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Self-Dual (48,24;12) Codes
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Two self-dual (48,24;12) codes are constructed as 6 x 8 matrices whose columns
add up to form an extended BCH-Hamming (8,4;4) code and whose rows sum to
odd or even parity. The codes constructed have the identical weight structure of the
extended quadratic residue code of length 48. Algebraic isomorphisms may exist
between pairs of these three codes. However, because of their matrix form, the
newly constructed codes are easily correctable for all five-error and many six-error
patterns. The first code comes from restricting a binary cyclic (63,18;36) code to
a 6 x 7 matrix and then adjoining six dimensions to the extended 6 x 8 matrix.
These six dimensions are generated by linear combinations of row permutations of
a 6 x 8 matrix of weight 12, whose sums of rows and columns add to one. The
second code comes from a slight modification in the parity (eighth) dimension of
the Reed-Solomon (8,4;5) code over GF(64). Error correction in both codes uses
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the row sum parity information to detect errors in the correction algorithm.

|l. The Code Constructions

The two constructed codes are similar in their final six
dimensions. The first 18 dimensions of the constructed
(48,24;12) codes are basically (42,18;12) codes represented
as 6 x 7 matrices. An additional eighth row of all zeros is
adjoined to give a (48,18;12) code. The last six dimensions
are constructed the same way, although the encoding al-
gorithm for the second (modified Reed-Solomon) code is
direct and systematic. Decoding the two codes uses basi-
cally the same techniques as discussed in the second code
description.

Il. A Self-Dual (48,24;12) Code

Consider the BCH (63,18;24) code of length 63 gener-
ated by the recursion polynomial fi1(z)fs(z)f-1(z), where
fi(z) = 2%+ 241, where 3 is a root that is a primitive gen-
erator of the 63 roots of unity in GF(64). The polynomials
f3(z) and f_;(z) contain 32 and 87! as roots, respectively.
Restrict the values of the code to the coordinates 9¢ + 7j
for0<i<6,5=1,2,4,5,7,8. The constructed code is
a (42,18;12) code. To prove this, one examines the matrix
in a Mattson-Solomon (MS) polynomial formulation over
the rows.
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Let z = zy, wherez’ = 1,y° = 1,z = %, and y = 7.
Indexing the rows by y, the MS polynomial for each row
y is Py(:l:) = Tr (C1y + (Cly)a)z + (Cay3 + ngs):rs +
(C1y*+C8y*)z®, which becomes, in the Solomon-McEliece
T, formulation, Py(z) = Tr (Ciy + (C1y)%)z + (C3y® +
Ci6y3 + Ciyt + C¥y®)z®. Thus, the coefficient of z is seen
to be a (6,2;5) code over GF(8), while the coefficient of
z8 is a (6,4;3) code over GF(8). The minimum binary
weight of the six rows is >10. The sum I's over the rows
gives zero, showing that the weights are multiples of 4 and
proving that the minimum distance of the code is >12.
Note that the sum over the rows is the (7,3;4) codeword
given by Tr (C3 + C§)z®.

Adjoin an eighth column of all zeros to this 7 x 6 ma-
trix. Then, add six more dimensions by forming linear
combinations of all cyclic row permutations of the single
matrix
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The newly constructed code of length 48 and dimension
24 has a minimum distance of 12. The code of dimension
23 coming from sums of pairs of rows with weights of 24
is easily seen to have a distance of 12 and has row sums
equal to zero. For the 24th dimension, whose row sums
are odd, one need only check that certain weight patterns
in the dimension 18 code do not exist.

To verify the results, one notes that if Ej T'2=0, =
1,2, 4,5, 7, 8, one need only investigate the weight forms
in any row permutation (6, 6, 6, 6, 6, 6), (6, 6, 6, 6, 2, 2),
(6, 6, 6,6,4,0), (2,2, 2,2, 2, 2), etc., to verify that this
addition does not alter the basic minimum distance and
self-orthogonality. This works. This is Code A.

lll. A Modified Reed-Solomon (8,4;5) Code
Over GF(64)

This code, Code B, while resembling Code A above, is
easier to encode and decode. The idea emerged from the
well-known result that the Reed-Solomon extended (8,4;5)
code over GF(8) represented in binary form in a normal
basis is isomorphic to the extended Golay (24,12;8) code.
The idea in its simpler form was first presented in [1]. This
article presents a newer form with a proof; the proof relies
heavily on [1].
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IV. The Reed-Solomon (8,4;5) Code Over
GF(8) is the Golay Code

Let 8 be a root of the polynomial g(z) = 23 + 22 + 1.
Express the elements of GF(8) in terms of the root f°, i =
1,2, 4, of g(z). This is a normal basis of the field. Consider
the extended Reed-Solomon (8,4;5) code over GF(8) given
by the check recursion polynomial f(z) = H?zo(:c + Y.
The MS polynomial for codeword a is given by

Pa(z)=Co+ Ciz + 0222 + 03:!!3
teGF(8), =z=1, 8, 8%, 8, p* 8° B° 0
Ci€GF(8),0<i<3

Writing the codewords in binary, using the normal
basis above, three codewords of length eight emerge as
Tr P(2)8%, j = 1, 2, 4, where Tr denotes the value in
GF(2) given by the Trace of an element a € GF(8), where
Tra =a+a®?+a* Notethat Tr # =1,i=0, 1, 2, 4,
and Tr ' =0,i=3,5, 6.

It is easy to show, using the I'; formula of [1], that the
total weight of the three binary codewords is a multiple of
4, with a minimum weight equal to 8.

Proof. Set Cy = 0. The binary polynomials may be
written as Tr P(z)3 = Tr (C187 +(C289) )z +(C387 ).
The expressions for ['>(Tr P(z)37), j = 1, 2, 4, are

T2(Tr P(z)B) = Tr (C1Ca8° + C3 %)

=Tr (C1Cs8° + C38°)
To(Tr P(z)5?) = Tr (C1C3B° + C358°)
To(Tr P(2)8% = Tx (C1C38° + CLp3)

Summing over all three binary codewords Tr P(z)3’,
j =1, 2, 4, one obtains zj L2(Tr P(z)#) = 0. This im-
plies that the binary weight of the above Reed-Solomon
codeword is a multiple of 4. Since the minimum symbol
weight is 5, the binary code is a (24,12;8) code. Further-
more, this stamps the code as a Golay code, by virtue of
the uniqueness of the Golay code.

To de;ode this, simply use the decomposition of
Tr P(z)B3?,j =1, 2,4, and test eight values for C3 and de-
code the (8,4;4) BCH-Hamming code that remains. Note



that the parity of each Tr P(r)ﬁj, Jj =1, 2, 4, is zero,
which yields additional information to detect single errors
and thus reduce the search for C3. Use each of these eight
trials to soft decode or maximum-likely decode three BCH-
Hamming codes.

V. Code B via the Reed-Solomon Code

Using techniques similar to those above, if one starts
with a Reed-Solomon (8,4;5) code over GF(64), and rep-
resents the code in binary using a particular normal basis
with the special property defined below, one can generate
a code of length 48 and dimension 24 with weights that
are multiples of 4.

The binary representation of the usual Reed-Solomon
(8,4;5) code over GF(64), yields six (8,7;2) codewords
whose decomposition into two cyclic code components and
a constant component looks like Reed-Solomon (6,4;3) and
(6,2;5) codes over GF(8) and a binary (6,6;1) code, respec-
tively. However, Code B is constructed by modifying the
extended coding rule for the parity symbol.

In particular, let 4 be a root of the polynomial f(z) =
28 4+ 2%+ 2* + 2 4+ 1, where v is a primitive generator of
the 63 roots of unity. Represent the elements of GF(64)
in the normal representation using the roots of f(z). The
roots are ¥4, j € J, J ={1, 2, 4, 8, 16, 32}.

Note that for this particular choice of f(z),

Tryd =1, jeJ; J=1,24,816,32

TryivF =0; i#k; ikeld

Let 3 be a root of the polynomial g(z) = z3 + 22 + 1.
Then, B is an element of GF(8), a subfield of GF(64), and

B=7°.

Now use the recursion or check polynomial A(z) =
H?___O(.’E + (') to generate a Reed-Solomon (7,4;4) code
over GF(64). This means that the initial shift register
contains four elements in GF(64) expressed as coefficients
in the normal representation above. The cyclic portion of
the code is of length seven, but the overall parity symbol,
the eighth dimension, is defined differently. Representing
the binary code as components Tr P(z)y!, i = 1, 2, 4,
8, 16, 32, extends the codes to the eighth coordinates by
the rules. The binary value at the row indexed by the ith
coordinate is achieved by Tr Cov* +Tr 3, ; Co7".

Thus, for the constant term Cp with Tr Cy = 0, this
behaves like the normal parity symbol, which is a sum
over the values of the cyclic code coordinates. Note that
this is equivalent to the way the additional six coordinates
were defined in Code A above.

The general Mattson-Solomon polynomial of codeword
a, similar to the Golay codeword over GF(8), is P,(z) =
Co+Ciz+Cax? + Csz3, where C; € GF(64)for0 <i<3
and z € GF(8). Encode the codeword in its cyclic portion.
The extended codeword a expressed in terms of the MS
polynomial, is

a=Pa(B); 0<i<6, (Pa(0))

~ Writing the codewords in binary, using the normal basis
+7, where j € J above, there are six binary codewords of

length eight
Tr P(z)y'; j=1,2 4,8, 16, 32

where Tr a denotes the value in GF(2) given by the Trace
of an element a € GF(64)

Tra=a+a+at+a®+ a'® + ¢

Consider one of the six binary words in its Mattson-
Solomon setting,

Tr Pa(z)y’ = Tr (Co + C1z + Coz® + C3z®)y?
=Tr Co7v’ + Tt '[(C1z + Caz? + Caz®)y
+ ((Crz + Coz? + C323)77)7]
Tr‘a=a+a’+a*; a€ GF(8)

Set Cy = 0 temporarily, as this does not affect the argu-
ments to follow, and

Tr P(z)y =Tr '(C1y? + (C1yY)® + (Co')™
+(C27% )Yz + Tr ((Ca7’)? + (Cav)'%)2"

Lemma. The coefficient of z is a (6,4;3) code over
GF(8). The coefficient of z3 is a (6,2;5) code over GF(8).
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The code is indexed by the values of ¥/, j € J, J = {1, 2,
4,8, 16, 32).

Proof. Theset v/, j€J, J=1{1,2,4,8,16,32}isa
linear independent set, and thus can only take zero values
one less than the number of terms in the coefficients of z
and z8. The components Tr Co9? for Tr Cy = 0 form a
binary (6,5;2) code.

Theorem. The Reed-Solomon code determined by
codewords with MS polynomials P,(z), when Tr Cy = 0,
forms a binary (48,23;12) code with weights that are mul-
tiples of 4.

Proof. The property of the weights that are multiples
of 4 follows from using the Solomon-McEliece T'; formula

Tr P(z)y = Tr ((C17 + (C27)* + (Cs7?z?))
where Tr is defined in GF(64). Now
T2(Tr P(z)y) = Tr [CiC2y® + C3C24*° + C1C384Y7
+CTC3% ™ + C3°C37™* + C2C37°
+ 019 + CLCY™)
for
To(Tr P(z)y?) = Tr [C1C3+°® + CFC3y*° + C1CJ0v*
+ O30} + CPCIY® + Y Gy
+ C2C15,3 | ciC16,4)
Similarly,
To(Tr P(z)y*) = Tr [C1C34'2 + C3C3v* + C1CL54°
+ CECI™ + CFCEy° + CHCEy™
+C3°C5%° + G339

and, therefore, 3=, ; To(Tr P(z)y?) = 0. Recall that the

normal basis was chosen so that Tr9/ = 1, j € J, and
Try®=Try*=Tr+°=0.
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It has been demonstrated that the binary weight of any
codeword in the Reed-Solomon code above is a multiple of
4. Since the symbol distance of the code is greater than 5,
the weights have been narrowed down to 8, 12, 16, 20, ..,
40.

VI. Structure of the Code

An examination of the Reed-Solomon code in its cyclic
components reveals that most code symbols weights are 3,
5, and 6. The code has weight 3 when C3 # 0 and C}
and Cy = 0. Clearly, the binary weight of the code is >12,
independent of the value of Cy. From above, it is clear
that the dimension 18 portion of the code has a minimum
distance of 12. In fact, the codewords have weights 12
through 36 in multiples of 4. Now, consider Cy by itself
when Tr Cy = 0. Adding this to the dimension 18 code
addressed above, the minimum distance is kept at 12. If
the symbol weight of the Reed-Solomon code is 5 or 6,
then the binary weight of the dimension 18 code is >12,
and no complementing can reduce this weight. For sym-
bols of weight 3, one must have three codewords of
weight 4 each; again, complementing does not reduce the
weight.

The extension parity rule for Cy has been changed as
follows: if, say, for i = 1, Tr P(z)y* = 1 and Tr P(z)y’ =
0, i # 1, an eighth row of weight 5 is adjoined, e.g.,
011111. The argument invoked in the first code above
may be used to prove that the minimum code distance is
12 and all words have weight multiples of 4, i.e., the code is
self-dual.

VII. Decoding Binary

To correct five or more errors, begin by trying 64 dif-
ferent values of C3. This eliminates the cyclic component
attached to z°. Since each of the six binary codes is now an
odd-error-detecting, single-error-correcting code, the par-
ity information is used to correct single errors when they
occur. In the case of a five binary error pattern, at least
four correct values of C; and C; are available. Therefore,
in (§) trials, a total of at most 15 x 64 = 1024 - 64 =
960 candidates is available to find the most likely error
pattern.

Note that five-error patterns occur in rows as 5, 4 1,
23,122,131,1112,and 1111 1. Six-error patterns
occur inrows as 6, 51,42,321,33,3111,222,
2211, and 21111 Using this technique, the only
error pattern that would not emerge as a candidate would
be the 2 2 2 case. This occurs in 560 patterns out of the



possible (?) error patterns. The number of uncorrectable, A soft decoding using these techniques would perhaps
but detectable, six-error patterns is given by (162) times the  add a few decibels to the hard-decision decoding perfor-

number of codewords of weight 12. mance.
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