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A disk-on-rod inside a corrugated horn is one of the horn configurations for
dual-frequency or wide-band operation. A mode-matching analysis method is de-
scribed. A disk-on-rod inside a corrugated horn is represented as a series of coaxial
waveguide sections and circular waveguide sections connected to each other. Three
kinds of junctions need to be considered: coaxial-to-coaxial, coaxial-to-circular, and
circular-to-circular. A computer program was developed to calculate the scatter-
ing matrix and the radiation pattern of a disk-on-rod inside a corrugated horn.
The software was verified by experiment, and good agreement between calculation
and measurement was obtained. The disk-on-rod inside a corrugated horn design
gives an option to the Deep Space Network dual-frequency operation system, which
currently is a two-horn/one-dichroic plate system.

I. Introduction

To design a dual-frequency horn for the DSS-13 beam waveguide antenna, an analysis tool needs
to be developed. A side-view model of a circularly symmetric disk-on-rod inside a corrugated horn is
shown in Fig. 1. The horn is subdivided to several sections that are either coaxial or circular wave-
guide sections. The junctions between these sections are either coaxial-to-coaxial, coaxial-to-circular, or
circular-to-circular waveguide junctions. In order to analyze the performance of a disk-on-rod inside a
corrugated horn, a computer program based on the mode-matching method was developed [1,2]. The
circular waveguide program and coaxial waveguide program that calculate the scattering matrix of the
circular waveguide and coaxial waveguide of different sizes, respectively, are already available [3]. In order
to simulate the disk-on-rod inside a corrugated horn, it was necessary to integrate the existing circular
waveguide program and coaxial program with a new third program that handles the junction between
circular and coaxial waveguides.

II. Theory

The analysis of the waveguide junctions is based on the mode-matching method. The following theory
is used to calculate the scattering matrix of coaxial-to-circular waveguide junctions (Fig. 2). The elec-
tromagnetic field is represented by coaxial waveguide modes in the coaxial waveguide region and circular
waveguide modes in the circular waveguide region. Only waveguide modes of order 1 are considered in

188



 

z = 0

AII

BII
BI

AI

REGION I
M MODES

REGION II
N MODES

z = 0

(a)

aI bI

aII

(b)

Fig. 2.  Coaxial-to-circular waveguide junctions with (a) a different outer radius and 
(b) the same outer radius.     
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Fig. 1.  A model of a disk-on-rod inside a corrugated horn.
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the analysis, and the waveguide is assumed to be nondissipative. In region I (the coaxial waveguide
region), let the transverse field EI , HI at z = 0 be represented by the modal expansion

EI =
M∑
m=1

(AmI +BmI) emI (1)

HI =
M∑
m=1

(AmI −BmI)hmI (2)

where emI and hmI are transverse modal field vectors and AmI , BmI are the forward and reflected
modal coefficients in the region I to be determined. The electromagnetic fields for the TE (ez = 0) and
TM (hz = 0) coaxial modes are as follows [4].

For the TE coaxial waveguide modes, the transverse e and h fields are

e = er r̂ + eφφ̂ (3)

h = hr r̂ + hφφ̂ (4)

er = Cm
F1 ((χ′mr)/bI)

(χ′mr) /bI
sinφ

(5)

eφ = CmF
′
1

(
χ′mr

bI

)
cosφ

hr = − eφ
ηTEm

(6)

hφ =
er
ηTEm

where F1 is a combination of Bessel functions of the first kind, Jν(z), and Bessel functions of the second
kind, Yν(z), of integral order ν = 1, and is given by

F1

(
χ′mr

bI

)
= J1

(
χ′mr

bI

)
Y ′1(χ′m)− Y1

(
χ′mr

bI

)
J ′1(χ′m) (7)

where χ′m is the mth root of the derivative of F1 when r = aI and Cm is a normalization constant. The
impedance of the TE waveguide mode, ηTE , is given by

ηTE =


√
µ/ε√

1−(λ/λc)2
for λ < λc

j
√
µ/ε√

(λ/λc)2−1
for λ > λc

(8)
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where µ and ε are the absolute magnetic permeability and absolute dielectric constant of the medium,
respectively. The free space wavelength is λ, and λc is the cutoff wavelength (λc = λ′cm) of the TE coaxial
waveguide mode, which can be expressed as

λ′cm =
2π

((aI/bI) + 1)χ′m
(aI + bI) m = 1

(9)

λ′cm =
2π

((aI/bI)− 1)χ′m
(aI − bI) m = 2, 3, 4, · · ·

For the TM coaxial waveguide modes, the transverse e and h fields can be expressed as

er = − CmG′1
(
χmr

bI

)
cosφ

(10)

eφ = Cm
G1 (χmr/bI)
χmr/bI

sinφ

hr = − eφ
ηTMm

(11)

hφ =
er
ηTMm

where G1 is a combination of Bessel functions of the first kind, Jν(x), and Bessel functions of the second
kind, Yν(x), of integral order ν = 1, and is given by

G1

(
χmr

bI

)
= J1

(
χmr

bI

)
Y1(χm)− Y1

(
χmr

bI

)
J1(χm) (12)

where χm is the mth root of G1 when r = aI . The impedance of the TM waveguide mode, ηTM , is

ηTM =


√

µ
ε

√
1−

(
λ
λc

)2

for λ < λc

−j
√

µ
ε

√(
λ
λc

)2

− 1 for λ > λc

(13)

The cutoff wavelength of the TM coaxial waveguide mode, λc = λcm, can be expressed as

λcm =
2π

((aI/bI)− 1)χm
(aI − bI) (14)

In region II, the transverse fields EII , HII at z = 0 can be represented by the modal solution in region
II (the circular waveguide region) as follows:
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EII =
N∑
n=1

(AnII +BnII)enII (15)

HII =
N∑
n=1

(AnII −BnII)hnII (16)

where enII and hnII are transverse modal fields and AnII , BnII are the forward and reflected modal
coefficients in region II to be determined.

The transverse e and h fields of the TE circular waveguide modes are

er = Cn
J1 ((χ′nr)/aII)

(χ′nr)/aII
sinφ

(17)

eφ = CnJ
′
1

(
χ′nr

aII

)
cosφ

hr = − eφ
ηTEn

(18)

hφ =
er
ηTEn

where χ′n is the nth nonvanishing root of the derivative of the Bessel function J ′1(χ′n) = 0. The Cn is a
normalization constant. The impedance of the TE waveguide mode, ηTE , is defined in Eq. (6), and the
cutoff wavelength of the TE circular waveguide mode, λc = λ′cn, can be expressed as

λ′cn =
2π
χ′n
aII (19)

For TM circular waveguide modes, the transverse e and h fields are

er = − CnJ ′1
(
χnr

aII

)
cosφ

(20)

eφ = Cn
J1((χnr)/aII)

(χnr)/aII
sinφ

hr = − eφ
ηTMn

(21)

hφ =
er
ηTMn
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and χn is the nth nonvanishing root of J1(χn) = 0. The impedance of the TM waveguide mode, ηTM ,
is defined in Eq. (11), and the cutoff wavelength, λc = λcn, of the TM circular waveguide mode can be
expressed as

λcn =
2π
χn
aII (22)

By applying the boundary conditions that are discussed in detail in [1], the following pair of simultaneous
matrix equations is obtained:

[P ]{[AI ] + [BI ]} = [Q]{[AII ] + [BII ]} (23)

[P ]T {[BII ]− [AII ]} = [R]{[AI ]− [BI ]} (24)

where [AI ] and [BI ] are column matrices of M elements containing the unknown modal coefficients in
region I; [AII ] and [BII ] are column matrices of N elements containing the unknown modal coefficients
in region II; [P ]T is a transpose matrix of [P ]; [P ] is an M -by-N matrix; [Q] is an N -by-N diagonal
matrix; and [R] is an M -by-M diagonal matrix. The elements of these three matrices, [P ], [Q], and [R],
are defined as follows:

Pmn =
∫
SI

emI × hnII · ds (25)

Qnn =
∫
SII

enII × hnII · ds (26)

Rmm =
∫
SI

emI × hmI · ds (27)

In all cases, these integrals can be obtained in closed form. The Rmm is the integration between two
circular waveguide modes and Qnn is the integration between two coaxial waveguide modes in region I
and region II, respectively; Pmn is the integration between circular and coaxial waveguide modes and can
be expressed as
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Pmn =



(
π
ηTEn

CnCm

)
1

(χ′n/aII)2−(χ′m/bI)2

[
2
πJ
′
1

(
χ′nbI
aII

)
− χ′maI

bI
J ′1

(
χ′naI
aII

)
F1

(
χ′maI
bI

)]
(TE coaxial waveguide mode and TE circular waveguide mode)(

π
ηTMn

CnCm

)
1

(χn/aII)2−(χm/bI)2

[
2
π
χnbI
χmaII

J1

(
χnbI
aII

)
+ χnaI

aII
J1

(
χnaI
aII

)
G′1

(
χmaI
bI

)]
(TM coaxial waveguide mode and TM waveguide circular mode)(

π
ηTMn

CnCm

)
aIIbI
χnχ′m

[
− 2
π

1
χ′m
J1

(
χnbI
aII

)
+ J1

(
χnaI
aII

)
F1

(
χ′maI
bI

)]
(TE coaxial waveguide mode and TM circular waveguide mode)

0

(TM coaxial waveguide mode and TE circular waveguide mode)

(28)

The submatrices [S11], [S12], [S21], and [S22] are derived from [P ], [Q], and [R] by Eqs. (21) and (22):

[S11] =
[√

R
] (

[R] + [P ]T [P ]
)−1 (

[R]− [P ]T [P ]
) [√

R
]−1

(29)

[S12] = 2
[√

R
] (

[R] + [P ]T [P ]
)

[P ]T
[√

Q
]−1

(30)

[S21] = 2
[√

Q
] (√

Q+ [P ][P ]T
)

[P ]T
[√

R
]−1

(31)

[S22] =
[√

Q
] (

[Q] + [P ][P ]T
)−1 (

[Q]− [P ][P ]T
) [√

Q
]−1

(32)

When there are no dimension changes in the waveguide, which is then equivalent to a transmission
line, the scattering matrix depends on the propagation constants of the waveguide modes in that straight
section. To obtain the overall scattering matrix, the scattering matrices need to be cascaded. The
procedure is described in detail in [1].

The above theory described the waveguide mode-matching method for coaxial-to-circular waveguide
junctions. The same method was applied to circular-to-circular and coaxial-to-coaxial waveguide junctions
(Figs. 3 and 4).

III. Computer Program Development

The geometrical configuration of the horn (flare angle, groove depth and width, and aperture size)
is represented by a series of circular waveguides of different radii and lengths while the configuration of
the disk-on-rod (diameter of the rod, diameter and thickness of the disk, disk spacing) is represented
by a series of disks of various radii and lengths. These two data files are then combined and regenerated as
a new data file containing the geometry of the disk-on-rod inside a horn. The new input data file in-
cludes the outer radius (horn), inner radius (disk-on-rod), and the length of the (either coaxial or circular)
waveguide section. The inner radius is zero for circular waveguide sections. All the sections are circu-
larly symmetric with respect to the center axis of the feedhorn. The number of modes in each section is
chosen according to the ratio M/N = (aI − bI)/(aII − bII) in order to converge to the correct values.

194



 

Fig. 3.  Circular waveguide junctions.
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Fig. 4.  Coaxial waveguide junctions with a different (a) inner and outer 
radius, (b) outer radius, and (c) inner radius.
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The P,Q, and R are calculated [Eqs. (25)–(27)] according to the type and size of the waveguide junctions.
The scattering matrix of each section is calculated and cascaded with the scattering matrix of previous
sections until the scattering matrix of the whole horn is obtained.

The reflection matrix [S11] indicates the return loss of the horn. The radiation pattern can be computed
by using the amplitude and phase of the transmitted circular waveguide modes ([S12]) at the horn aperture
[5]. Therefore, if the geometry of a feedhorn is available, both characteristics (radiation pattern and return
loss) of the feedhorn are computed simply by inputting the geometrical dimensions to the computer
program.

IV. Verification of the Computer Program

The program was first verified by comparing results with the existing circular waveguide program
and coaxial waveguide program for appropriate junctions. Consistent results were achieved. Then an
experiment was designed and performed in order to verify the scattering matrix of a circular-to-coaxial
waveguide junction. The test piece is a WC137 circular waveguide with a circular aluminum rod suspended
by two pieces of 0.0254 mm–thick kapton (Fig. 5). This structure includes a circular-to-coaxial and a
coaxial-to-circular junction. The experiment was performed with rods of radii 7.62 and 10.16 mm and
lengths of 63.5 and 76.2 mm. The amplitude and phase of the reflection (S11) and transmission (S21)
coefficients were measured using a Hewlett Packard 8510C network analyzer. Good agreement between
calculations and measurements was found in all the test cases. A test case of a rod of radius 7.62 mm
and length 63.5 mm inside a WC137 circular waveguide of length 203.32 mm is shown in Figs. 6–9. The
kapton in the waveguide was very thin in respect to the wavelength, so that it could be neglected in the
computer modeling.

The L-/C-band dual-frequency horn, which includes a C-band disk-on-rod inside a C-band launcher
and an L-band horn, was also used to check the computer codes (Fig. 10) [6]. By inputting the
L-/C-band horn model in the program, the C-band and L-band radiation patterns were computed.
Good agreement was shown between calculation and measurement at 5.01 GHz (C-band) and 1.668 GHz
(L-band), respectively (Figs. 11–14) [7]. The slight asymmetry between the measured C-band E- and
H-plane patterns was due to the C-band disk-on-rod becoming slightly off-centered during the trip to
Goldstone, where the measurement was taken. All the results indicate that the software is reliable.

ALUMINUM ROD

CIRCULAR 
WAVEGUIDE

WC137

0.0254 mm–THICK
KAPTON

76.2 mm50.8 mm76.2 mm

Fig. 5.  The test piece for the circular-to-coaxial and coaxial-to-circular junction experiment.
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Fig. 6.  Calculated and measured amplitude of S    for a rod of radius 7.62 mm and length 63.5 mm
                 inside a WC137 circular waveguide.
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Fig. 8.  Calculated and measured amplitude of S     for a rod of radius 7.62 mm and length 63.5 mm
                 inside a WC137 circular waveguide.
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                 inside a WC137 circular waveguide.
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Fig. 10.  The L-/C-band dual-frequency feed system.
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Fig. 11.  Measured and calculated H-plane pattern for the L-/C-band dual-frequency horn at 5.01 GHz.
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Fig. 12.  Measured and calculated E-plane pattern for the L-/C-band dual-frequency horn at 5.01 GHz.

—35

—30

—25

—20

—15

—10

–5

0

—40

MEASUREMENT

CALCULATION

200



 

A
M

P
LI

T
U

D
E

, d
B

0

MEASUREMENT

CALCULATION

10 20 30 40 50 60

THETA, deg

Fig. 13.  Measured and calculated H-plane pattern for the L-/C-band dual-frequency horn at 1.7 GHz.
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Fig. 14.  Measured and calculated E-plane pattern for the L-/C-band dual-frequency horn at 1.7 GHz.
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V. Conclusion

A disk-on-rod inside a horn was analyzed based on the mode-matching method. A computer program
was developed to calculate the radiation pattern and the return loss of a horn by inputting the dimensions
of the horn and the disk-on-rod. The computer program was verified by measurements and checked
against other calculations. This software will be used to design an X-/Ka-band (8.45-GHz/33.7-GHz)
dual-frequency horn for DSS 13.
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