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In a time-varying signal-to-noise ratio (SNR) environment, symbol rate is often
changed to maximize data return. However, the symbol-rate change has some un-
desirable effects, such as changing the transmission bandwidth and perhaps causing
the receiver symbol loop to lose lock temporarily, thus losing some data. In this
article, we are proposing an alternate way of varying the data rate without chang-
ing the symbol rate and, therefore, the transmission bandwidth. The data rate
change is achieved in a seamless fashion by puncturing the convolutionally encoded
symbol stream to adapt to the changing SNR environment. We have also derived
an exact expression to enumerate the number of distinct puncturing patterns. To
demonstrate this seamless rate-change capability, we searched for good puncturing
patterns for the Galileo (14,1/4) convolutional code and changed the data rates by
using the punctured codes to match the Galileo SNR profile of November 9, 1997.
We show that this scheme reduces the symbol-rate changes from nine to two and
provides a comparable data return in a day and a higher symbol SNR during most
of the day.

I. Introduction

In deep-space communications and other space communications, the signal-to-noise ratio (SNR) varies
during a day. The degree of variation is determined by weather conditions, antenna elevation angle,
antenna-pointing accuracy (both the transmitter and receiver antennas), changes in satellite latitude,
and many other factors. For example, the total signal power-to–noise density ratio, Pt/No, during a
typical 24-hour pass for the Galileo Mission can fluctuate in a range between 16 and 22 dB-Hz. In order
to maximize the data return in this time-varying SNR environment, the transmitted symbol rate is varied
as a function of the estimated Pt/No at the antenna. The symbol rate is set as high as possible under
the constraint that the symbol SNR is high enough for the tracking loops to remain in lock and that the
bit-error-rate (BER) requirement is met. In the Galileo Mission, there are six different symbol rates, and
there can be as many as eight symbol-rate changes (from 10 to 640 symbols/s) during a day. One problem
associated with the symbol-rate change at a low operating symbol SNR is that the symbol synchronization
loop may have to reacquire the symbol phase, which may cause real-time data loss. A technique that
involves opening the symbol loop at the moment of the symbol-rate change has been proposed,1 but this

1 J. Berner, “GLL Data Rate Changes,” Project Notes (internal document), Jet Propulsion Laboratory, Pasadena,
California, June 11, 1993.
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technique requires very accurate time predicts on the moment of change. It is not clear if the predict
information can be obtained within the required accuracy.

In this article, we are proposing a simple and low-cost alternative solution to the data rate–change
problem by changing the data rate at the error-correcting coding stage rather than at the transmission
stage. The data rate is changed by puncturing the low-rate convolutional code while the symbol rate is
kept constant. In this way, the basic structures of the encoder and decoder remain unchanged, making
the scheme simple and less costly. The idea is to minimize the number of symbol-rate changes and still
maintain a high enough symbol SNR for the loops to remain in lock and the BER to stay low. Symbol
rate is changed only if the symbol SNR goes too high (wasting bit SNR) or too low (making the receiver
unable to track the symbols).

By allowing the code-rate change, we are essentially adding a degree of freedom in the data return–
maximization problem. The code rate will share a part of the necessary data-rate changes with the symbol
rate, therefore reducing the number of symbol-rate changes. This feature becomes even more important
when the available bandwidth is fixed.

In Section II, we will present the definition and an overview of puncturing patterns. In Section III, we
will discuss our procedure for selecting good puncturing patterns, and Section IV will provide an example
of using the punctured convolutional code for the SNR profile of the Galileo Mission on November 9,
1997, which is an arbitrarily chosen day. In Section V, we will give some concluding remarks.

II. Definition and Enumeration of Puncturing Patterns

A. Definition of Puncturing Patterns

A regular-rate 1/N convolutional code generates N code symbols per bit. By periodically and system-
atically refraining from transmission of some of the code symbols, a higher rate code can be constructed
from an original lower rate 1/N code. Let the period be L bits or NL code symbols. We define a punc-
turing pattern P of period NL symbols to be an NL binary-tuple, where a 1 denotes that the symbol in
the corresponding location is to be sent and a 0 denotes that the symbol is to be deleted. If there are m
zeros in P , the resulting punctured code is a higher rate L/(NL −m) code, where 0 ≤ m < (N − 1)L.
For example, let N = 4, L = 4, and one puncturing pattern be P = {0111 1110 1011 1101}. We define
the rightmost digit to correspond to the first symbol and the rightmost group of four digits to correspond
to the four symbols of the first bit. The puncturing pattern, P , indicates that the second symbol in the
first bit, the third symbol in the second bit, the first symbol in the third bit, and the fourth symbol in the
fourth bit in a period are not transmitted. The resulting punctured code is a rate 4/(4×4−4) = 1/3 code.
With the leftmost digit being the most significant bit and the rightmost digit being the least significant
bit, the puncturing pattern, P , can be represented as 7ebd in hexadecimal form.

B. Enumeration of Puncturing Patterns

In this section, we develop an exact expression to enumerate the number of unique puncturing patterns.

Clearly, there are
(
NL
m

)
different possible patterns for P . Since P is repeated every L bits or NL

symbols, any cyclic shift of N symbols in P gives the same code performance as P . However, this does
not reduce the number of patterns that give a distinct code performance by a factor of N , as some of the(
NL
m

)
patterns may have a smaller period Li. That is, Li divides L, which is denoted by Li | L. Let f(Li)

denote the number of puncturing patterns with period Li exactly (including 1). Notice that f(Li) = 0 if
the m zeros cannot be evenly divided among L/Li partitions (i.e., (L/Li) 6 | m). Also, among the

(
NLi
mLi/L

)
patterns with period Li, some may have smaller periods. Let p be a prime that divides Li. If p|(mLi/L),
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then there are

(
NLi/p

mLi/(Lp)

)
patterns of P with period Li/p. The total number of distinct puncturing

patterns is, therefore,

∑
Li|L

1
Li
f(Li)

where f(Li) can be enumerated as follows:

f(Li) =
(
NLi
mLi
L

)
−
∑
p|Li

(NLi
p

mLi
Lp

)

Notice that we define the combinatoric function
(
m
n

)
= 0 if either m or n is not an integer. In the above

example with N = 4, L = 4, and m = 4, an exhaustive search requires checking
(
16
4

)
= 1820 puncturing

patterns. By taking into account the cyclic property of the puncturing patterns, the number of distinct
puncturing patterns is now reduced to

1
4

[(
16
4

)
−
(

8
2

)]
+

1
2

[(
8
2

)
−
(

4
1

)]
+
(

4
1

)
= 464

which is a reduction by almost a factor of 4.

III. Puncturing Pattern Search Procedure

In this section, we describe the search procedure that we used to find good puncturing patterns for a
rate-1/N convolutional code. Using this procedure, we searched for punctured patterns for the (14,1/4)
convolutional code used for Galileo. We punctured it from rate 1/4 to rate 1/3, then to rate 1/2. A rate
compatibility [1] restriction is added in the puncturing-pattern search. That is, a code symbol used in the
high-rate code is also used in the low-rate code. For example, to search for a rate-1/2 punctured code,
we puncture the rate-1/3 code found a step before, not the rate-1/4 code. This was necessary mainly
because of limited computing resources.

For each punctured code rate, the goal is to find the puncturing pattern, P , that gives the lowest BER
at that rate for a range of SNR values. Direct simulation of the punctured convolutional code is not viable
since there are so many different puncturing patterns. As a first step in selecting the puncturing patterns,
we computed the weight profile of each punctured code that includes the free distance, dfree, the number
of paths of weight d, ad, and the information bit error weight, cd. To further simplify our search, we
only searched for paths of weight d such that dfree ≤ d ≤ dcut, where dcut is some predetermined value
that is large enough to infer the code’s BER performance and small enough to complete the search in a
reasonable time. Note that there are L different starting points for diverging paths, where L is the period
of the puncturing patterns. The worst case is considered in comparing the puncturing patterns.

A systematic search is carried out to find the patterns with the maximum free distance and the
minimum number of paths of weight d for Viterbi decoding. Three patterns with the largest free distance
and smallest number of paths of weight d are then simulated to obtain three BER curves. The lowest
BER curve is selected and used further to compute the BERs for the concatenated codes of convolutional
code as the inner code and the Reed–Solomon (RS) (255,223) code as the outer code, assuming infinite
interleaving.
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Once we have the points of Eb/No versus BER of the concatenated code, we fit a curve through these
points. These curves are used to determine the BER for a given SNR profile of the Galileo Mission. When
the BER is less than 10−7, we determine that the code rate can be used in that time period.

Note that the (14,1/4) Galileo code is used here only to demonstrate the alternative possibility of using
punctured codes. In fact, the (14,1/4) code is composed of a (11,1/2) convolutional code and the NASA
standard (7,1/2) code. The NASA standard (7,1/2) code was necessary because the hardware encoder
on the spacecraft cannot be altered or bypassed.

A. Upper Bound on Free Distance

Before searching for the maximum free distances, we compute the upper bounds of the free distances
to see the effect of the puncturing period on the free-distance bound of the punctured codes. The upper
bounds on the free distances for convolutional codes can be computed using expressions given in [2].
Figure 1 shows some of the bounds on the free distances for codes punctured from code (14,1/4), with the
minimum period from 1 to 4. By minimum period we mean that the period 4 does not include period 1
or 2. The results show that a shorter puncturing period gives a higher upper bound on the free distance,
but the shorter puncturing period provides a smaller set of possible code rates.
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Fig. 1.  Upper bounds on free distance for punctured codes from (14,1/4) code.
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B. Weight Spectra of Punctured Codes

The parent code in this case has the following polynomials: 2c22, 3d7d, 2bcd, and 1dd3. First, we
search for punctured codes from (14,1/4) to (14,1/3) and find the weight spectra corresponding to all
different punctured patterns. The period in this case is 4, which corresponds to 464 different puncturing
patterns. We then sort the weight spectra in ascending order according to the number of paths of weight
d, ad. Finally, we pick the best three patterns, and their weight spectra are shown in Table 1. According
to the weight spectra, the best pattern is bbbb. This implies that the puncturing pattern has period 1, and
the third symbol is punctured out every time. This corresponds to the (14,1/3) code with polynomials
2c22, 3d7d, and 1dd3.
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To further puncture the code to rate 1/2, we use the best 1/3 code found earlier as the parent code. The
following patterns are found to be the best: 3636, 3535, and 3333 in octal numbers. The weight spectra
of the three best puncturing patterns are shown in Table 2. Note that when searching for puncturing
patterns with period 4, those patterns with period 1 and 2 are included.

Table 1. Weight spectra of punctured codes (14,1/3) from (14,1/4) parent code.

Pattern d 23 24 25 26 27 28 29 30 31 32 33 34 35

bbbb ad 0 4 6 4 9 14 22 48 93 130 237 389 638

bdbd ad 1 1 3 8 13 21 27 54 68 137 225 400 652

bbbd ad 1 5 5 5 13 16 38 54 101 146 288 481 800

bbbb cd 0 14 18 18 55 72 122 322 641 920 1853 3134 5530

bdbd cd 1 3 9 35 60 121 139 320 486 938 1699 3150 5368

bbbd cd 5 14 19 24 77 91 240 347 724 1080 2313 4067 7068

Table 2. Weight spectra of punctured codes (14,1/2) from (14,1/3) parent code.

Pattern d 13 14 15 16 17 18 19 20 21 22 23 24

3636 ad 0 2 6 10 24 51 142 344 824 1956 4726 11363

3535 ad 0 2 8 9 35 70 154 371 931 2286 5464 13234

3333 ad 0 3 0 14 0 73 0 545 0 2884 0 16679

3636 cd 0 5 20 70 146 354 1144 2914 7780 20229 52967 5525

3535 cd 0 9 37 53 251 550 1298 3370 9353 25245 64261 35749

3333 cd 0 9 0 71 0 520 0 4686 0 29943 0 4011

C. BER of Punctured Convolutional Code From Simulation

The weight-spectra search is only the first step in the code puncturing pattern search. To further
compare their performance, the punctured codes are simulated with an encoder and the Viterbi decoder
for several bit-SNR values. The traceback length used in the Viterbi decoder in this case is at least 160,
and the input soft symbols are quantized with 8 bits. The simulated results are shown in Tables 3 and 4.
Generally, the three puncturing patterns give similar BERs.

D. BER of Concatenated Code

Once we obtain the BER from the Viterbi decoder, we can compute the bit-error rate at the output of
the RS decoder, assuming infinite interleaving using the expression given in [3, p. 256]. In the case of the
Galileo Mission, there are 8 bits in a codeword, 255 codewords in a frame, and the number of correctable
errors is 16. The computed BERs at the output of the RS decoder are shown in Tables 5 through 7.

IV. Example Using the Galileo Profile

We use the predicted SNR profile of the Galileo Mission on November 9, 1997, as an example to
explain how the number of symbol-rate changes can be reduced with code-rate changes. For a given SNR
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Table 3. BER of punctured convolutional codes (14,1/3).

Puncturing patterns

Eb/No
bbbb bdbd bbbd

−1.2494 0.3528 0.3532 0.3533

−0.7494 0.2320 0.2336 0.2330

−0.2494 0.1083 0.1100 0.1090

0.2506 0.0342 0.0345 0.0347

0.7506 0.0076 0.0077 0.0076

1.2506 0.0012 0.0012 0.0012

Table 4. BER of punctured convolutional codes (14,1/2).

Puncturing patterns

Eb/No
3636 3535 3333

−1.0103 0.4389 0.4339 0.4445

−0.5103 0.3573 0.3519 0.3625

−0.0103 0.2230 0.2206 0.2279

0.4897 0.0924 0.0934 0.0924

0.9897 0.0230 0.0243 0.0226

1.4897 0.0040 0.0043 0.0035

1.9897 0.0005 0.0005 0.0004

2.4897 4.7× 10−5 5.4× 10−5 3.5× 10−5

Table 5. BER output of RS decoder using punctured code (14,1/4).

Eb/No BER input to RS decoder BER output of RS decoder

−2.0 0.4218 0.4218

−1.5 0.3408 0.3408

−1.0 0.2139 0.2139

−0.5 0.1023 0.1023

0.0 0.0326 0.0194

0.5 0.0070 5.4× 10−9

1.0 0.0013 2.3× 10−20

1.5 0.0002 1.1× 10−49
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Table 6. BER output of RS decoder using punctured codes (14,1/3).

Eb/No BER input to RS decoder BER output of RS decoder

−1.2494 0.3528 0.3528

−0.7494 0.2320 0.2320

−0.2494 0.1083 0.1083

0.2506 0.0342 0.0230

0.7506 0.0076 1.8× 10−8

1.2506 0.0012 1.0× 10−20

Table 7. BER output of RS decoder using punctured codes (14,1/2).

Eb/No BER input to RS decoder BER output of RS decoder

−1.0103 0.4389 0.4389

−0.5103 0.3573 0.3573

−0.0103 0.2230 0.2230

0.4897 0.0924 0.0924

0.9897 0.0230 0.0029

1.4897 0.0040 1.6× 10−12

1.9897 0.0005 3.7× 10−27

2.4897 4.7× 10−5 1.6× 10−44

profile—for example, the one shown in Fig. 2—the objective is to get the maximum data return under
the conditions that the bit-error rate is below 10−7 and the symbol SNR is maintained above −6 dB for
the carrier, subcarrier, and symbol loops to track. To achieve this goal, the current plan is to change the
symbol rate using a fixed code rate, 1/4, and an alternate way is to allow the code rate to change as well,
thus reducing the number of symbol-rate changes.

We arbitrarily select a set of three code rates, namely, 1/4, 1/3, and 1/2. The variable code rate can
only take values from this set. Figure 3 shows the symbol rates using fixed and variable code rates. In
the fixed–code rate case, there are nine symbol-rate changes, compared to two symbol-rate changes in
the variable–code rate case. With these symbol rates, each of the two systems will have a symbol SNR
above −6 dB, as required, where the variable–code rate case has a slightly higher symbol SNR for most
of the day, as shown in Fig. 4. The code-rate changes are shown in Fig. 5.

Multiplying the code rates by the symbol rates, we obtain the bit rates as shown in Fig. 6 for the
fixed– and variable–code rate cases. The areas under the two curves in Fig. 6 are the total data returns
for the day. The data return using the variable code rate is found to be comparable with that using the
fixed code rate.

V. Conclusions

In this article, we have described a simple and low-cost method to change the data rate to match
the time-varying Pt/N0 environment. This is done by puncturing the convolutional code at the error-
correction coding stage rather than by changing the symbol rate at the transmission stage. The main
advantages of this method are that it allows seamless transition from one data rate to another and that,
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Fig.  2.  Arrayed P /N   on November 9, 1997, from Galileo.
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Fig. 3.  Symbol rates on November 9, 1997, for Galileo using fixed and variable code rates.

TIME, h

150

100

S
Y

M
B

O
L 

R
A

T
E

, s
ym

bo
ls

/s

50

VARIABLE CODE RATE

FIXED CODE RATE

25



 

2

0

–2

–4

0 5 10 15 20 25

Fig. 4.  Symbol SNR on November 9, 1997, for Galileo using fixed and variable code rates.
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Fig. 5.  Variable code rates on November 9, 1997, for Galileo.
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Fig. 6.  Bit rates on November 9, 1997, for Galileo.
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for a fixed available bandwidth, data rate is allowed to change for a larger data return. We applied this
method to the Galileo SNR profile on November 9, 1997, as an example to demonstrate its effectiveness.
We showed how this method reduces the number of symbol-rate changes from nine to two and gives a
comparable data return in a day and a higher symbol SNR for most of the day.

Notice that, in this example, we arbitrarily picked 100 and 200 symbols/s as two symbol rates to be
used. We are developing techniques to select the symbol rates that will maximize the data return. The
problem is formulated below.

For a given SNR profile, (Pt/No)(t), we wish to find the symbol rate Rsym(t) and the code rate Rc(t)
such that the data return given by

∫ t2
t1
Rsym(t)Rc(t)dt is maximal, subject to the following constraints:

(1) The number of changes of symbol rate Rsym is less than a desired number.

(2) The BER is below a designed value, BER < BERdesign.

(3) The symbol SNR is above the minimum value for the tracking loops to maintain lock,
Es/No > (Es/No)min.
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