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The optimum phase detector is presented for tracking square-wave subcarriers
that have been bandwidth limited to a finite number of harmonics. The phase detec-
tor is optimum in the sense that the loop signal-to-noise ratio (SNR) is maximized
and, hence, the rms phase tracking error is minimized. The optimum phase detector
is easy to implement and achieves substantial improvement. Also presented are the
optimum weights to combine the signals demodulated from each of the harmonics.
The optimum weighting provides SNR improvement of 0.1 to 0.15 dB when the
subcarrier loop SNR is low (15 dB) and the number of harmonics is high (8 to 16).

I. Introduction

This work was motivated by the need for near-optimum demodulation of the extremely weak signal
received from the Galileo spacecraft. This demonstration is accomplished in the buffered telemetry
demodulator (BTD). Since the BTD is a software demodulator, it is practical to tailor the processing
more closely to the Galileo signal conditions than would be practical in other systems, such as the
Block V Receiver.

A limitation of the BTD is that the input signal has been recorded by the full spectrum recorder
and contains only the first four harmonics of the originally transmitted square-wave subcarrier. The
subcarrier phase detector initially implemented in the BTD uses a windowing technique similar to that
used in the Advanced Receiver II and the Block V Receiver [1] but modified for the four-harmonic case
[3]. There is a parameter, Wsc, that is analogous to the fractional window width in a square-wave sub-
carrier phase detector. As shown in Fig. 1, this phase detector results in a degradation (loss in symbol
signal-to-noise ratio (SNR) due to harmonic truncation and phase tracking error), which does not mono-
tonically decrease as the number of harmonics is increased.1 In fact, when the tracking error is large, and
when the harmonics are combined using the usual 1/n weighting for the nth harmonic, it is sometimes
better to use only four harmonics than to use all harmonics. This suggests two things: First, it tells us that

1 Based on work by D. Rogstad, Tracking Systems and Applications Section, and Y. Feria, Communications Systems
Research Section, Jet Propulsion Laboratory, Pasadena, California, October 1994.
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Fig. 1.  Degradation as a function of the number of 
harmonics, using the current BTD.
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the phase detector may not be using the harmonics optimally. Second, it indicates that the demodulated
harmonics may not be optimally combined.

The phase detector used in [3] is derived from a window used on a square-wave subcarrier loop. This
phase detector may not be the optimum for a finite-harmonic subcarrier. As a previous work [2] indicates,
the higher harmonics get larger phase noise jitters. Therefore, the effective signal amplitude on the nth
harmonic is no longer 1/n but some number smaller than that. The optimum weights to combine the
demodulated harmonics should account for the SNR losses due to the loop.

II. Optimum Phase Detector

Here we derive a phase detector (PD) that is optimum in the sense that the loop SNR is maximized.
To show the derivation, let us first take a look at the current phase detector used in the BTD. The
current phase detector is the product of the combined in-phase signals

√
Pddk cosφc(8/π2)

∑L−1
n=0(1/(2n

+ 1)2) cos[(2n + 1)φsc] and the combined quadrature signals
√
Pddk cosφc(8/π2)

∑L−1
n=0 wn(1/(2n

+ 1)) sin[(2n + 1)φsc] where the wn are the weights used to combine the quadrature signals and, in
the current BTD, these weights are

wn =
sin[(2n+ 1)(π/2)Wsc]

2n+ 1

The loop SNR using the current BTD is derived as2

ρsc =
αβ2

γBsc

Pd
N0

(
α+

1
2Es/N0

)−1

where

2 H. Tsou, personal communication, Communications Systems Research Section, Jet Propulsion Laboratory, Pasadena,
California, October 1994.
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α =
8
π2

L−1∑
n=0

1
(2n+ 1)2

β =
8
π2

L−1∑
n=0

wn

γ =
8
π2

L−1∑
n=0

w2
n

where L is the total number of harmonics used in the phase detector, Pd/N0 is the data power-to-noise
ratio, Es/N0 is the symbol SNR, and Bsc is the subcarrier loop bandwidth.

Now in order to maximize the subcarrier loop SNR, ρsc, let wk, k = 0, · · · , L− 1, be unknown and α
be the same as before, and differentiate the loop SNR, ρsc, with respect to wk and set the expression to
zero. We then have

∂ρsc
∂wk

=
2βγ − 2β2wk

γ2

1
Bsc

Pd
N0

α

α+ 1/(2Es/N0)

= 0 (1)

Since Pd/No 6= 0, α 6= 0, and γ, Bsc are finite, the above is zero if and only if

γ − βwk = 0

That is,

L−1∑
n=0

w2
n −

L−1∑
n=0

wnwk = 0

or

L−1∑
n=0

wn(wn − wk) = 0, for all k

which implies that

wn = wk, for all n and k

The conclusion is that the optimum weights to combine the quadrature signals in the phase detector
are a constant for all (finite) harmonics. Note that, for infinite harmonics, the parameters β and γ do
not converge; therefore, the above weights cannot be used for square waves. When the optimum weights
are used in the phase detector, the loop SNR becomes
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ρsc =
L

Bsc

Pd
N0

α

α+ 1/(2Es/N0)
(2)

Using the optimum weights in the phase detector (called the optimum phase detector), we can improve
the loop SNR by 9.5 dB over the current BTD with window size = 1, and by 1.1 dB over the current
BTD with window size = 1/4 (see Fig. 2). The same figure also shows that, using the optimum phase
detector, the loop SNR obtained by using only one harmonic is higher than that using the current BTD
with the window size being either 1 or 1/2. Note that when we use only one harmonic in the optimum
phase detector, we may still use all the available harmonics to demodulate the subcarrier.

Wsc = 1/4

Wsc = 1/2

Wsc = 1

AAA
AAA
AAA

AAA
AAA
AAA

AAAA
AAAA

AAA
AAAAA

AA
AA

AAAAA
AAAAA

AAAAA
AAAAA

AAAAA
AAAAAAAAA

AAAA
AAAA
AA
AA
AA

40

S
U

B
C

A
R

R
IE

R
 L

O
O

P
 S

N
R

, d
B

Bsc, Hz

Fig. 2.  Comparison in loop SNR using the optimum 
phase detector and the current BTD.
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Degradations due to a finite-harmonic subcarrier loop can be computed using the expressions given in
[2]. Degradations as a function of the number of harmonics are shown in Fig. 3. Clearly, we can observe
that, using the optimum phase detector, we obtained a lower degradation with more harmonics. This
agrees with our intuition.

With the increase of the loop SNR, that is, with the increase of the number of harmonics, the linear
region shrinks. See the normalized S-curves shown in Fig. 4. As the number of harmonics approaches
infinity, the linear region of the S-curve approaches zero. In other words, this optimum phase detector is
only for a finite number of harmonics.

III. Optimum Combining Weights in Demodulation

The demodulated harmonics are currently combined with the weight 1/n for the nth harmonic. These
weights are optimum if each of the harmonics of the subcarrier is demodulated with the same phase jitter.
In our case, however, we know that if the first harmonic has a phase jitter with a variance of σ2, then
the nth harmonic would have a variance of (nσ)2. The weight 1/n is no longer optimum.
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Fig. 4.  Normalized S-curves.
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To derive the optimum combining weights, we assume that the harmonics are combined using unknown
weights bn. We then express the SNR in terms of the weights. Differentiating the SNR with respect to
the weights and setting it to zero, we should obtain the optimum weights.

The optimum weight to combine the demodulated (2n+1)th harmonics is derived in the Appendix as

bn =
cos[(2n+ 1)φsc]

cosφsc

1
2n+ 1

(3)

When φsc is assumed to have a Tikhonov distribution,

cos(2n+ 1)φsc =

π∫
0

exp[(1/4)ρsc cosφsc]
πI0(ρsc/4)

cos
[
2n+ 1

2
φsc

]
dφsc

Assuming that we have 4, 8, and 16 harmonics, the degradations in symbol SNR versus the subcarrier
loop SNR, using the optimum weights and the usual 1/n weights, are compared in Figs. 5 through 7.

IV. Approximated Optimum Combining Weights in Demodulation

Since the cosine function is “smooth” in the vicinity of zero, for small phase jitters, nφsc, the expected
value of cos(nφsc) can be approximated by

E{cos(nφsc)} ≈ 1− n2σ
2

2
(4)

The approximated optimum weights are
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Fig. 5.  Symbol SNR degradation when using 
optimum weights (four harmonics).
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Fig. 6.  Symbol SNR degradation when using 
optimum weights (eight harmonics).
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Fig. 7.  Symbol SNR degradation when using 
optimum weights (16 harmonics).

0.0

–0.2

–0.4

–0.8

OPTIMUM WEIGHTS

WEIGHTS 1/n

–0.7

–0.5

–0.3

–0.1

16 18 20 22 26 28 30 3214 24

–0.6

bn ≈
1− (2n+ 1)2σ2

1− σ2/2
1

2n+ 1
(5)

Note that this approximation is valid only when nφsc is small. Using the approximated optimum weights
for four harmonics, the symbol SNR degradation is only slightly more than that using the optimum weight
as shown in Fig. 5.
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V. Conclusion

We presented an optimum way of tracking and demodulating a finite-harmonic subcarrier. We found
an optimum phase detector in the sense that the loop SNR is maximized. The more harmonics used, the
higher the loop SNR we obtain. However, the linear region of the phase error signal shrinks with the
increase of the number of harmonics. Therefore, this optimum phase detector is only appropriate for a
finite number of harmonics. Using the optimum phase detector, the loop SNR is about 9.5 dB higher
than that of the current BTD using window size 1, and is about 1 dB higher than that of the current
BTD with window size 1/4.

For demodulation, we found the optimum combining weights that account for the losses due to the
phase jitter. Compared to using the usual 1/n combining weights, the use of the optimum combining
weights can improve the symbol SNR by 0.1 to 0.15 dB at a low loop SNR (15 dB) and a high number
of harmonics (8 to 16).
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Appendix

Derivation of the Optimum Combining
Weights in Demodulation

After each of the harmonics of the subcarrier is demodulated, the signals from each harmonic demod-
ulation need to be combined. Assume that the combining weight for the (2n + 1)th harmonic is bn; the
signal amplitude at the lth symbol is

s =
√
Pddl cosφc

2
π

L−1∑
n=0

bn
1

2n+ 1
cos[(2n+ 1)φsc] (A-1)

where Pd is the data power, and φc and φsc are the phase offsets of the carrier and subcarrier, respectively.
The noise variance is

σ2 =
L−1∑
n=0

b2n
N0

2
Rsym (A-2)

Taking the ratio of the average signal power and the noise variance, we have the average symbol SNR of
the combined signal:

SNR =
E{s2}
2σ2

=
E{(4/π2)Pd cos2 φc(

∑L−1
n=0 bn cos[(2n+ 1)φsc]/(2n+ 1))2}∑L−1
n=0 b

2
nN0Rsym

(A-3)

Differentiating the symbol SNR with respect to bk, k = 0, · · · , L− 1, we have

∂(SNR)
∂bk

=
Pdcos2 φc(4/π2)

(
∑L−1
n=0 b

2
nN0Rsym)2

E
{[

2
L−1∑
n=0

bn
cos[(2n+ 1)φsc]

2n+ 1
cos[(2k + 1)φsc]

2k + 1

]
L−1∑
n=1

b2nN0Rsym

−
[
L−1∑
n=0

bn
cos[(2n+ 1)φsc]

2n+ 1

]2

2bkN0Rsym

}

= 0 (A-4)

Simplifying the above equation, we have

E
{

cos[(2k + 1)φsc]
2k + 1

L−1∑
n=0

b2n −
L−1∑
n=0

bn
cos[(2n+ 1)φsc]

2n+ 1
bk

}
= 0 (A-5)
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Let k = 0 and b0 = 1; we have

cosφsc
L−1∑
n=0

b2n −
L−1∑
n=0

bn
cos[(2n+ 1)φsc]

2n+ 1
= 0 (A-6)

That is,

L−1∑
n=0

bn

[
cosφscbn −

cos[(2n+ 1)φsc]
2n+ 1

]
= 0 (A-7)

Finally, solving for bn, we have the optimum combining weights,

bn =
cos[(2n+ 1)φsc]

cosφsc

1
2n+ 1

(A-8)
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