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Suppose f is a real-valued continuous function on the unit square. The problem
of finding a level curve of f which joins opposite sides of the square is investigated.
It is shown that while f need not have such a level curve, it at least always has a
level connected set with the desired property. This problem is connected with the
problem of minimizing the bandwidth of a certain matrix.

l. Introduction

Suppose we are given a real-valued function f on the
unit square I?, f:1* > I Viewed as a topographic map on
the square, we seek to find a level path from one side of
the square to the opposite side. We don’t specify which
pair of opposite sides are to be used, but only require that
it must be somehow crossed at a single level. The original
problem asks if this is always possible for, say, continuous
functions f, or if not, whether suitable restriction of f
(e.g., C=, analytic, PL. = piecewise linear, etc.) will do the
trick. This problem was suggested by Professor J. Franklin
in connection with the problem of minimizing the “band-
width” of the incidence matrix of the graph of an n X n
square grid (Ref. 1).

We first give a C* function having no solution, and then
a proof of the appropriate restatement of the theorem.

Il. A C* Counterexample

(1) We let the square I? be represented by the set of
(x,y) with |x = y| =2 (Fig. 1). The vertical strip between
the dotted lines is given by |x|=1.
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We define f as follows:

0if |x|=>1 (the shaded triangles)

f= 1

if [x| =1
e (y — sinw), where w = p—

f is C= in the whole x, y plane: ¢ approaches 0 very fast
as |x| - 1, as well as all the derivatives, and (y — sin w)
is bounded (for any y); this is the usual “smooth joining”
technique.

(2) fis zero on the two shaded triangles (closed) as well
as on the infinitely oscillating curve y = sinw (|x| =1).
Above the sine curve f is > 0, below the sine curve f is
< 0; thus there is no hope of traversing the square at any
other level except f = 0. But to traverse at level zero, we
clearly must start at one of the shaded triangles and cross
to the other, via the sine curve. This cannot be done since
the sine curve is not pathwise connected to either triangle.

(3) We note that the 0-level set, although not pathwise

connected, is however connected; we have just the stan-
dard example of a connected non-path-connected space.
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Thus we might expect the proper generalization of the
theorem to be: if f:I* - I is continuous there exists a con-
nected level set containing points of two opposite sides.

lII. Proof of the General Theorem

We shall show that if f:12— I is continuous then there
exists a level set connecting a pair of opposite sides.

(1) We assume that m is the minimum value such that
A,, = [0, m] connects two opposite sides, assumed top
and bottom (E, & E, resp., with E = E, U E,). There must
be such an m; in fact A, = I* certainly connects opposite
sides, and it is easy to see that the infimum of numbers
having this property also has it.

(2) Let u be any are, disjoint from E, connecting the left
and right vertical sides. Then u must intersect A, for
otherwise p. would separate A,, into two disjoint open sets
containing E, & E,, respectively (ie., the part below u
and the part above u) contrary to the definition of An
connecting E. Now since y is an interval, its image f (u) is
an interval, and f (x) N [0, m] is not empty. But f cannot
be always less than m on g, for then x would connect two

sides at a lower value than m, contrary to choice of m.
Thus we must have some points of u with exactly the value
m, i.e., if L = f(m) then x N L is not empty.

(3) Now suppose that L does not connect E. Then we
may choose two disjoint open sets V,, V,, containing E,
and E,, respectively, and such that L C V, U V.. If we
divide I* into a small enough mesh of squares, we may re-
place V; by the set W; of all those squares which intersect
L; =V;NL, and in this way get polyhedral neighbor-
hoods W; separating L U E.

(4) Next look at the component K of W, which contains
E,. Being PL and connected, its boundary is a PL circle
(part of which is E, itself). As we follow its boundary
around, starting at, e.g., the left side, it may leave the left
side and return again, but eventually it must leave the left
side and travel directly to the right. This is depicted in
Fig. 2.

Thus the traversal gives us an arc p which is outside the
interior of W, and hence does not intersect L, a contradic-
tion which proves that L does in fact connect E, and
proves the theorem.
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Fig. 1. The function f
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Fig. 2. E, component
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