TDA Progress Report 42-106

August 15, 1991

Channel Assignments and Array Gain Bounds for the
Ka-Band Array Feed Compensation System

V. A. Vilnrotter
Communications Systems Research Section

The performance of a real-time digital combining system for use with array feeds
has been considered in previous articles. The purpose of the combining operation
is to recover signal-to-noise ratio (SNR) losses due to antenna deformations and
atmospheric effects. Previously, arbitrary signal powers and noise variances were
assumed, but no attempt was made to match the receiver channels to the available
signal powers. Here it is shown that for any signal power and noise variance dis-
tribution, a “best” channel assignment exists that maximizes the combined SNR
in the limit of vanishingly small combining losses. This limit can be approached
in practice by observing sufficiently many samples. Specific signal power and noise
variance distributions are considered, and it is shown that even relatively “noisy”
channels can be used effectively to recover SNR losses resulting from signals diverted
out of a “high-quality” channel by antenna deformations.

l. Introduction

The potential benefits of array feed combining for re-
covering losses due to mechanical antenna distortions at
high frequencies (32 GHz or higher) have been described
in [1,2]. A conceptual block diagram of the real-time com-
bining system considered here is shown in Fig. 1, where
the dashed curve near the primary reflector represents me-
chanical distortions, while near the feed array it indicates
the spreading of the signal field distribution induced by
reflector distortions. The feedhorn outputs are downcon-
verted to baseband, sampled at the Nyquist rate, and the
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samples are processed digitally to obtain the combined
complex baseband samples. The objective of the com-
bining operation is to maximize the signal-to-noise ratio
(SNR) of the combined samples, thus recovering some of
the losses induced by the distorted antenna. The seven-
element feed array geometry is of particular interest, as it
has been shown in [3] that most of the losses incurred by
large Deep Space Network (DSN) antennas can be recov-
ered by seven elements arranged in a maximally compact
pattern, as in Fig. 1. However, the analysis and results ap-
ply for arbitrary K-element arrays, regardless of the array
geometry.



A functional block diagram of the real-time compensa-
tion system is given in Fig. 2. The observables consist of K
complex sample-streams, corrupted by independent com-
plex noise samples in each channel. The corrupted samples
are input to a parameter estimator, which estimates the
complex weights that should be applied to each stream in
order to maximize the SNR of the combined samples.

Il. System Description

An exact expression for the signal-to-noise ratio papr
of the combined sample-stream has been derived in [2]
for arbitrary SNR in each channel, assuming use of a
“maximum-likelihood” (ML) parameter estimator to ob-
tain the combining weights. The combined SNR was found
to depend on the number of channels K, the total num-
ber of observed samples L, the ratio of data to estimation
stream bandwidths 7, the modulation index é, the sum of
the channel SNRs, and the sum of squares of the channel
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Note that the combined SNR with maximum-likelihood
weights is always less than p, approaching that limit
as L approaches infinity. This is reasonable, since the
maximum-likelihood weight estimates approach the true
weights as the number of observed samples approaches in-
finity (the estimator is “consistent”). Note that for L < 4,
this expression is not defined, since not enough samples
have been observed to make all of the required estimates.

It is reasonable to define the “combining loss” « as the
inverse of the ratio of the actual SNR to its limiting value:
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All losses due to imperfect weight estimates can be at-
tributed to v, where its inverse 77! is simply the variance
of the combined signal normalized by p. This quantity can
be decomposed into loss components due to signal v, and
noise vy,

= Ys+Tn (43)

SNRs. The complex weights that maximize the combined
SNR are

W = 57‘—%' (18.)
in which case the combined SNR is given by
K ~
p =Y, [Vil’/202 (1b)
k=1

where V; is the complex voltage due to signal, and 202
is the variance of the complex noise in the kth channel.
However, in the presence of noise one must rely on esti-
mates of the combining weights, with inadvertent errors.
If maximum-likelihood estimates are employed, the com-
bined SNR becomes
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The behavior of the combining loss as a function of L
is examined in Section V.

Ill. Receiver Channel Assignment

Suppose the total signal power captured by the array is
Pr watts, with the kth horn contributing P watts to the
total, Pr = |Vi|?, so that

K
Pr=> P (5)
k=1
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Assume the ordering Py > P > --- > Pk, so that horn
number 1 contributes the greatest signal component, horn
number 2 the second greatest, and so on. For want of a
better term, this can be called a “standard ordering” of the
array feeds (in case of equalities, ordering becomes irrele-
vant). Suppose that each receiver channel adds indepen-
dent noise components to the signal, with the kth channel
contributing variance 2¢2. If receiver channels could be
assigned to array elements in any order, how should the
receivers be assigned to the feeds in order to maximize the
SNR of the combined signal pprz? To answer this ques-
tion, one first maximizes the ideal SNR p.

A. Channel Assignment to Maximize p

Index the receiver channels according to the variance
of the noise in that channel, with the least noisy channel
called channel number 1, the second “quietest” channel
number 2, etc., so that 0 < 03 < --- < 0%. Assigning
the receiver channels to the array feeds according to this
indexing scheme leads to the sum p, which is called “stan-
dard channel assignment” to be consistent with the above
termnology. Then

K
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Here the last equality focuses on the ith and jth chan-
nels. With ¢ < 7, let

0']2 = Uiz + 4, A,'j >0 (7&)

P = P+, 6ij 20 (7b)

hence, the sum of the sth and jth channel SNRs may be
written as

o i (o7 + Byj)

(f%+5é)= e Y

Exchange the ith and jth channels, assigning the jth
channel to the ith horn and the ith channel to the jth
horn, obtaining in place of Eq. (8a)
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This pairwise exchange of a lower index channel with
a higher index channel shall be termed an “unsorting ex-
change,” for reasons that will soon become apparent. A
comparison of the initial and exchanged pairs shows that
the sum of the SNRs in Eq. (8b) is less than that in Eq. (8a)
by an amount

HCEr I
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Because a pairwise exchange does not affect the rest
of the channel assignments, it follows that the total SNR
also decreases by exactly this amount as a result of the
exchange.

Next, allow an arbitrary channel assignment (that is,
not the “standard assignment” defined above), and per-
form an unsorting exchange on this configuration. This
again leads to a decrease in the sum, now by an amount
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where m and n, m < n, are the indices of the exchanged
channels (as before, ¢ and j are the indices of the horns, in
order of decreasing signal power). Thus, regardless of the
state of the system, an unsorting exchange always leads to
a decrease in the achievable combined SNR. If it can be
shown that any channel assignment can be reached from
the standard assignment by performing only unsorting ex-
changes, then it will have been proven that the standard
assignment achieves the highest possible combined SNR
for the given set of signal powers and noise variances.

This property can be shown in an interesting way, using
the following (rather inefficient) sorting concept. The al-
gorithm sorts a sequence of numbers by sequentially com-
paring nearest neighbors, starting at the left end of the
sequence, and performing a pairwise “sorting” exchange if
and only if the value of a given element exceeds that of
its neighbor to the right (thus, for this algorithm, the in-
dices 7, j, and m, n are always consecutive integers). After
each exchange, the algorithm restarts at the beginning of
the sequence and continues to compare each element to its
rightmost neighbor until no further exchanges are possible.
At this point, the sequence is sorted with the smallest ele-
ment appearing at the left. Retracing the exchange path



from the sorted sequence to its initial state shows that the
“unsorting” operation requires only unsorting exchanges.
The following example illustrates the procedure. Consider
a 7-horn array with standard ordering, and let the channel
assignment be denoted by some arbitrary index sequence,
say

(that is, the channel with the third lowest noise variance
assigned to horn number 1, with the greatest noise to horn
number 2, and so on). Applying the above sorting algo-
rithm to this sequence yields

1 2 3 5 4 6 7
X
7
1 2 3 47" 35 6 7

where the downward pointing arrows indicate the pair-
wise “sorting” exchanges performed by the algorithm to
arrive at the standard channel assignment. When these ex-
changes are applied in reverse, as indicated by the upward
pointing arrows, it is clear that only unsorting exchanges
were used to unsort the standard assignment (hence the
terminology). Since the above algorithm sorts any se-
quence, it follows that one can arrive at any channel as-
signment by performing only unsorting exchanges on the
receiver channels. Since each such exchange decreases the
resulting combined SNR, it follows that the standard chan-
nel assignment achieves the highest combined SNR possi-

ble with any set of signal power and noise variances distri-
butions.

B. Channel Assignment to Maximize Py

The standard ordering does not always maximize ppr.
This is demonstrated by the following example. Suppose
that = 1000, § = 60 deg, K = 7, and L = 4, so that the
smallest number of samples is observed for which Eq. (1)
is valid. Further suppose that the power levels in the first,
second, ..., seventh horns are

10 8 7 6 6 5 5

0.5 1 1 1 1 1 1

which implies a standard channel assignment. Direct sub-
stitution into Eq. (1b) and Eq. (2) yields

p = 28.5000 pmr = 3.7635

Exchanging channel 1 with channel 2 yields the noise
variance distribution

1 0.5 1 1 1 1 1
Recomputing Eq. (1b) and Eq. (2), one obtains

p = 27.5000 pmr = 4.0480

which shows that pasz increased while p decreased as a re-
sult of the exchange. Observe that this is not a preferred
region of operation, since the combining losses are unac-
ceptably high for such small L. However, the standard
ordering does maximize ppsr in the limit as the number of
observed samples grows without bound.

IV. Some Special Cases of Interest

Next, consider situations where the signal or noise dis-
tributions, or both, obey simple rules due to symmetries
in the underlying model, namely:

(1) the noise variance is identical in (K — 1) of K chan-
nels (constrained channel noise model)
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(2) the signal power is identical in (X —1) of K channels
(constrained signal distribution model)

(3) both the channel noise and the signal distribution
are constrained according to (1) and (2) in the same
(K —1) channels (jointly constrained model)

The above conditions might not be strictly satisfied in
practice, but the simplicity of the model may nevertheless
provide useful approximations to actual operating condi-
tions.

It will be assumed that independent estimates are made
of the required parameters in each channel, without tak-
ing advantage of the special relations that exist when the
above models hold. This is equivalent to admitting that
the above special conditions are not known to exist a pri-
ori. If these conditions were known to exist a priori, the
estimation algorithms could be matched to the unusually
favorable distributions, resulting in improved performance.
However, rather than pursue that idea, this article focuses
instead on the performance of the “unmatched” indepen-
dent channel estimators described in [1] and [2].

A. Constrained Channel Noise Model

Consider a model where the noise variance in one of the
channels is considerably less than in the surrounding chan-
nels, all of which have the same (higher) noise variance.
This situation could arise, for example, when a low-noise
cooled maser is employed for reception and is surrounded
by a ring of higher noise high-electron-mobility transistor
(HEMT) low-noise amplifier (LNA) channels for possible
gain improvement. The outer channels are intended for
use at extreme antenna elevation angles, where mechani-
cal distortions tend to spread the signal power in the focal
plane.

Ignoring minor noise variations among the outer chan-
nels, the difference in channel noise variances can be ac-
counted for by specifying the ratio of “low” to “high” noise
temperatures: call this ratio « and let 0 < a < 1. Thus,
the central channel is modeled as having the lowest noise
temperature, while the surrounding channels are modeled
as having the same higher noise temperature, each a fac-
tor (1/a) times that of the central channel. The two-sided
spectral level of the thermal noise in the kth channel can
be obtained from the corresponding noise temperature T}
as

Nob _ £Tk (11a)
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so that for 7-sec sample averaging, the sample variance
becomes

2__Nolc
™

(11b)

(here & is Boltzmann’s constant). This model is sufficiently
accurate to provide insight into the expected behavior of
the combining system.

Although the central channel may have significantly less
noise than the outer channels, it does not follow that only
the central channel should be observed: there could be sit-
uations where the outer channels contain significant signal
components that, when properly combined, could improve
the overall SNR of the system. This situation may be
due to distortions of the main reflector induced by gravity,
wind gusts, defocusing of the subreflector, or even a simple
pointing error. In each case, signal collected by the outer
channels may improve the system SNR, as well as provide
real-time pointing error information to the system.

Denote the sum of the channel SNRs by p, as before,
and let ¢ denote the sum of squares of channel SNRs.
Thus, for the special case under consideration,

K K
- 2 _ 21 hd
p = Z P./20f = 50_—2-{-5;5 Z P (12a)
k=1 1 b og=2
K P2 (1/2 K
— 2 4 _ 1 2
¢ =) Pllao} = E}'J“ZE;TZP" (12b)

Letting @ denote the square of the kth signal power
and @Qr denote their sum, Eqgs. (12a) and (12b) can be
rewritten as

_ QPT P1
p = 207 +{1-a) 507 (13a)
QZQT 2 QI
¢ 101 +(l1-« )—-——-40_‘11 (13b)

which shows that p is a weighted average of P, and Pr.
Thus, the effective SNR ranges from P;/20? as « ap-
proaches zero (i.e., as the outer channels become infinitely
noisy), to Pr/20% as o approaches 1.



B. Constrained Signal Distribution Model

Next, consider the signal distribution model. Let 3 be
the fraction of the total received signal power intercepted
by the central horn, 0 < § < 1, and let the remaining
signal power be distributed uniformly among the outer
(K — 1) horns. Thus, if the total signal power intercepted
by the array is Pr watts, and if the central horn is des-
ignated horn number 1 while the outer horns are labeled
number 2—number K, the power in the central horn P, is

= fBPr (14a)
while the power in any of the outer horns is
1 —
P, = (——QPT (14b)

(K—1)

This model assumes a symmetrical signal distribution,
which is generally valid for a focusing error, and may of-
ten be used to approximate the effects of gravity-induced
mechanical distortions as well.

For this type of signal distribution (with arbitrary noise
in each channel), one obtains

Pr  (1—B)Pr <&
= gaf (2(K[i)1fz (152)
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The first term in Eq. (15a) is simply the SNR of
the central channel. The combined SNR is augmented
by an equivalent second channel with total signal power

1-B)P . . . K a0\
LK‘-% and effective noise variance | 5 o “/2
k=2

C. Jointly Constrained Model

When the above constraints on the noise variance and
the signal distribution are simultaneously satisfied over the
same channels, the expressions for p and ¢ can be put into
a particularly simple form:

p = 2% [6+a(1-8)] (162)
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For the jointly constrained problem, there is only one
nontrivial switching operation. It is instructive to exam-
ine the behavior of p and pprr for standard and switched
channel assignments in this case: let the subscript sw de-
note switched channel] assignments. The behavior of these

quantities, as well as their unswitched counterparts, is
shown in Fig. 3, for the signal power distribution

100 10 10 10 10 10 10
and noise variance distribution
0.5 1 1 1 1 1 1

with K = 7, n = 1000, and § = 80 deg. Clearly, Pr = 160,
B =10/16, and o = 0.5. Both parr and ,upamr approach
their limiting values for large L, but drop off rapidly be-
low some critical number which, in this case, appears to
be between 100 and 1000 samples. For even lower val-
ues of L, note that ,,pmr > pamr, indicating that the
switching operation actually improves the combined SNR
in this region. This behavior is attributed to the fact that
in this region the switching operation generates so large a
decrease in ¢ that the value of the denominator in Eq. (2)
decreases more than p, resulting in a net increase in paprr.
Although this unusual behavior is not expected to occur
during normal operating conditions, it does point out a
need to verify the optimality of the standard assignment
in practice. The combining loss v as a function of L corre-
sponding to the standard assignment in the above example
is displayed in Fig. 4. For L > 1000, the combining loss
rapidly becomes negligibly small, reaching a value of less
than 0.1 dB when about 3500 samples are observed.

V. Array Gain

Finally, consider the potential gain in SNR that could
be achieved over a single feed horn by using an array of
feeds in the focal plane. Using the notation of Egs. (1)
and (2), the array gain G4 is defined as the ratio of the
combined SNR ppsr divided by the SNR in channel num-
ber 1:

Ga & pur/ (P1/203) = p/y(Pi/20%)  (17)

Since the combining loss + is never less than 1, the array
gain can be bounded with the ratio
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GY 2 p/ (P1/207) (18)

which is recognized as the theoretical maximum of the ar-
ray gain and achieved only with perfect weight estimates.
The array gain and its upper bound may be expressed in
decibels as

G a(dB) = p(dB) - (21;1—) (dB) — v(dB)

= G} (dB) — 7(dB) (19)

This expression shows that if the gain bound and the com-
bining loss are known, the actual array gain can always be
determined. To illustrate this point, the array gain, its up-
per bound, and the associated combining loss are shown in
Fig. 5, for the example treated in Figs. 3 and 4. Although
this example shows the behavior of G4, GY%, and v with
increasing L, it corresponds to but a single point in («,8)
space. Greater appreciation for the benefits of array-feed
combining may be obtained by examining the array gain
as a function of the fractional signal power § for various
noise temperature ratios a. This behavior is illustrated in
Fig. 6. Since for large L the array gain approaches the gain
bound GY, only the gain bound is examined here, keep-
ing in mind that the actual gain can always be obtained
from these bounds by computing the combining loss and
applying it to Eq. (19).

It is immediately apparent from Fig. 6 that G% in-
creases with decreasing 3, which simply means that the
"importance of the outer ring increases as more signal power
is diverted to it. It is also clear that for any 8, the array
gain increases with increasing «; that is, as the relative
noise temperature of the outer ring decreases. This be-
havior is consistent with intuition, reaffirming that array
feed combining is most effective when the signal power is
spread over an area that is large as compared with the
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effective area of a single feed, and when similar quality
channels are used to recover the signal. However, note
also that considerable improvements are possible even in
intermediate cases, for example, when « = 8 = 1/2. This
assignment refers to a situation where half the received
signal power is diverted out of the central feed into the
outer ring, while the noise variance in the central chan-
nel is half that of the outer channels (approximating the
model for a hybrid maser/HEMT system operating with a
distorted DSN antenna). The resulting array gain is seen
to be close to 2 dB, which clearly justifies the use of an
array combining system.

VI. Conclusions

~The generalized results presented in [1,2] have been ex-
tended by allowing an additional maximization over the
signal power and noise variance distributions in an array-
feed combining system. It was shown that for any given
signal power and noise variance distributions, a unique
channel assignment exists that achieves the greatest com-
bined SNR in the limit of vanishingly small combining
losses, and that this limit can be approached in practice
by observing a sufficient number of samples. Some special
signal and noise distributions were examined, which ap-
proximated the signal power distribution characteristic of
distorted antennas, observed by a low-noise channel aug-
mented by a ring of higher noise receivers. It was shown
that considerable gain improvements are possible by using
such a “hybrid” arrangement. For example, even if half of
the received signal power (3 dB) is diverted out of the low-
noise channel into the outer ring, as much as 2 dB of SNR
may be recovered by using receiver channels with twice the
noise temperature of the low-noise receiver. This approach
may prove to be a cost-effective way to improve the perfor-
mance of low-noise (hence, high-cost) receivers degraded
by distorted antennas operating at Ka-band (32 GHz) or
higher carrier frequencies.
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