the regression analysis.
One method that can be used to estimate the instrumental
stability is to have two side-by-side radiometers observe the
same target, e.g., the sky, and note the difference between the
two brightness temperatures. In principal, this difference
should appear to be Gaussian noise with an RMS equal to
v/2 times the RMS fluctuations of a single radiometer and can
be reduced by simply increasing the integration time. In
reality, the integration time can only be increased to the
point where the inevitable systematic errors begin to pre-
dominate, Data taken during the testing and calibration of
the WVRs indicate that the noise spectrum is ‘“‘white” on
time scales less than ~3 h and therefore can be reduced by
averaging. For time scales greater than 3 h, flicker noise
seems to predominate and appears as a slow drift of the
antenna temperature about some nominal value with an

amplitude of *1 K, Since the geodetic experiments that we
expect to support are normally longer than 3 h, we will model
the radiometer noise with a uniformly distributed random
variable drawn from the interval 1 K, added to the bright-
ness temperature. The regression analysis then proceeds as
in the noise-free case. Differences in the RMS of the fit be-
tween the noisy and noise-free data indicate the relative
importance on instrumental noise and systematics in the
algorithm.

The simple formulation in Eq. (22) does not take into
account that radiation from distant vapor along the line of
sight is attenuated by intervening vapor. This correction is
done explicitly by using the opacity as the transformed
observable. Table 2 summarizes the best fit parameters for the
path delay estimate that now includes the transformation to
opacity given by Eq. (12) (where T,,, = 275 K). Except for the
El Paso data set, we see that the constants are reasonably con-
sistent from site to site. Although there is a small bias for the
cloud liquid data, the RMS of the estimate in the presence of
liquid is consistent with the clear sky data — a definite im-
provement over the previous algorithm. When a uniformly
distributed *1 K of noise is added to the brightness tempera-
tures, the RMS for all sites rises to 0.55 c¢m, indicating roughly
equal contributions from algorithm noise and instrumental
systematics. This form of the algorithm is useful in circum-
stances where measurements of surface temperature and
pressure are not readily available.

When values of the surface pressure and temperature are
available, we can use them to further refine our algorithm.
The next most obvious parameter to model is the mean radi-
ating temperature 7;,. Figure 3 illustrates the frequency
dependence of T, in a plot of T, versus frequency for a
standard atmosphere containing an exponential distribution
of water vapor with total columnar content M, = 2 g/cm 2
Figure 4 shows how 7, varies as a function of M, again in
a standard atmosphere. The mean radiating temperature is
also a function of the physical temperature distribution in
the atmosphere and will exhibit site and seasonal variation.
Figure S illustrates this variation for the Portland, Maine,
data for the year 1976, and Table 3 summarizes the statistics
of both Tj; and the surface temperature Tg. The RMS varia-
tions in-7), indicated in Table 3 suggest that this could be a
significant error source in the inversion algorithm, and some
effort is warranted to reduce this variation. If we assume a
simple linear relationship between Ty, and the surface tem-
perature T, then the estimates

Ty, = 50.3+0.786 T, (f=20.7GHz)  (23)

[t}

Tyrn = Ty, * 3.4 (f=314GHz) (24)
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variation of T,, from all sites by a factor of

valiat piSaeh]

two. Table 4 summarizes the best linear fit between T, and
the surface temperature T for each site. Note that the RMS
for all sites in Table 4 is larger than the RMS for any individ-
ual site. This strongly suggests that this simple linear fit does
not completely remove all site-to-site and/or seasonal varia-
tions. However, these equations do reduce the RMS to an
acceptable level and have the virtue of being simple to use —
a significant consideration if one must deal with data from
many sites.

For the next formulation of an algorithm, we will model
the mean radiating temperatures Tj,, and Ty, and assume
that the dry opacity scales as the surface pressure squared
times the surface temperature to the -2.86 power, The muiti-
plier of the dry opacity term will be chosen to force the bias
term, i.e., 4y, to be zero. The algorithm that we shall now fit
then takes the form

A, P 2
<ALv) = AO +A1 7'1 - 0.4346 7'2 - T 1013

2.86
X (39—3- AM (25)
T
s

where we have included the air mass scaling for the dry term,
ie., AM = cosecant (elevation). The opacity at frequency F;

is
T .-T.
bi
7. = -log ...._m_'___) (12)
! ¢ (Tmi_Tc

where T,,,, is-given by Eq. (23) and T, by Eq. (24). Table 5
summar1zes the regression analysis for th1s algorithm, We see
that the RMS and the site-to-site consistency is a bit better
than the previous algorithm and the performance in the
presence of liquid is about as good. If surface measurements
are available, we would prefer this algorithm to the previous
formulation, but note that the accuracy of either meets the
calibration requirements of the Crustal Dynamics Project.
When noise is added to the RMS, the fit for all sites rises to
0.48 cm and the small site-to-site differences are blurred by
larger sigmas on each of the constants.

Since the path delay due to liquid is AL; ~ 1.6 M, (for
both AL; and M; in cm) and M; is rarely larger than a few
millimeters, we see that the liquid delay is considerably smaller
than the errors in the vapor estimate. The primary reason for
a liquid estimate is not for direct geodetic calibration so
much as it is an indicator of WVR performance. We can
rewrite Eq. (21) in the form
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The value of (A /A ) is found either from calculation of the
weighting functlons or a multiple regression analysis on the
radiosonde data base to be (4,/4,) = -0.366. We will use the
same functional dependence for the dry term as we used in
the vapor algorithm and require the value of (43/4,) to be
such as to minimize the value of 4, i.e., we will minimize
the bias term. Table 6 shows the parameters for the best fit
solution for this formulation. As we required, the bias term
A, is less than its standard error for each cloud model and
can be taken as effectively zero. When this is done and the
liquid water algorithm is used with the main radiosonde data
base (where we assumed there was no liquid water), the
average residual at each site is comfortably small with an
RMS value comparable to the retrieval accuracy in the liquid
data set. Note that units have switched to micrometers for the
liquid measure. The increasing RMS of the retrieval with cloud
model suggests that the accuracy of the liquid retrieval is a
function of the liquid density. Figure 6 shows the average
precipitable liquid versus the RMS of the retrieval for each
site and each cloud model. The error in the liquid water
estimate suggested by this data is

RMS (M) = 0.32X M, (27)

When we include the WVR error model in the regression
analysis for liquid retrieval, thé RMS of fit changes relatively
little and suggests that the retrieval accuracy is limited by the
algorithm. In fact, the algorithm for the liquid water estimate
contains relatively more error than the vapor algorithm due
to the fact that the liquid weighting function contains an
exponential dependence on the liquid temperature (Ref. 8),
which is not an easily modeled quantity. The presence of
liquid water during a tip-curve calibration observation is an
immediate indication that the tip-curve data will be noisy
and should be weighted accordingly. If we are observing in
clear sky conditions and the WVR reports a nonzero (i.e.,
greater than the RMS value) amount of liquid water, it
suggests that either the radiometric temperature scales needs
recalibration or the vapor weighting functions are very differ-
ent than the “average” weighting function determined by
earlier analysis. The latter possibility could be due to an
unusual vertical profile of vapor although we have chosen the
vapor sensitive frequency to minimize this type of error.
Finally, the presence of large amounts of liquid or equiva-
lently, large values of opacity at 31.4 GHz, indicate that
an important assumption in our derivation may be violated.
In large concentrations of liquid, the drop size tends to grow
and scattering plays an increasingly important part in the
apparent radiation spectrum. When the effective diameter



of the drop is on the order of the observing wavelength, the
scattering process is termed Mie scattering, and the spectrum
is more complex than the simple Rayleigh scattering that we
have assumed. The radiation spectrum of large drops can no
longer be characterized by a simple power-law-type behavior,
which means that both our vapor and liquid algorithms break
down. Since the breakdown is primarily a function of the
drop size distribution of the liquid, there is no clear criterion
that distinguishes the operating from the nonoperating regimes
of the algorithm. Westwater (Ref. 10) and Westwater and
Guiraud (Ref. 11) estimate that these remote sensing tech-
niques are applicable up to opacities of 3 db = 0.7 neper
(at 31 GHz). Given the considerable observing experience
of these experimenters, this is probably the best operating/
nonoperating criterion that can presently be stated.

IV. Summary

Several reasonably simple algorithms have been derived
that relate observables, i.e., the brightness temperatures
measured with a two-channel WVR, to the line-of-sight path
delay that is required to correct various types of radiometric
data for the effects of atmospheric water vapor. The three
formulations that can be used to estimate the excess path
delay due to atmospheric water vapor AL , are

(AL,) = -1.6+0.65 (T, ~0.435 T) (28)

for convenience. A better algorithm if no surface measure-
ments are available would be

(AL = 158 (7, +0.435 7)) (29)

where the opacity 7, is

275 - Ti
T, = —loge "—"'—272

When surface measurements are available, use

(30)

(AL) = 164 |7, -0.43517, -0.0016

2
P 2.86
X% s 293 G1)
1013 T,
Where the opacity is now
T, ~T
M1
7, = -log -——-] (32)
! ¢ [TMi_ T,

and the quantities 7, , are given in Eq. (23) and (24).

The regression analysis indicates that the ultimate accuracy
of the two-channel technique is about 0.2 to 0.3 ¢cm, and with
a realistic noise model of the current generation of instruments
a 0.5 cm accuracy is possible. Note that the question of
radiosonde accuracy is irrelevant in this analysls: It simply
represents the “truth.” However, if the WVRs are to be com-
pared directly to radiosondes, then the question of radiosonde
accuracy is crucially important. Indeed, the WVR’s must
eventually be calibrated on an absolute scale, and radiosondes
seem to be the most cost-effective way to accomplish this at
the present time. Consider that such a direct comparison is
made at each of the radiosonde launch sites that were used
in this analysis. If we assume an average zenith path delay of
10 cm and the measurement accuracy of the radiosonde is
10%, then the RMS of the radiosonde/WVR comparison would
be,

(1.0)% +(0.5) = 1.12 em

While it is important to do such a comparison so as to investi-
gate the possibility of a bias term in the inversion, the analy-
sis suggests that the WVR is more accurate than the radio-
sonde. Hence, the comparison must be done with great caution
when attempting improvements in the WVR instrumentation
or refinements in the algorithm. We are faced with a recurring
problem — how to demonstrate a new measurement technique
is as good as we think it is when it is better than any existing
technique.
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Table 1. Summary of best fit parameters for a vapor algorithm Involving brightness temperature

<AL,> = Ag + Ag{T1 - 04346 2}
(no measurement noise)

Cloud Model = 0

Site AO o A4, g RMS, cm
Portland ~1.57 0.05 0.662 0.003 0.28
Pittsburgh ~1.45 0.0 0.649 0.003 0.25
El Paso -~1.39 0.06 0.610 0.004 0.26
San Diego -1.71 0.13 0.642 0.007 0.38
Oakland -1.63 0.13 0.644 0.007 0.35
All sites -1.62 0.05 0.646 0.002 0.41

Cloud Average

Model Residual RMS
1 0.29 0.45
2 0.20 0.58
3 -0.26 1.55

Table 2. Summary of best fit parameters for a vapor algorithm involving the opacities

<AL> = A, + A;{ry - 04346 1,

o (27 TA
[ WY

Cloud Model = 0

Site Ay I A, g RMS?, cm
Portland 0.01 0.04 160.5 0.6 0.24 (.49)
Pittsburgh 0.08 0.05 158.3 0.7 0.24 (.45)
El Paso -0.03 0.05 151.4 0.9 0.25 (45)
San Diego ~-0.07 0.11 156.9 1.6 0.37 (.54)
Oakland -0.07 0.10 158.6 1.7 0.32 (.53)
All sites ~-0.06 0.03 157.9 0.5 0.36 (.55)

Cloud Average
Model Residual RMS?
1 0.18 0.35 (.56)
0.17 0.35(51)
3 0.14 0.37 (60)

aNumbers in parenthesis indicate the RMS with an added noise of 1 K in each channel.




Table 3. The average mean radiating temperature, the surface Table 4. Estimates of the mean radiating temperature from the

temperature, and their RMS values (f = 20.7 GHz) surface temperature (T, = Ay + AT, f = 20.7 GH2)

Site Ty RMS Tg RMS Site Ag Ay RMS
Portland 2694 114 279.1 10.8 Portland 6.6 0.94 4.2
Pittsburgh 270.3 10.9 281.5 11.3 Pittsburgh 15.3 0.91 3.7
El Paso 275.2 7.0 289.5 6.0 El Paso 121.8 0.53 3.9
San Diego - 280.1 5.1 290.6 5.9 . San Diego 86.1 0.67 3.4
Oakland 278.0 5.3 287.7 6.0 Oakland 110.7 0.58 3.9
All sites 274.7 9.4 285.7 10.5 All sites 50.2 0.786 4.5

Table 5. Summary of best fit parameters for a vapor algorithm Involving opacitles and
surface data

<AL> = Ag + Ay {7y = 04346 1, - 0.0016 74}

where
T, - T4,
7; = ~logg T, - T,

50.3 + 0.786 X T,

#

~
n

ma2 = Tmy — 34

Ps 2 293\2.86
1013 T,

Tqg =
Cloud Model = 0
Site Ag G A o RMS?, cm
Portland 0.07 0.03 165.4 0.5 0.18 (45)
Pittsburgh 0.11 0.03 165.1 0.5 . 0.16 (.44)
El Paso -0.05 0.03 159.4 0.5 0.14 (.39)
San Diego -0.03 0.09 163.7 1.3 0.30 (47)
* Qakland 0.05 0.09 163.9 1.5 0.27 (44)
All sites -0.001 0.03 163.9 0.4 0.28 (48)
Cloud Average
Model Residual RMS?
1 0.13 0.30 (46)
2 0.19 0.34 (.54)
3 0.29 0.50 (.63)

aNumbers in parenthesis indicate RMS with an added noise of +1 K to each channel.
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Table 6. Summary of best fit parameters (um) for a liquid water algorithm

<Mp> = Ay + Ay (ry - 0366, 7 ~ 0.02274)

All Sites
Cloud Model A0 [ Aq 4 RMS?
1 -0.3 2.8 5368 107 24 (26)
2 +8.4 12.1 5352 119 105 (108)
3 +26.7 25.7 5279 125 224 (223)
Cloud Model = 0 (no liquid)
Average
Site Residual RMS?
Portland 0.6 33.0 (34)
Pittsburgh 0.3 25.0 34)
El Paso 11.8 9.6 (15)
San Diego -7.2 15.6 (22)
Oakland -3.6 12.7 (17
All sites 0.3 21.8 (25)

aNumbers in parenthesis indicate RMS with an added noise of +1 K to each channel.
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Fig. 1. The zenith brightness temperature of a standard atmosphere
for three cases: (1) no water vapor and no liguid water, (2) 2 g/cm?of
vapor and no liquid, and (3) 2 g/cm 2ot vaporand 0.1 g/cm?of liquid

Fig. 2. Schematic representation of the equation
of radiative transfer

24

269

]

15

20

FREQUENCY, GHz

25

30

35

Fig. 3. The mean radiating temperature of a standard atmosphere
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