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A method is presented for signal-to-noise ratio (SNR) and symbol stream combiner
weight estimation. The SNR estimator employs absolute value moments as in an earlier
method. The main contribution of this work is that a new algorithm is derived for the
combiner weight estimator to remove the large bias at low SNRs. The new algorithm is
simulated to combine two independent symbol streams at various SNRs. As an example,
in combining two symbol streams at SNRs of -1dB and -7 dB, combiner weight
estimates using 1000 samples for the -1 dB stream and 10,000 samples for the -7 dB
stream achieve an output SNR of -0.039 dB, which is just 0.012 dB below the theoretical
limit achievable with perfect knowledge of the SNRs.

I. Introduction

Signals received from interplanetary telecommunications
are usually very weak. An improvement in signal-to-noise ratio
(SNR) can be obtained by properly combining the outputs
from -several receiving stations. The optimal combining
strategy depends on the SNR levels of the received signals. In
this report, we consider a technique of SNR and combiner
weight estimation for possible use in symbol stream combin-
ing. This is as opposed to baseband combining wherein
combining is done prior to subcarrier demodulation and
symbol synchronization. The SNR estimators, both biased and
unbiased, are considered by Layland (Ref, 1). We follow the
same procedure to define the biased and unbiased combiner
weight estimators, The SNR loss of the combined output
stream is analyzed and compared for both biased and unbiased
combiner weight estimates. The combining process has negligi-
ble loss using either method for two symbol streams with the
same SNRs, However, with the biased method, the SNR loss
grows significantly as the difference in the two SNRs gets
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larger due to large bias introduced by the use of absolute
moment as an approximation to the mean at low SNRs. For
the unbiased method, simulation results show that the bias is
practically removed with a sufficiently large number of
samples. For example, with 1000 samples for the -1 dB stream
and 10,000 samples for the -7 dB stream, the obtained output
SNR is just 0.012 dB less than the maximum achievable limit
(-0.027 dB) which assumes perfect knowledge of the input
SNRs,

H. Background

As shown in Fig. 1, a spacecraft signal is received simulta-
neously at two tracking stations. This signal is demodulated and
integrated to produce two sequences of symbols, {x;} and
{v;}. Due to differences in receiving systems, the two symbol
streams have different levels of SNR. The symbol stream
combiner is designed to maximize the overall SNR. Let
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(The factor of two in the denominator is used so that the
definition of SNR is the same as symbol energy to noise
spectral density.) The combining strategy is
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Taking derivatives with respect to «,, @, and setting them to
zero, it is found that the output SNR is maximized when
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Since m,, and 0% (k = 1,2) are not known we must have some
way to estimate them. The conventional method which deals
with absolute moment is considered first, and then improve-
ment by bias removal is investigated.

Iil. Conventional SNR Estimator

Let the input signal x(¢) be either +¥ or - ¥ in the intervals
th 10 teq, £=1,2,. ... This signal is corrupted by additive
white Gaussian noise n(#) having zero mean and two-sided
speétral density Ny/2. Then received signal is integrated over
the symbol time to produce the symbol stream {x },

= -+
X, _VT+nk

where 7, is a zero-mean Gaussian random variable with
variance Ny T/2. Thus,
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The conventional SNR estimator uses the sample mean and
variance in conjunction with absolute moment to estimate m
and o2

So the estimate R for the SNR is
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The performance of this estimator was analyzed by Layland
(Ref. 1), and then by Lesh (Ref. 2). The mean of the estimator
is found to be dependent heavily on the input noise but
relatively insensitive to changes in the sample size. For large
enough N(N>500) we have

~ [E (b, D]
ER) =~ 2 Var (Ix, 1) = I®)

where
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E(b, ) = VN,T|ZE— + VR erf(WR)
N
Var(lx, 1) = E(xfc) - E(bckl)2

E(x?) = N, TR +%)
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and

erfl I R
r(x)-\/_ exp © dt
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The estimator mean is ploited in Fig. 2 over the interested
range of input SNRs, We see that there is a significant bias at
low SNRs due to the nonlinearity of the absolute moment.
This problem can be solved by defining another estimator
(Ref. 1) R = f~1(R); then for large NV we have

ER) ~ R

and

Var@®) ~ Var®) - [%

-2
x=R

In real time implementation, the inverse of the function f
could be evaluated using table lookup.

The variance of R is found to be strongly dependent on the
sample size and relatively insensitive with respect to noise. A
computer program is written to evaluate this variance based on
equations provided by Lesh (Ref.2). Figure 3 shows the
dependence of the standard deviation on the sample size for

=-1dB and R = -7 dB. To be consistent with the previous
paper (Ref. 2), the standard deviation in dB is defined as

3 = o(R)
UdB(R) = 1010g10 (1 +T)

In Fig. 4 we plot the number of symbols (i.e., sample size)
required to achieve a standard deviation of 0.1 dB versus input
SNRs.

IV. Implementation for the Symbol
Stream Combiner

The combining strategy is
Zp T QX Ty
Before we consider the algorithms for estimating «’s, we would
like to see how sensitive the output SNR is with respect to
these coefficients. Since the optimum weights result in an SNR

equal to the sum of the input SNRs, the SNR loss is

SNR loss (dB) = 10log,, (R, +R,)- 10log, R
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where

R, =SNR,
R, =SNR,
R=SNR,
k
Then
E(z)) = o, E(x, ) *ta, E(y,) = am +ao,m,
Var(z,) = af Var(x, ) + ag Var(y,) = af ai + ag ag

So the output SNR will be

(o, m, +a,m, )
R = SNR_ = 11y T,
2[0:? o? ¥ o 02]

k
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Figure 5 shows the SNR loss as a function of R, and «, for
R, =-1dB and @; =+/2R, (we consider a normalized case
where 02 = 03 =1). We see that highly accurate estimates of
«’s (hence of input SNRs) are unnecessary since the SNR loss
does not depend very critically on these coefficients around
their optimal values. (For example with a change of 0.1 from
the optimal value of ¢,, the SNR loss increases by less than
0.02 dB). However, if large biases are present, the SNR loss
grows very fast and becomes very sensitive to changes in a’s.
So we need to derive an algorithm with negligible bias. We first
consider the biased combining method and then try to remove
the bias with appropriate adjustment.

A. Bilased Combining Algorithm

The biased estimates of a’s are just the sample means
divided by the sample variances:
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Since the optimal strategy just depends on the ratio between
&, and «,, for simple implementation we could define

¥ = i=1
1 . N 2
2
25 2
=1 =1
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Z yr - JLV(Z Iy,l)
=1

=1

The combined output stream is

.~ + 3
Zp T 0 X Ty

The SNR loss can be evaluated by computing the output SNR:
E(z,) = E(@)m, + E@,)m,
Var(z,) = E(zz) - E(zk)2
= E[(b?lx + Ezy)z]— (E(’éz’l)m1 + E(o'?’z)m2)2
= E@)EG?) + E@)EG?)

- (E(a'l)ml)2 - ( E(&'z)mz)2

From Appendix A, we can find

¢, = E@)m,, C, = E@,)m,
D, = E@)EG?), D, = E(03)EG)
Then
. [E(z,)]? €, +C)

2, - 2VAR(z,) "2 2
k (@) 2[p,+D,- C*- 2]

which is a function of R, R, and N,, N, where N, N,
denote the number of samples of the sequences {x; }and {y,}
respectively.

Figure 6 shows the SNR loss as a function of R, and NV, for
R, =-7dB and for N, = 1000 and 10,000. Figure 7 plots the
SNR Jloss versus R, and V, for R, = -1 dB and for &V, = 1000
and 10,000. We see that the combining loss is negligible for
two symbol streams with same SNRs. The SNR loss grows
significantly as the difference in the two SNRs gets larger. This
is due to the large bias at low SNRs introduced by the use of
absolute moment as an approximation to the mean.

B. Unbiased Combining Algorithm

Since we will often be dealing with low and unequal SNRs
(from ~12 dB to -1 dB), we must find some way to remove
the combiner bias. For convenience let us define

Nl
al = I‘xtl
i=1
Nl
= 2
5 Xy
=1

Let &, be the biased estimate of a; and El be the biased
estimate of R, , then

a
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From Appendix A, for large V we have

=* (1+B) ~E_
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oL 4\ vr
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———+ erf (/R
\/17R1 !
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Since we don’t know Rl, we also have to estimate it. From
Section III,

ER,) = fRR)

I:EXPT_W_& + \/ﬁl—erf (\/RT)]

2[121 L (fx_p\/ﬂ____w R, erf(\/JTl)) }

Layland (Ref. 1) defines the asymtotically unbiased estimate
of R, to be

R =f'®)

Using ﬁl in place of R, in Eq. (1), we define the
asymtotically unbiased estimate of & to be

~ A~ - -1 /PN - BN
a = gR))a, = gof TR = h(R,) o,

The function #(R) is shown in Fig. 8 for R from 0.8796 to
1.3893 (for R from -13 dB to 0 dB). Using second-order
polynominal interpolation, this function can be approximated
with an error less than 0.002 by

for 0.8796 <R < 0.9000
n(R) = -121.49 R? +221.5 R - 100.6772

for 0.9000 < R < 0.9600
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h(R) = -14.6 R? +29.5263 R - 14.4791
for 0.9600 < R < 1.0500

n(R) = -3.5596 R* + 8.4951 R - 4.4639
for 1.0500 <R < 1.3893

r(R) = -1.0004 R? +3.0811 K - 1.5990

Note that, for R < 0.9000, the polynominal coefficients are
quite large compared to the function values. So the function
values are very sensitive to small changes in coefficients, and
one must be careful in using this approximation in finite
arithmetic applications.

Since it is extremely complicated to analyze the perfor-
mance of this estimator, we simulate the algorithm (see
Appendix B) to find the SNR loss for different R , R, and
N1' N2. Figure 9 shows the SNR loss as a function of R1 and
N, for R, =-7dB and log;o N, = 3,4. Figure 10 plots the
SNR loss versus R, and N, for R; =~1dB and log;y V; =
3.4. We see that as N,, N, get larger, the SNR Joss goes to
zero. In Fig, 9, the R; = -1 dB curves cross because with a very
small number of samples (V; = 100) the simulation results are
not very reliable, especially for low SNR sequences. The
100-sample block may fall into either a very low noise section
or a very noisy one. The same thing happens for the R, =
-3 dB curves in Fig. 10. The combining loss goes down to
approximately 0.012 dB with &, = 1000 for the -1 dB stream
and N, = 10,000 for the -7 dB stream. In general larger
numbers of samples are required for lower SNR sequences.

V. Conclusion

The conventional SNR and combiner weight estimator has
large bias at low SNRs. As a result, the output SNR loss grows
significantly as the difference in SNR of the two symbol
streams gets larger. When the algorithm is modified to remove
the bias, the bias is essentially removed with a sufficiently
large number of samples. Sample sizes of 1000 for the -1 dB
stream and 10,000 for the -7 dB stream are sufficient to
achieve an output SNR which is just 0.012 dB less than the
maximum achievable limit.
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Appendix A

Evaluation of First and Second Moments for the
Biased Combiner Weight Estimator

Let

= tm+
xk mnk

where r, are ii.d. zero mean Gaussian random variables with
variance 02.

We want™o find £ [a] and E [Ez] where

sample mean of |x;|

Q)

sample variance of [x|

1 N
P
k=1
N N 2
3 (kal- }VZ; le.l)

k=1

-

N-1

If the sample size is large enough (V = 20 should suffice), we
can use the central limit theorem to express a by

MRV R

2 2
o, + 62),0

o=

where £ and { are independent zero mean Gaussian random
variables with unit variances and

= E {Ixl}
2 -

0% = var x|
2 -1 2
61 ~N0v

From Appendix A of Ref. 2, the variance of a sample variance

is

1
eg =V [E(x;)—4E(|xk|3)u

+3 (E(xi))2 - ‘”A\//—:f oj]

For e, /03 << 1 (which is usually the case for large V) we have

2

a=4 (1+%1-g) (1-—62—¢ +52—¢2)

2 2 4
o, o, o,
So
M
Ela] = —(1+B)
2
o
v
where
2
€
B=—+
Uv

From Lesh (Ref. 2), we know

E {13} = vNoT {%\}P;—'R"' VR erf (VR)
g

)

o=

E (x2) = NoT <R +

E {1} = (NoD)*?

R\;_l exp -R + (R +%) \/Tz_erf(\/l—ﬁ
T

E {x}}= No’T? <R2 +3R + %)

Since m = \/-RT \/NoT, we have
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Appendix B

Simulation of the Unbiased Symbol Stream
Combining Algorithm

The combining algorithm is summarized as follows:

Step 1: Compute

= = 2
4 z: bl o s z :xk
= — 2

Step 2: Compute the intermediate estimates

_ W -De 7 aa,

a ——————
1 2’ 1 2N
le1 - aj 1

~ . W, -1)a, 7 - a,a,
2 2’ T2 2N,
Nys, -4, 2

Step 3: Compute the final estimates

a = RR)A, @, = h(R,))a,

where the function A(*) is approximated by second-order
polynominals given in Section IV, The combined symbol

. N ”~
stream will be z,, = @, x, + &, ;.

By means of subroutine NOISE, we generate two inde-
pendent sequences of symbols,

X, = £VIR, ¥ my = 2R, tmy

where ni, n2 are independent, identically distributed normal
random variables. Thus,

m
SNR, = —— =R,
k 202;
and
m3
S‘NRyk = —ZT%_ = R2

Each time subroutine NOISE is called, it generates two
symbols, either Xx,, X4 Of Vi, Vy4q . In the main program,
we gather all the x’s and y,’s and compute @; and &, accord-
ing to the above algorithm. To find the output SNR we note
that

E@z) = 8 E(x)+8, E(,) = & VIR, + &,VR,

Var(z,) = &f Var(x, ) +&§ Var(y,) = 'o‘zf +’6¢§

So,

zk i~ ~2
2(a) +a3)

We run the same routine 25 times with different sets of
samples (L.e., {x;} and {y;}). The final SNR loss is computed
based on the averaged output SNR:

R, tR,
SNR loss = 10 log —R

The simulation is run for different values of R;, N, and R,,
N, . The results are plotted in Figs. 8 and 9. Listings of the
main program, the function A(*), and the subroutine NOISE
are also provided for reference in Figs. B-1, B-2, and B-3.
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SNR .FOR

IMPLICIT REALXS (A-H,0-7)
DIMENSION X(100000),Y(100000)
COMMON /COM4/B1,BE,CC,W
Bi=2. 1534
BE=Bi-1.
£C=7. %45
W=1099.
READ(S, 1 0)R{, N1
{0 FORMAT(FA.0,14)
PRINT 15,R%,N
15 FORMAT(2X,F4.0,2X,18)
Ri=10.%R(. $XR1)
AR1=DSORT(Z . ¥R1)
XN{=DFLOAT(NA )
DO 70 K=1,2
R2=DFLOAT ( 4%K~11)
R2=10. %% . 1%R3)
AR2=DSORT(2.¥R2)
DO 70 L=2,5
N2=1 1%KL
KN2=DFLOAT(NZ )
R=).
DO 50 I=1,75
AL=0.
81=0.
DO 20 N=i,Ni,2
CALL NOISE (AR, X(N)Y,X(N#))
AL=AL+DAES(X(N) ) +DABS{X(N+1))
20 S4=GLHXINIRXIN)+X(N+L ) RXCN+1)
ATE=(XNE~1 . YKAL/(XNERSL-ALRAL)
RT1= GHALKATL/XNY
AT1=H(RT1)KATH
AZ=0 .
82=0,
DO 30 Nef,N2,P
CALL NOISE(ARZ,Y(N),Y(N#))
AZ=AZ+DARS(Y (N)) +DABS(Y (N+£))
30 §2=G24Y(NIRY (N)+Y(NeL ) KYIN+1)
ATD= (XN2-1 . IRAR/ (XN2XSG2-AZXAR)
RT2=, SKAZKAT2/XN2
AT2=H(RT2)RAT2
RR=. 5K (AT {RARE+ATRRARD) KX2/ (ATIXATL+ATZXAT2)
S0 R=R+RR
R=R/25.
RLOSS=10.XDLOGLOL (RE+R2)/R)
PRINT 60,N2,R{,R2,R RLOSS
60 FORMAT(2X,18,4(2X,F8.4))
70 CONTINUE
8TOP
END

i0

30

FUNCTION H(X)

IF(X.GT.0.9000) GO TO 10
H=-121. 49%X¥kX+221 S¥X-100.6772
RETURN

IF(X.6T.0.9600) GO TO 20
He~14, 6XXKX+29 S2638X 14,4774
RETURN

TF(X.GT.4.0500) GO TO 30
H=-3.5596%X4X+8. 4951%X-4.4639
RETURN

H=-1.B004%XkX+3. BBI4%X-1 . 5990
RETURN

END

Fig. B-2. Functlon h{:)

i0

SUBROUTINE NOISE(X,E1,ED)
INPLICIT REALAS (A-H,0-2)
COMMON /COME/BY , BR,CC, WV
YW=UVRCE

YU=DHOD (Y, RE)

Vi=2 $UV/Bi~1 .

VY=YYKCE

WY=DHOD (WY, EE )

Y2=2. RYV/Bi-1 .
S=V{AV1+V2RY2

IF(S-1.) 20,108,190
V=DSART{-2. XDLOG(S) /)
E£=V1RV+X

E2=V2%V-X

RETURN

END

Fig. B-1. Main program

Fig. B-3. Subroutine NOISE




