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One type of azimuth bearing for a large ground antenna (100 m) will consist of steel
wheels, mounted at four corners of the alidade, rolling on a circular flat rail which
provides the vertical restraints; a radial constraining bearing at the center of the alidade
provides the horizontal restraints. One important design feature is the compressive
stresses in the grout or concrete foundation under the wheel-rail load.

This report describes a finite element analysis check of a particular design by
H. McGinness that consists of a steel rail resting on a concrete foundation. Symmetry is
assumed as much as possible in order to minimize the models, but meaningful element
sizes are used. Recently developed isoparametric hexahedron elements available in the
NASTRAN computing program, which minimizes the number of elements required while
maintaining the accuracy of the computed stresses, are used with two versions of
NASTRAN. Test cases to check with the analytical solutions are made. A side loading is

also applied to calculate the increase in the concrete siresses.

I. Introduction

One design of an azimuth bearing of a ground antenna
restrains the vertical component (mostly the weight) by
mounting wheels at the four corners of the alidade, which rolls
on a flat surfaced circular rail. The rail, in tum, is supported
by a concrete foundation. Figure 1 shows a cross-sectional
view of this particular rail-foundation design. The wheel rolls
around an approximate 35-m-radius circle on a hardened wear
strip fastened to a mild steel rail. This rail is supported by the
concrete foundation with a grout material between the two. A
one-piece circular rail with welded joints will be required.

Il. Model Description

The wear strip and the grout were deleted from the model
because of their minimal effects on the design questions at
hand.
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The first model generated was a two-dimensional type in
order to simplify and reduce the model size as much as
possible. First, we assumed an infinite number of wheel loads
with a 1.02-m separation instead of the actual case of four
wheels approximately 1.02 m apart. This enables the use of a
model 1/2 of 1.02m length by using symmetric boundary
conditions. If the wheel width is assumed to be infinitely wide
along with the concrete foundation, the model is reduced to
one element width (0.02m) of the cubic hexahedron
elements.

Thus the computer model shown in Fig.2 has uniform
stresses across the width of the rail/foundation. The smallest
element size of 0.02 m cube occurs for the concrete just under
the wheel loads on the steel rail where the stress is the highest.
The long aspect ratio elements are farthest from the concen-
trated loading.



The steel rail in Fig. 2 is modeled by the linear isopara-
metric hexahedron cubes with six layers in depth. Connections
are made between the bottom modes of the rail and the top
modes of the concrete foundation with MPC (multipoint
constraint) sets, which transfer only vertical or Z forces. This
simulates the two surfaces in sliding connection, transferring
vertical forces only.

In Fig. 3, the steel rail is modeled by NASTRAN’s CBAR
beam elements, which requires inputs of the cross-sectional
area, moment of inertia, Young’s and shear moduli, and the
shear area factors. Two rows of CBARS are required to replace
the one layer of hexahedron modeled beam.

In order to first test the accuracy of the steel rail models,
they were modeled separately and NASTRAN-analyzed.
Figure 4 shows the modeling techniques. In effect, the
continuous concrete reaction points were replaced by one
reaction at the center, thus reducing the model to a center-
loaded beam with fixed ends. In other words, the model is
equivalent to four cantilever beams of length 0.255 m, each
connected at the inflection points M.

The cantilever beam with a built-in cross section (Fig. 4-111)
that is completely prevented from warping has an analytical
solution (Ref. 3). The -Z/2 deflection & equals

PP h? h
5—§ﬁ<l +0.74IT“ 0011)

The terms in the parenthesis cover the shear deflection for a
rectangular cross section beam where

! = length (0.255 m)

P = load

h = depth of cross section

E = Young’s modulus

{ = moment of inertia

E'=F !
1—1.12

u = Poisson’s ratio = 0.3 for steel

The initial models (sequence number 3 to 5 in Table 2)
used the meshes shown in Figs. 2 and 7 where the finer
divisions are in the left end. Because this mesh can be
improved for concentrated loadings at both ends, Fig. 5 shows
the symmetric divisions used for models of sequence num-
bers 7 and 8 of Table 1.

The loading applied to the beam-rail and the two-
dimensional models was computed by assuming that the wheel
width was equal to the rail width of 0.61 m. Then the loading
at the corners of the 0.02-m-wide models equals

2,624,550 N(590,000 1b) X 8—'(6)% iz 21,526 N

Figure 6 shows how the loading for the three-dimensional
model (Fig. 7) was derived.

Finally, a three-dimensional model was generated as shown
in Fig. 5. The 0.04-m smallest cube was used for this model
since computing costs were a factor for models of this large
size. A sup time of one hour was required on the 1108
computer.

lll. Analysis Discussion

The isoparametric solid hexahedron element appeared in
level 16 of NASA NASTRAN ({(Ref.1). MSC NASTRAN
(Ref. 2) had an earlier version of this element which was
recently modified to improve the deflection computation due
to shear stresses. The stresses and deflections can vary through
each element so its use allows a more accurately defined
structure with fewer elements. These elements take into
account pressure loads, which are of primary interest in the
problem under discussion.

With no previous experiences in the use of these elements, a
decision was made to utilize both versions of NASTRAN, since
it appeared that the finally developed elements were inde-
pendently generated. This analysis method should provide
some checks on the veracity of our inputs and computed
outputs.

To minimize the input data errors, a 1108 program was
written to generate the complete input data for the three-
dimensional problem shown in Fig. 7. It was only necessary to
define the number of elements in the three directions and the
progressive element lengths. The two-dimensional models were
generated by editing out extraneous data and adding con-
straints where necessary, By progressively increasing the GRID
numbers for the foundation portion through each cross-section
to the next cross-section and adding a large number to the
connecting GRID nodes to the top steel beam and repeating
the numbering operation for the beam itself, the NASTRAN
runs were made with minimum spillage and acceptable run
times.
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The cantilever beam deflection equation (Eq.1) was
derived (Ref.3) for application to the usual finite cross-
sectional beams. By replacing £ with the flexural rigidity
quantity £' or E(1/1 - u?), the equation is applicable to the
segment of an infinitely wide beam, as used in Table 1
(Ref. 4).

The important compressive stress to be resolved is in the
concrete foundation directly under the wheel loading point.
The concentrated loadings on the rail must be dispersed as the
effect of the loading progresses through the thickness of the
rail to the bottom contact to the concrete. The thickness as
well as the width should be important to the degree that the
vertical loads are dispersed, while the width will be a factor for
the side loading from the wheel.

The accuracy of this computed compressive stress will be
highly dependent on accurate modeling of the steel beam-rail.
For this determination, the beam alone was modeled as shown
in Fig. 4. Since the hexahedron model accepts pressure loads
and localized deflections occur, the total deflection number is
also given for this model (Fig. 4-1) as well as the deflection of
the neutral or center axis of the beam.

The localized deflections from these pressure loads on the
bottom of the steel beam seem to have a large effect on the
generated compressive stresses in the concrete. Figure 8
delineates the pressure forces in the MPC connections between
the beam and the concrete nodes for the two-dimensional
models as output by the GRID-point-force balance table.

IV. Results

Con;parison of the -Z deflections between the analytical
cantilever beam (Fig. 4-111) and the CBAR beam (Fig. 4-1I)

shows a close match. The observation can be made that the
CBAR element of NASTRAN accurately computes the shear
deflections. The shear deflection is almost half of the bending
in this model.

If the center axis (neutral axis)~Z deflections of the NASA
hexahedron beam is compared to the cantilever beam deflec-
tion, it is stiffer by about 15 percent. If the localized
deformations from the concentrated loading are accounted for
by comparing the~Z' deflections, the standard beam is slightly
stiffer (Table 1).

The two-dimensional beam and concrete models described
in Table 2 show much higher node 2001 (Figs.2 and 3)
compressive stresses for the CBAR beam mode!l: higher than
explainable by the almost equal bending stiffnesses shown in
Table 1 data. The slightly higher bending stiffness of the
hexahedron may account for part of the decrease in compres-
sive stresses. However, the localized deflections from the
pressure loads must be responsible for a large portion of the
differences of the compressive stresses. In Fig. 8, the pressure
forces between the beam-rail and the concrete show large
differences between the models.

From the foregoing data, it is recommended that the results
from the hexahedron models using the 0.02 m smallest cubic
elements should be increased 10 percent to account for their
stiffer bending/localized deformation characteristics. The
tolerance on this percentage is approximately plus 5 and minus
10. More analysis checks on the accuracy of the hexahedron
models should be done.

Also, another 5 percent should be added for the increase in
the smallest element size from 0.02 m to 0.04 m. Here again,
more use experiences would be helpful in optimizing computer
run time against accuracies in the computed results.
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Table 1. Steel beam-rail only, vertical deflections

, b
s Beam NASTRAN  -Zdeflection X 104 m -2’ x 104 m Remarks Prosram
9 type level with E with E’ with E rogta
1 Cantilever — -2.47 -2.28¢ —— Fig. 4-1I1 —
(Eq. 1)
2 CBAR NASA-16.1 -2.45 -2.23 — Fig. 4-11 F1CTNAST
3 Hexahedron NASA-16.1 -1.98 - -2.35 0.02 mesh, Fig. 5-1 F1CUNAST
4 Hexahedron MSC-41 -2.11 - -2.51 0.02 mesh, Fig. 5-1 FGANAST
5 Hexahedron NASA-16.1 -1.69 — -1.98 0.04 mesh, Fig. 5-11 F7BNAST
6 Hexahedron MSC-41 -1.96 —— -2.24 0.04 mesh, Fig. 5-11 F7ANAST
7 Hexahedron NASA-16.1 -2.10 —— -2.68 0.02 mesh, Fig. 5-1II symmetric F10ONAST
8 Hexahedron NASA-16.1 ~2.02 —— -2.47 0.04 mesh, Fig. 5-IV symmetric FONAST
8_7 Deflections are the neutral axis -Z differentials. E = Young’s modulus, 2.1 X 101! n/m?2, E' = E (1/1 - 42) u = Poisson’s ratio, 0.3.
b_7’ deflections measured per Fig. 4-1 (includes compressive deformations from concentrated loads).
CE’ used for the bending deflection portion.
Table 2. Concrete compressive stresses (node 2001), two-dimensional models (Figs. 2 and 3)
Concrete stresses, X 10-6 N/m2 (x 1073 psi)
Seq .Steel NASTRAN Node 20.01 Element Element Remarks Run no.
rail-beam level compressive
mean octahedral
pressure shear
1 CBAR NASA-16.1 -11.55(-1.68) 7.03 3.88 Used E', Fig. 3 FIBNAST
2 CBAR MSC41 -11.44 (-1.70) 6.97 3.60 Used E’ Fig. 3 FIBNAST
3 Hexahedron NASA-16.1 ~7.08 (-1.03) 4.63 2.47 Mesh = Fig. 5-1 FICNAST
4 Hexahedron MSC41 -7.86 (-1.14) 4.66 2.48 Mesh = Fig. 5-1 FICNAST
5 Hexahedron NASA-16.1 ~7.53 (-1.09) 4.39 2.43 Mesh = Fig. 5-11 F7ANAST
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Table 3. Concrete compressive stresses/three-dimensional model (Fig. 7)

Top of concrete — compressive stress, X 106 N/m2 (x 1073 psi)@

Seq NA]S)??AN Loading
eve *A B c D E F G
1 NASA 16.1 Top -10.22 - 9.94 -9.00 -8.08 -6.88 -5.54 ~5.17
2,624,450
N
2 NASA 16.1 Side 0.0 + 0.70 +0.77 +0.91 +1.04 +1.27 +2.39
868,000
N
3 NASA 16.1 Total -10.22 -10.14 -9.77 -9.00 -7.92 -6.81 ~7.56
(max) (1.48)
4 MSC41 Top -10.39 ~10.11 -9.35 -8.27 -7.10 -5.77 -5.61
2,624,450
N

aA — G = locations designated on Fig. 7
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1
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Rl

Fig. 1. Cross-sectional view, rail-foundation
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Fig. 3. Two-dimensional CBAR-hexahedron model
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Fig. 5. Two-dimensional model, meshes




_.{ le— 0.200 m

!

re—1—{ 0. 127

(8")

! /— WHEEL LOAD = 2,624,450 N
(590,000 Ib)

—-| 0.254 m ( 10") WIDE

0.051 m ( 2") THICK l‘/—WEAR STRIP
BEAM (RAIL)
/_ E =2.0 x 10 N/m
(29 x 10 psi)

LOADING FOR  ( _109.350 N— o4
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-218.407 N
MODEL e—0.12m
lw—0.24 m
e—— 0.305 m —
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0.02 m—-.i |<—

Fig. 6. Wheel loading data

\—G =769x10 N/m2

(ll 2 x lO psi)
CONCRETE 10
E =2, 76 x 10

(4 0x10 psi)
G = 1.2x 10'0 N/m?
('I74x'|0 psi)

N/m?

-43052 N FOR ASSUMED UNIFORM
LOADING ON BEAM (RAIL)
(LOADING =+ 2 FOR SYMMETRIC MODEL)

213



0.61
0.305
e—0. 120 o
TOTAL VERTICAL LOAD ON MODEL 004 L. 0.085 fa—
656,112 N :
SIMULATES LOAD OF - 0.06
= 2,624,450 N —=10.04
218,407 N ——] | | /
o ' 0.25 |f#—0.10—s}e—0.10—s{e—0.105 —o
| N
-109,352 N— : ;;\“?’
J
SIDE LOAD | ,1’0.15
- 568000 N £ SYMMETRY END &
} : CONSTRAINTS L/ 0.8
0.204 0.49 O
T f / i
] L 0.04 4
2001 ' Yo.064
Yo.00
COMPRESSIVE STRESSES
—10.04p=- AT TOP OF CONCRETE o.‘ls }
10, Odlen— 2 '
N/m? ( SEE TABLE 3) ;
0.30
|
-1.84 ‘
G

C-—— — — —
m— — — — —
. -—— — —

O s e e e

|

‘ X FIXED CONSTRAINTS AT BOTTOM

¢
SYMMETRY
PLANE

Fig. 7. Three-dimensional model
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SEQ 1 - TABLE 2 MODEL
f / CBARS

-2,62 -3.79
-2.19 -3.83
-1.13 -3.177 -3.31 -1.48
I. CBAR MODEL, FIG. 3
/— HEXAHEDRONS
AN
SEQ 3 - TABLE 2 MODEL
N
AN\
-2.54
-1.91 -3.89
-3.57
-0.77 5. 3.2 -3.96 -1.66
(TYP) x 10° N

1l. HEXAHEDRON MODEL, FIG. 2

Fig. 8. Pressure forces between beam-rail and concrete
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