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Binary quadratic residue codes, some of which are currently being studied for
use in the Mariner Jupiter-Saturn 1977 mission, are among the most powerful
known block codes. They are, however, notoriously difficult to analyze. In this
paper a method is developed for obtaining information about the weights of these
codes by exploiting the fact that they are left invariant by the linear fractional

group.

l. Introduction

Binary quadratic residue codes are codes with rate 1/2
and exist for all block lengths of the form n = p + 1, where
p is a prime congruent to +1 (mod 8). For example the
(8, 4) extended Hamming code and the (24, 12) Golay code
currently being studied for use in the Mariner Jupiter-
Saturn 1977 mission are quadratic residue codes. These
codes are very powerful, but are quite hard to decode.
Practical decoding algorithms can be invented for them
only after their fine structure is fully understood. In par-
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ticular it is very important to have techniques for calculat-
ing the weight enumerator

A@Z) =3 AZ

of the codes, A; denoting the number of words of weight i
in the code. The enumerator A (Z) provides valuable in-
formation about the performance of the code (Ref. 1,
pp. 397-400).

In this article, we develop a technique which yields
valuable new information about the weight enumerators
of quadratic residue codes. Our method relies heavily on
the fact that every quadratic residue code is left invariant
by a very large permutation group.
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Il. Preliminaries

Let p be a prime congruent to +1 or —1 (mod 8), and
let R, denote the set of nonzero quadratic residues
(mod p). Let « be a primitive pth root of unity in an exten-
sion field of GF (2), and let the polynomial 4 (x) be defined
by

h(x) = IT (x — o)

T€Rgo

Then h (x) is a polynomial with coefficients in GF (2). The
binary cyclic code of length p with check polynomial h (x)
is called the expurgated quadratic residue code (EQR
code), and the code with check polynomial (x -+ 1) h (x) is
called the augmented quadratic residue code (AQR code).
The extended quadratic residue code (LQR code) is
defined to be the set of binary n-vectors of the form
(Co,Cy, -+ ,Cpy, Cy), where (Co,Cy, - - - ,Cpy) is a
codeword in the AQR code, and C, + C, + - - - +C,,
+ C, =0,

Berlekamp (Ref. 1, Theorem 15.26) proves the following
theorem about LQR codes.

TreorEM: Every LQR code is invariant under the
doubly transitive linear fractional group LF (2,p),

C1t_—‘—“>c(au+b)/(cu+d)

where ueGF (p) U {«}; a,b,c,d e GF (p); ad — bd = 1.
The group G = LF (2, p) has order p (p* — 1)/2.

Let

AZ) =S AZ

i=0

be the weight enumerator of the LQR code of length
p +1; ie., A; is the number of words of weight i in the
code. It is the object of this paper to show that it is possible
to compute A (Z) (mod p (p* — 1)/2) for many values of p
which are so large that it is not possible to compute A (Z)
itself.

In order to compute A (Z) (mod |G|), it is clearly suffi-
cient to compute A (Z) (mod |S,|) for all primes g dividing
|G|, S; being a Sylow-g-subgroup of G. For A(Z)
(mod | G|) can then be computed from the A (Z) (mod |S,])
via the Chinese remainder theorem.

Now to find A (Z) (mod |S,|), we must count the number
of codewords A; (q) of each weight i which are pointwise
fixed by some element q 541 of S,. Clearly the codewords
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of weight i which are fixed by no such element divide
themselves into S -orbits of size |S,| and so

Ai=Ai(q) (mod|S,|)

It is known (Ref. 2, Sections 315-321) that for g £ 2, the
Sylow subgroups S, of G are all cyclic. This makes it par-
ticularly easy to handle odd primes q. For example, let g,
be an element of order g of S,. Then if g=~1 is any other
element of S,, some power of g will equal g,. Thus the set
of codewords fixed by some non-identity element of S, is
identical with the set of codewords fixed by g,. The sub-
code of the LQR code consisting of the codewords fixed
by g, can then be found by solving a system of linear
equations in C,,C,, * -+ ,Cpy, Co, over GF (2) consisting
of the parity-check equations for the LQR code together
with the p + 1 equations

C.=0C,.,, u=0,1 - ,p—1
The dimension of this subcode typically turns out to be
small enough so that it is possible to calculate its weight
enumerator by direct computer enumeration,

The Sylow-2 subgroup S. of G is dihedral of order 27,
where 2™ is the highest power of 2 that divides % (p — 1)
or % (p + 1). In order to compute the weight enumerator
mod |S.|, we prove a lemma which is a special case of
Mb6bius inversion on a partially ordered set (Ref. 3,
Chapter 2).

LemMa: Let G be a finite group and let f (H) be a func-

tion defined on all subgroups H of G. Let g (*) be a function
defined on subgroups of G by

Then if () is the function on subgroups defined by the
property (1) =1,

S w(K) =0 if H£1

we have -
0= 3 g u
Proof:
S e®u® =3 4K 3 f(H)
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If C is any LQR codeword, the set of elements in
LF (2, p) which fix C is a subgroup, called the stabilizer
of C. We now apply our lemma with G = the S, — sub-
group of LF (2,p), f; (H) = the number of codewords of
weight i with stabilizer H,

gi(K)= 3 fi(H)

H=K

= the number of codewords of weight i fixed by every ele-
ment of K. Then if A;(G) denotes the number of code-
words of weight i of LQR fixed by some element of G, the
lemma yields

A@) = A — i) =g () —fi (D
= -3 u(H) g (H) 1)

H>1

Furthermore, it is not difficult to calculate the function
w for a dihedral group G of order 2"+ generated by {a, b}
with " = 1, b* = 1, bab = a*. It turns out that x (1) = 1,
w(H) = —1 for all subgroups of order 2, and p(H) =2
for all subgroups of order 4 except for the unique cyclic
subgroup of order 4 for which x(H) =0, and u(H) =0
for all subgroups of order 8 or more.

Thus to compute the weight enumerator mod |S.| we
need only compute the subcodes fixed by the various sub-
groups of order 2 and 4 of S; and apply Eq. (1). There are
2m + 1 subgroups of order 2 in S, viz.,

Gi = {1,a'b), i=0,1, -
H, = {1,a®™"}

L om—1

Furthermore, these subgroups are all conjugate in LF (2, p)
(see Burnside, Ref. 2, Section 318), and so the weight
enumerators of the LQR subcodes fixed by these groups
are all identical.

Aside from the cyclic group of order 4, S; has 2™ sub-
groups of order 4, viz.,
Gi = {1,a*", a'b,a**""'b}, i=01+-,2%1—1
It can be shown that G! and G/ are conjugate in S, if
i=j (mod 2) and so in order to compute the weight enu-
merators of the LQR subcodes corresponding to the G
one needs only those of G$ and G?. Thus if A; (S.) denotes
the number of codewords of weight i fixed by some ele-
ment of S,, we have

Ai(S;) = (2" + 1) gi (H) — 2™ g; (GY) — 2 g (G))
2
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In summary, let Z, ,Z,,, - - - , Z,, be any set cyclic sub-
groups of LF (2,p) of odd prime orders g, one for each
odd prime dividing p (p? — 1)/2. Then we have shown that
in order to compute the weight enumerator of LQR mod
p(p? — 1)/2, it is sufficient to compute the weight enu-
merators of the subcodes fixed by Z,,,Z,,, - -+ ,Z,, H,
G? and G!. In the next section, we apply these techniques
to the cases p = 97 and p = 103.

I1l. Applications
A. Case 1

Let p = 97, the smallest prime for which the weight
enumerator for LQR is not known. Here p (p* — 1)/2 =
456,288 = 25+3+ 72+ 97. Now according to Gleason’s theo-
rem on self-dual codes (Ref. 4) the weight enumerator
A (Z) of LQR (97) has the form

A@) = kzo Ki (1 + Ze)yo-sk (22 — 270 + 20 (3)

for certain integers Ky. Now it is known (Ref. 1, p. 360), that
A=1LA,=A=A=+ - =A,=0

and this determines K,, K,, * - - , K;, leaving K, Ky, Ko,
K.:, K., undetermined. However, it is possible to show
that if

4
a(Z) = 2 aiZ"
=0

is the weight enumerator for the AQR code, p =1 (mod 8),
that

a(i) = = (1 + i) 2w/

The “+” sign holds if k= ord,(2) is even and m =
p — 1/2k is also even. The “—” sign holds in all other cases.
On page 70 of Ref. 5 it is proved that

1-Z
a(Z)=A(Z) +mA (Z)

A (Z) being the weight enumerator of the LQR code. Now

A(i) =0and so A’ (i) = = (n + 1) 2»1/¢§ Now if we dif-
ferentiate Gleason’s theorem

(p~1)/8
2 Kk (l + Zz)(p+1)/2—4k (Zz — 2Z4 + Ze)k

k=0

A(Z) =

and set Z = i, we obtain

A’ (i) = (— 1)@ 0/520:0 /44K 1o
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and so

Koy = = (= 1)*D7% (n + 1)/2
= (n + 1)/2 for p = 41, 113, 137,257,281, - - -
= —(n+1)/2 p=17,73,89,97, 193,233, 241, - - -

In particular, K;, = —49 for the LQR of length 98. Thus
only Kg, K, Ko, K;; remain unknown, and so it is sufficient
to know Ase, Ass, Aso, Ay, to find A (Z).

We now compute A,q, Ass, Azo, Asz (mod 456288). It is
shown in Burnside (Ref. 2) Section 317 that if g divides
p + 1, an element of order ¢ has no fixed points. Thus no

code words of weight i can be fixed by S, unless ¢
divides i. Thus

Ag=Ag=A;y=A,, =0(mod 49)

Also, the translation © — u + 1 s of order 97 and fixes only
(0,0, - - - ,0) and (1,1, - - - ,1). Hence

A=A =A;=A,,=0(mod 97)
To handle the prime 3, we observe that © — 2'%u is an ele-

ment of order 3. By computer it was found that the cor-
responding subcode has dimension 17, with

A,=0
Az =8
Ay =16
Ay, =128

Thus
A,;s=0(mod 3)
Ay =2 (mod 3)
Az=1(mod 3)
Az =2(mod 3)

This completes the work with odd prime divisions of
p(p*—1)/2.

For p =2, we must compute the weight enumerators
of the three subcodes corresponding to H,, G and G
These subcodes were calculated by computer, with these
results:

Subgroup Dimension of Subcode A,s A;s A, Ao

H, 25 54 161 420 1740
Go 13 6 3 6 0
G 14 0 15 18 38

164

Combining these results via the Chinese remainder
theorem, we obtain:

A,,=28518 (mod 456288)
A, =280801 (mod 456288)
A;=19012 (mod 456288)
Az, = 437276 (mod 456288)

Finally we used the only other known condition on the
Ay’s, namely that they are non-negative, and by linear pro-
gramming concluded that A,, = 28518. (If A,,> 28518
+ 456288, some A; would turn out to be negative). Fur-
thermore, there are only two possibilities for A,:

A;s = 80801 or 537089

The latter possibility can be ruled out if we make the
plausible assumption that

Ai<Ai+2;i:16’17> c 746

Altogether there are 323 possible values for A (Z) consis-
tent with Eq. (4), and 162 of them satisfy the additional
constraint A; < A;,,.

B. Case 2

Let p =103. In this case, all weights in LQR are
divisible by 4 and Gleason’s theorem takes the simpler
form

A@Z)= 3 Ke(l+ 1428 + Z8y15-5% (24 (1 — Z4)s)F

It is known (Ref. 1, p. 360) that the minimum weight in
this LQR is 16 or 20, and there is compelling statistical
evidence that it is in fact 20 (Ref. 6). In any event, the
conditions

Ac=LA=A;=A,,=0

determine all the K’s but K,. In order to find A (Z), there-
fore, it is sufficient to find A,.

In this case,
pp*—1)/2=283-13+17-103

As before, A;s =0 (mod 97) because no code word is fixed
by u—u + 1 except 0°® and 1%. Also, since 13 divides
p + 1 =104, an element of order 13 has no fixed points,
and so only words of weight divisible by 13 can be fixed by
elements of order 13. Thus A,; =0 (mod 13).
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Also, A;s =0(mod 17) since no element of G has more than
two fixed points and 16 £ 0, 1, 2 (mod 17). Finally, the per-
mutation u —> 56u is of order 3, and its subcode turns out
to be of dimension 18. However, it contains no words of
weight 16. Thus A, ==0(mod 3) as well. This completes
the odd primes.

For g = 2, it turns out that the subcode corresponding
to H, has dimension 26, but no words of weight 16. Since
H, is a subgroup of both G$ and G, it follows that A;;=0
(mod 8). Thus

A, =0 (mod 546312)

Hence A, = 546312n for some integer n. The weight enu-
merator corresponding to n = 0 is given by Mallows and
Sloane (Ref. 7). Using their calculations, we find that
n > 1 always forces A,, to be negative. The possibilities
turn out to be, therefore,

A, = 1138150

= 45526

LeMMA: A,, > 45526 and so A., = 1138150.

Proof: We immediately see that no element of order 13,
17, or 103 can fix a word of weight 20. If @ is a word of
weight 20, let a? denote its images under G, and S, its
stabilizer in G. Then

la®| = |G|/]S]
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Since 13+17+ 103 divides |a®|, we see that
|S.] = 24,12,8,6,4,2, 0r 1

If |S,| =38, then |a®| > 45526, and we are through. Thus
|Sa| = 12 or 24. Next, our calculations in the H, subcode
yielded 423 words of weight 20. Since the number of words
of weight 20 fixed by any of the 103 + 51 = 5253 elements
of order 2 is the same, and since |S,| = 24 for any word of
weight 20, the code must contain =>423-5253/24 ~
90000 words of weight 20. This completes the proof of
the lemma.

Corollary: The minimum distance of the (104,52) LOR
code is 20, and its weight enumerator is given by the
following:

i A;

0,104 1
20,84 1138150
24,80 206232780
28,76 15909698064
32,72 567725836990
36,68 9915185041320
40,64 88355709788905
44,60 413543821457520
48,56 1036378989344140
52 1406044530294756

Proof: This calculation was performed by Mallows and
Sloane (Ref. 7).
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