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Time Interval Errors of a Flicker-Noise Generator
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Time interval error (TIE) is the error of a clock at time t after it has been synchronized
and syntonized at time zero. Previous simulations of Flicker FM noise have yielded a
mean-square TIE proportional to t2. This study shows that the order of growth is actually
12 log t, explains the earlier 12 result, and gives a modified version of the Barnes-Jarvis

simulation algorithm.

I. Introduction

Let the time base of a clock be an oscillator whose output
is sin(2mv ¢ + ¢(1)), where v, is a nominal frequency and ¢(¢)
the phase. Then we call x, () = ¢(t)/(2mv) the measured raw
time deviation of the clock. Its derivative y(t) = dx,, /dt is the
instantaneous fractional frequency deviation. The r-average
fractional frequency deviation is defined by

B 1 (! xm(t)—xm(t-'r)
) = — f y(s)ds = ————— (1

T
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The standard measure of frequency stability is the two-sample
(Allan) variance 0%(7), defined by

0 = im oD 2 DU 3G-Del” @)

if the limit exists. For most models of clock noise, the limit
does exist and can be computed by an ensemble average, so
that

() = SEFE) - 5]
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in which £ is mathematical expectation and ¢ is arbitrary.
Thus, the two-sample variance gives the mean-square change in
T-average frequency during a time interval of length 7.

On the other hand, the time interval error (TIE), discussed
by Kartaschoff (Refs, 1,2), directly measures the error of the
clock after it has been synchronized and syntonized. Let the
clock be calibrated at time zero, that is, we assume that x,,(0)
and Y are available, where Y, is some estimate of initial fre-
quency. We could take Y, = »(0) if the latter were observable,
or Y, =¥(0,7) for some 7. The TIE at a later time ¢ is defined

by

x(t) = xm(t) - xm(O) - Yt 3)

Since y = dx,, /dt, we have
t
x(f) = f ((s) - ¥, )ds @)
0

The ensemble RMS average of x(z) is called o, (¢) (Ref. 1);
thus, by definition,

0%(r) = Ex*(t) (5)



One must keep in mind that o%(r) depends on the choice of
Y,. Also, it is stipulated that Y, must not vary with ¢,

Kartaschoff (Ref, 1) investigated the behavior of TIE for
the three random frequency-noise models whose names and
properties are given below:

o2(1)

Name Sy(f)
. Ho
White FM h 5
Flicker FM h_,If h_,In4
2 2
Random Walk FM h_,If ho, 3T

where Sy(f) is the one-sided spectral density of the process
¥, and k, is a constant, Having conjectured the approximation

oty = C1 a;(t) (6)

for some constant €, Kartaschoff verified Eq. (6) with C =1
by a discrete-time computer simulation of the three FM
processes.

On the other hand, a recently-developed structure theory
for clock noise processes (Ref. 3) yields the following exact
formulas, whose derivation is given in the Appendix:

White FM, Y, = 0.
2 &
0 =7t 7
Flicker FM, Y, = 3(0,r,).

T T
205 = 2 1 £ z 1
ox(t) h_t (1+ t)[lnrl +<1+"1) In (1+ t)}

(8

=p_,’In (Tit)[:l + 0(;—1)] as tf7, oo ©9)
1

Random Walk FM, Y= (0).

208 = 2% 4
0. (8) = h_, =1t (10)

Thus, provided that the calibration frequency Y is properly
defined, Eq. (6) holds exactly for White and Random Walk FM
with C=1. For Flicker FM, however, the theoretical result
Eq. (8) differs from Kartaschoff’s simulation result

o2(t) = (h_, In 4)? (1)

by a factor that grows logarithmically with time.

Our purpose here is to explain the discrepancy between
Eqgs. (8) and (11). Kartaschoff used a flicker-noise generation
algorithm of Barnes and Jarvis (Ref. 4) for his simulations. A
study of this generator, which is a certain linear filter acting on
white noise, shows that the discrepancy is caused, not by any
design defect of the filter, nor by any defect of theory, but by
the procedure for initializing the generator. In our results, the
initialization used by Barnes-Jarvis and Kartaschoff (setting all
variables to zero) yields Eq. (11) (although with a different
constant factor), while a more complex procedure given in
Section IV (making the output process stationary) yields an
asymptotic result like Eq. (9), with e replaced by a different
constant,

In contrast, the initialization has practically no effect on

the observed two-sample variance. No matter which of the
two initializations is used, one observes

o;(r) =h_ In4

for 7 greater than three times the sample time.

Il. The Barnes-Jarvis Generator

The discrete-time n-stage Barnes-Jarvis flicker-noise genera-
tor is a cascade of # first-order filters with transfer functions

G(2) AL 1,2 (12)
{z) =—————, j=12,...,n
7 z-(1-v) !
where
_ 1
LAY

For n = 5, the frequency response |H(e!®)|2 of the overall
transfer function

HG@) = G,@)...G () (13)

differs from the ideal two-sided spectrum k_;m/w by at most
0.25 dB over four decades of frequency, where #_; = 0.2757,
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The difference equations that implement the generator are
1) = (1= () +,_ (t+1)

- (3@ T o= 12,

(14)

where y(¢) is the input, consisting of “standard’ (mean zero
and variance one) white noise, and y,(r) is the output, This
implementation differs from that of Barnes-Jarvis and
Kartaschoff only in the overall gain and in the order of appli-
cation of the filter modules,

The system (14) implies that y, and y, are related by an
nth-order difference equation whose coefficients can be
obtained by expanding the numerator and denominator of
H(z) [Eq. (13)] in powers of z. Let the sequence ¥/(0), y(1),
¥(2), . . . be the impulse response of the overall filter H; thus

HE) = 2, vz, lz=1 (15)
=0

Assume that the standard white noise Yo(2) is available for all
integer ¢, positive and negative. The unique stationary solution
¥() = y,(¢) of the nth order equation is

t
2O = 3T Wty s), o<t <oo (16)

§=— 00

in which p(¢) depends on Yo(s) for ~o< s < ¢, In the terminol-
ogy of Box and Jenkins (Ref. 5), y is an ARMA (n,n) process.
For a practical simulation, it can be assumed that Yo(s) is avail-
able only for s = 1, Thus, it is natural to split ¥(#) into two
independent parts,

(@) =y, O+y_(0) (17
where
t
7, @ =3 wsp ), =1
§=1
=0, t<0 (18)

is called the present part of p(¢) because it depends only on
the random shocks y,, after time zero, while
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t=1

0
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§=— 00

y (0

t<0

y(), (19)
is called the past part of y(z) because it depends only on the
random shocks before time one. In another terminology,
y_(#) is just the mean-square best linear prediction of y(r)
from the past of y,, while y,(#) is the prediction error.
The stationary process y(¢) will also be called the complete
Barnes-Jarvis (BJ) process,

The time interval error x(7) of the discrete-time frequency
process y(¢), defined by

t
x(1) = Y () - 9(0)],

s=1

t=1

x(0) = 0 (20)

also breaks up into present and past parts x, () and x_(7),
obtained from Eq. (20) with y replaced by y, and y_.

The BJ generator, Eq. (14), is initialized by assigning values
to ,(0),..., y,(0). The usual way of doing this, called the
zero initialization here, is to set all these values, plus ¥0(0), to
zero (Ref. 4). By an induction on n, one can prove the follow-
ing assertion: If the zero initialization is used, then the output
Yult) of the BJ generator is exactly y (t) for t > 1. Moreover,
since y,(0) = 0, x,(¢) is exactly the TIE simulated by
Kartaschoff,

Two questions arise. First, are there any practical differ-
ences between y(¢) and y_ (¢)? Second, inasmuch as the infinite
past of y,(¢) is unavailable, can the complete process y(¢) be
simulated accurately? Since, for t > 1, both y(¢) and y_(¢)
(alias y,(¢)) satisfy Eq. (14) with identical inputs Vo(2), the
difference y(r) - y,(¢) is merely a transient of the filter H;
consequently,

(21)

YO-p,(H>0  ast-reo

Nevertheless, the stationary output p(r) behaves like true
nonstationary 1/f noise only over a time span of the order of
magnitude 6-97~1, the longest time constant found in A.
Over the useful time span of the generator, one cannot expect

the transient to be small. As we shall soon see, its effect causes
the variances of x(z) and x_ (¢) to differ greatly,

The second question also has a yes answer. To simulate the
complete BJ process y(z), one has only to set up the initial



vector y,(0), ¥,(0), ..., y,(0) with random values having the
correct joint distribution. The difference equations [Eq. (14)]
do the rest. The stationary initialization algorithm is given in
Section IV,

lll. Statistical Results

The mean-square time interval error 02(¢) and the two-
sample variance 05(7) were calculated theoretically for the
complete five-stage Barnes-Jarvis process p(¢) and for its
present part ¥, (¢). Then, the same quantities were estimated
by computer simulation, the zero initialization being used to
generate y, (¢} and the stationary initialization (Section IV)
being used to generate y(¢). Gaussian pseudorandom numbers
were used for the white input noise y,(#). The results are
given in Figs. 1 and 2. Figure 1 plots 02(¢)/r2 (linear scale)
against t/7; (logarithmic scale), where 7, is the sample time of
the simulation. The mean-square TIE of the complete process
dominates that of the present part. To put it another way,
as time goes on, more and more of the TIE (on the average)
comes from the remote past. The results can be summarized
by empirical formulas. For the complete process,

o3(1) = h_1t2 In (5.5 t/7,) 22)

and for the present part,

oA = 2n_, 7 (23)
valid for 16 < ¢/7; < 16000. Equations (22) and (9) have
different constants inside the logarithm. This discrepancy is
caused by high-frequency spectral deviation of the Barnes-
Jarvis process from pure sampled flicker FM. Equation (23)
agrees with Kartaschoff’s result Eq. (11), except for the con-
stant factor. This discrepancy is perhaps caused by statistical
variations, since Kartaschoff generated only 100 sample
functions.

The mean-square TIE 02(¢) of the present part can also be
interpreted as the minimal mean-square prediction error of the
complete x(t) from the history of the process before time one.
Our result, Eq. (23), is in approximate agreement with a result
of Percival for this prediction error variance (Fig, 3.1 in
Ref. 6) although our factor 2h_; appears to differ slightly
from his.

Figure 2 plots 0},(’9') (not oy(r)) on a linear scale against
/7, on a logarithmic scale. Here, the situation is quite differ-
ent. It is apparent that the two-sample variances of the com-
plete BJ process and of its present part are practically indistin-
guishable. In fact, the past part of the BJ process, which

accounts for most of the TIE for large ¢, contributes only

9 percent of the complete o},(4096¢1) and 0.00015 percent of

the complete 63(r,). This explains why earlier BJ users, who

relied on a constant of,('r) as an indicator of the success of the -
simulations, were not aware that a large part y_ of the process

» was missing, ‘

The error bars in Fig. 2 concern a side issue addressed also
by Kartaschoff (Ref, 1), namely, the calculation of the vari-
ance of the classical 0%(7) estimator S%(T,m), which is just the
right side of Eq. (2) without the limit. The solid bars are the *
one-standard-deviation error bars of S},(T,m) as computed for
pure Gaussian Flicker FM by Yoshimura (Ref. 7), and later by
the author (Ref. 3); the dashed bars come from the sample
variances observed during the 2048 simulation runs. The

agreement is satisfactory.

IV. Simulation of the Complete BJ Process

It is desired to simulate the stationary solution y(¢) =y, (¢)
of the Barnes-Jarvis system, Eq. (14). To this end, consider the
stationary n-vector process Z(¢) =(Z,(¢), ..., Z,(1)), ~eo< ¢
<eo, where Z,(£) = y{(£) - y;_,(¢). (The Z; are used instead of
the Vi because the Z; are less highly correlated.) The jth
component Z; is obtained by acting on y, with the filter
whose transfer function is

K].(z) =G, ().. .G]._l(z)[GI.(z)— 1] 24

[Recall Egs. (12), (13).] Each Z(¥) is orthogonal to y,(¢), and
the covariance matrix R , is given by

dz
2miz

R, = EZ0z0) = § K@K (1))
lzl=1

(25)
which can easily be evaluated by residues,

Suppose now that we create new randorm variables y4(0),
Z,(0),..., Z,(0) with the above covariances, set y(0)=
yj_l(O) + ZI-(O), j=1,..., n, and generate y,(7), t = 1, by
Eq. (14) from the white noise inputs y,(z), t = 1. One can
then prove that these new y,(r) have the same covariance
structure as the original stationary process.

To set up the Zj(O), one can use the Choleski factorization
of R, namely, R, = LLT, where L is an nXn lower-triangular
matrix. The coefficients Ly are given in Table 1 for n = 6; for
smaller n, one simply truncates the matrix. These coefficients
give the Z /-(0) as linear combinations of a standard white noise
vector u, , ..., u,. If the simulated process is to be Gaussian,
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then it is important to make the u; Gaussian because there are
so few of them and their effect is large. Although one could
then save time by using uniformly distributed noise inputs
Yo(?) (with mean zero, variance one), our simulations used
Gaussian noise inputs throughout,

Here, then, is the simulation algorithm for the complete
Barnes-Jarvis process. Let GRAN be the routine that generates
independent Gaussian random numbers with mean zero, vari-
ance one.

1. Generate y,(0), u,, ..., u, with GRAN

2. Fori=1ton

i
LetZ, = ZLz.juj (L, from Table 1)
j=1

Lety(0) = y,_,(0)+2Z,

Next {
3. Fort=0,1,2,...
Generate y 0(t+1) with GRAN

Forj = 1ton
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Compute yj(z‘+1) by Eq. (14)

Next j
Next ¢

Remark: To generate the present part of the BJ process, set
70(0),»,(0),...,y,(0)=0, then go to Step 3.

V. Concluding Remarks

As we have seen, the Barnes-Jarvis generator, if given the
stationary initialization, produces an output whose mean-
square TIE 02(¢) has a 72 log ¢ behavior, just as theory pre-
dicts. The previously-observed #2 behavior, which appears
when the BJ generator is given the zero initialization, can be
interpreted as the minimal mean-square error of a linear clock-
time predictor based on knowledge of the clock’s behavior
over the entire past, ~o to 0. Naturally, this error is smaller
than 02(¢), the mean-square error of a predictor x,,(0) + Yyt
for the time deviation x,,(¢). We conclude that if the diagnosis
of the noise of a clock includes a Flicker FM component, then
its 02(¢) must include a #2 log # component. If (0,7,) is used
for calibrating the initial frequency, then this component is
given by Eq. (8).
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Table 1. Coefficients L; for the stationary initialization of the Barnes-Jarvis process

/

{ 1 2 3 4 5 6

1 0.603023

2 0.214635 0.512223

3 0.301626E-1  0,241088 0.494406

4 0.345089E-2  0.358003E-1  0.244953 0.491688

5 0.384698E-3  0.412554E-2  0.366905E-1  0.245520 0.491287

6 0.427600E-4  0.460283E-3  0.423277E-2  0.368209E-1  0.245599  0.491231
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Appendix

Derivation of Formulas for Mean-Square Tie

Given fixed numbers ¢, 7 > 0, define the second-order dif-
ference operator L by its action on a function f(s):

Lfs) = fisn) - (145) s +Epen A

where s is used as the time variable because ¢ is fixed. The
transfer function of L is

: = piwt _ L L ~iwT _
Lw) = ¢t~ (1+5)+2e (A2)
Then, with Y, =3(0,7), Eq. (3) can be written as
x(@) = Lxm(O) (A-3)

Now assume that the second differences of the time devia-
tion x,, are stationary, (The examples treated below satisfy
this condition.) According to the structure theorem of Ref. 3,
there is a function D(¢) (appearing as 2 Re C(¢) in Ref. 3) such
that

0%(r) = Ex*(t) = ELx,(0) Lx, (0) = AD(0)
(A-4)

where A is the fourth-order operator LL*, and L* is the opera-
tor with transfer function L*(jw) = L(iw)*. Hence the transfer
function of A is

A(iw) = IL({w)|? = 2 (1 +% +t_22)_ (1 +jtr')(ei“” + e-iwt)

T

..1_ 1+_t_ eiwt+e~iw1
T T

+£(e"‘*’(’”) + e—-z’o.z(t+1')) (A-5)
o

Thus, from Eq. (A-4),

02(0) = 2(1 +§+ﬁ)1)(0) - (1+2)(p@ + D(-1)

2

—f; (1 +§) (D(T) +D(~ 7))+ % (D(t+1') + Di\-i- T))

(A-6)
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Each noise process has its own D-function to be used in
Eq. (A-6).

I. Flicker FM
From Eq. (27) of Ref. 3,

h
D) = —:2—1 12 Injt| (A-7)

which, when substituted into Eq. (A-6), gives Eq. (8) with

T, =T

Il. Random Walk FM

Since A is a fourth-order operator, one may add a third-
degree polynomial to D. Thus, Eq. (28) of Ref. 3 is equivalent
to

h_2n2
D(r) = —% [¢13 (A-8)
and Eq. (A-6) gives
21y = 1 2 2 A9
0, -2 3 T (A-9)

As 7 0, y(0,7) - y(0) because y is a mean-continuous process
(Brownian motion), and Eq., (A-9) reduces to Eq. (10). This
does not happen for Flicker FM because it has too much
power at high frequencies. Consequently, »(0,7) is well de-
fined, but y(0) is not.

lil. White FM

Since Y, = 0, and x,,, has stationary first differences, we rede-
fine L as the first-order operator:

Lf(s) = flstt) - f(s) (A-10)

Then everything works as before, except that A is now a
second-order operator, In place of Eq. (A-6), we have



02(t) = 2D(0) - D(t) - D(-t) (A-11) h,
D@) = - I (A-12)

This time, a first-degree polynomial may be added to D(f).  which combines with Eq. (A-11) to give Eq. (7), itself a well-
Thus, Eq. (26) of Ref, 3 is equivalent to known fact,
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