
       

TDA Progress Report 42-121 May 15, 1995

A Seismic Data Compression System
Using Subband Coding

A. B. Kiely and F. Pollara
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This article presents a study of seismic data compression techniques and a com-
pression algorithm based on subband coding. The algorithm includes three stages:
a decorrelation stage, a quantization stage that introduces a controlled amount of
distortion to allow for high compression ratios, and a lossless entropy coding stage
based on a simple but efficient arithmetic coding method. Subband coding methods
are particularly suited to the decorrelation of nonstationary processes such as seis-
mic events. Adaptivity to the nonstationary behavior of the waveform is achieved
by dividing the data into separate blocks that are encoded separately with an adap-
tive arithmetic encoder. This is done with high efficiency due to the low overhead
introduced by the arithmetic encoder in specifying its parameters. The technique
could be used as a progressive transmission system, where successive refinements of
the data can be requested by the user. This allows seismologists to first examine
a coarse version of waveforms with minimal usage of the channel and then decide
where refinements are required. Rate-distortion performance results are presented
and comparisons are made with two block transform methods.

I. Introduction

A typical seismic analysis scenario involves collection of data by an array of seismometers, transmission
over a channel offering limited data rate, and storage of data for analysis. Seismic data analysis is
performed for monitoring earthquakes and for planetary exploration, as in the planned study of seismic
events on Mars. Seismic data compression systems are required to cope with the transmission of vast
amounts of data over constrained channels and must be able to accurately reproduce both low-energy
seismic signals and occasional high-energy seismic events.

We describe a compression algorithm that includes three stages: a decorrelation stage based on subband
coding, a uniform quantization stage, and a lossless entropy coding stage based on arithmetic coding.
Rate-distortion performance results are presented and comparisons are made with two block transform
methods: the discrete cosine transform (DCT) and the Walsh–Hadamard transform (WHT).

Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as
seismic events. For most seismic data, signal energy is more concentrated in the low-frequency subbands,
which suggests the use of nonuniform subband decomposition. The decorrelation stage is implemented
by quadrature mirror filters using a lattice structure. Adaptivity to the nonstationary behavior of the
waveform is achieved by dividing the data into blocks that are separately encoded.
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The compression technique described in this article can be used as a progressive transmission system,
where successive refinements of the data can be requested by the user. This allows reconstruction of a
low-resolution version of the waveform after receiving only a small portion of the compressed data. This
could allow seismologists to make a preliminary examination of the waveform with minimal usage of the
channel and then decide where high-resolution refinements are desired.

In general, given a fixed transmission rate, lossy compression algorithms applied to high-accuracy
instruments deliver higher scientific content than lossless compression methods applied to lower accuracy
instruments.

II. Subband Decomposition

In the analysis stage of subband coding, a signal is filtered to produce a set of subband components, each
having smaller bandwidth than the original signal. Because of this limited bandwidth, each component is
downsampled, so that the subband transformed data contain as many data points as the original signal.
The subband components are then quantized and compressed. In the synthesis stage, the reconstructed
signal is formed by adding together the subbands obtained by applying the inverse filters to upsampled
versions of the subband components.

The analysis and synthesis filters used here are finite impulse response (FIR) quadrature mirror filters
(QMF) implemented using the lattice structures shown in Figs. 1 and 2, which are described in [7,1].
Analysis and synthesis quadrature mirror filters of order 2M are implemented using an M -stage lattice
structure. Suitable lattice filters can be found in [1, p. 267] and [7, p. 310].

Fig. 1.  Analysis filter structure.  (The stage inside the box is repeated.)

Z –1

+

+
–1

α
0

–α
0

α
1

–α
1

Z –1Z –1

+

+

+

+

α
M – 1

–α
M – 1

Z –1

–1

+

+

α
0

–α
0

Z –1 Z –1

α
1

–α
1

+

+

+

+

α
M –1

–α
M – 1

Fig. 2.  Synthesis filter structure.
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For most seismic data samples, signal energy is concentrated primarily in the low subbands.1 Figures 3
and 4 give two periodograms (power spectral density estimates [4]) for seismic data. The uneven dis-
tribution of spectral energy in seismic signals provides the basis for subband coding source-compression
techniques. For effective signal coding, subspectra containing more energy deserve higher priority for
further processing.

A subband decomposition that tends to work well for seismic data is the dyadic tree decomposition
shown in Fig. 5. The signal is first split into low- and high-frequency components in the first level. A
two-band subband decomposition uses high-pass and low-pass digital filters to decompose a data sequence
into high (H) and low (L) subbands, each containing half as many points as the original sequence. The
filter is repeated to further decompose the low subband. This process may be repeated several levels.
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Fig. 3.  Periodogram of 1024-point EHZ (100 samples/s) data sample 
containing seismic event.
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Fig. 4.  Periodogram of 1024-point BHZ (20 samples/s) data sample 
containing seismic event.
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1 This generally applies to the event (EHZ) and broadband (BHZ) seismic data components, which have sample rates of
100 and 20 samples/s, respectively. Energy in long-period (LHZ) data, which has a sample rate of only 1 sample/s, is
typically not as concentrated in the low frequencies. However, because of the much lower sample rate, compression of this
component is not as important as the others. A different subband decomposition could be implemented to accommodate
this type of data.
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Fig. 5.  Subband decompositions.

Increasing the number of subbands produces diminishing rate-distortion returns, with gains often
observable only at very high compression ratios. One reason for this is that, after several decompositions,
the energy is no longer so highly concentrated in the lowest subband.

So that a filtered block has the same length as the original, each block is periodically extended (i.e.,
repeated in time) before filtering, and the components corresponding to a single period of the filtered
extended signal are taken as the filtered signal. If this operation were not performed, the length of the
filtered signal would exceed the original block length. An unfortunate side effect of periodic extension
is that it often produces high-frequency components at the edges of data blocks, an effect whose impact
increases with filter length. These components are not as easily compressed as the rest of the subband data
and are separated for compression purposes. Longer filters are also more likely to introduce noticeable
spurious effects at the onset of a high-energy seismic event, as we shall see in Section VI. It is also worth
noting that longer filters generally do not dramatically outperform shorter filters, as we will see in the
following section.

III. Comparing Subband Coding to Block Transforms

For comparison purposes, we also examined the discrete cosine transform (DCT), a popular technique
used in the compression of two-dimensional data (e.g., images). A general description of the DCT as used
in the Joint Photographic Experts Group (JPEG) compression algorithm can be found in [5, pp. 113–128].
The DCT can also be applied to one-dimensional data, as is done here.

The data are partitioned into blocks of length 8, the DCT of each block is computed using the 8× 8
DCT matrix, and these transformed values are uniformly quantized. A different quantizer step size could
be used for each coefficient, but in practice, for most seismic data samples, near-optimum performance
is obtained when all quantizers use the same step size. The quantized coefficients are arranged in groups
of 8 blocks for subsequent coding, so that 64 transformed coefficients are encoded at a time. In this way,
the procedure is similar to a one-dimensional version of the JPEG algorithm. The lowest frequency (dc)
quantized coefficients are encoded using differential pulse-code modulation (DPCM) and Huffman coding,
except at very low rates, when a run-length code is used. The remaining (ac) coefficients are run-length
encoded, in order of increasing frequency. The run-length encoding used is the same as that described in
[5, pp. 114–115].

We also used the same algorithm with an 8 × 8 WHT in place of the DCT, separately encoding
each coefficient. The WHT performed uniformly worse (see Fig. 6). To make a fair comparison with
subband coding, we compared the block transform compression methods to subband coding combined
with Huffman coding of the quantizer output, rather than the arithmetic coding procedure to be described
in the next section.
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Fig. 6.  Rate-distortion performance for various compression techniques applied to a seismic data sample:
(a) comparison with block transform methods and (b) comparison of different subband decompositions.
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Rate-distortion curves for a seismic data sample using these different techniques are shown in Fig. 6.
The labels on the curves corresponding to subband coding identify the number of subbands and the
particular filters used. For example, “3B8L” refers to a three-band decomposition using an order-8 FIR
filter. In terms of root-mean-square error (RMSE), subband coding is able to outperform the DCT and
WHT with only moderate complexity.

IV. Entropy Coding Stage: Arithmetic Coding

Anyone who has experienced an earthquake knows that the energy present in a seismic signal can vary
tremendously over time. Consequently, seismometers have a large dynamic range, and it is desirable to
have an adaptive compression system capable of transmitting low-energy and high-energy signals reliably.

A block of m data samples produces m subband coded samples. Because of the downsampling oper-
ation, half of these are high-subband samples, one-fourth are low–high-subband samples, etc. All of the
samples from a particular subband are quantized and encoded together block adaptively. Because this is
a block-to-block encoding procedure, the effects of a channel error are confined to the block during which
that error occurs. The block encoding provides the additional benefit of adaptivity.

The output of the subband coding stage is a sequence of real numbers that are quantized and then
compressed. For seismic data, as with many other types of data, these components are generally zero-
mean, roughly symmetric, and have a probability density that is decreasing as we move away from the
origin. This is illustrated in Fig. 7, which gives an empirical probability density function (pdf) of signal
amplitude from a low-pass-filtered seismic data sample.

The compression scheme we use is bit-wise arithmetic coding [2]. A high-resolution quantizer is used,
and the quantized values are mapped into fixed-length binary codewords. Figure 8 illustrates the bit
assignment for a four-bit quantizer: The first bit indicates the sign of the quantizer reconstruction point,
and each successive bit gives progressively higher resolution information. Because the pdf is zero mean
and decreasing as we move away from the origin, a zero will be more likely than a one in every bit position.
This redundancy is exploited using a binary arithmetic encoder to achieve compression.
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Fig. 7.  Empirical pdf for low-pass subband filtered data.
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Fig. 8.  Codeword assignment for the four-bit quantizer.

Codewords corresponding to each subband are grouped together. The sign bits of the codeword se-
quence are encoded using a block-adaptive binary-input binary-output arithmetic encoder described in
[2]. The next most significant bits are similarly encoded, and so on. Each bit sequence (or layer) is en-
coded independently— at the ith stage the arithmetic coder calculates (approximately) the unconditional
probability that the ith codeword bit is a zero.

The obvious loss is that we lose the benefit of interbit dependency. For example, the probability that
the second bit is a zero is not in general independent of the value of the first bit, though the encoding
procedure acts as if it were. Traditional Huffman coding of the quantized samples does not suffer from
this loss. However, for many sources, such as Gaussian and Laplacian sources, this loss is quite small [2].
In fact, for many practical sources with low entropy, this technique has lower redundancy than Huffman
coding, because the arithmetic coder is not required to produce an output symbol for every input symbol.

Because the interbit dependencies are ignored, very little overhead information is required (i.e., long
tables of Huffman codewords are unnecessary). The overhead required for bit-wise arithmetic encoding
increases linearly in the number of codeword bits. By contrast, the overhead of block-adaptive Huffman
coding increases exponentially in the number of codeword bits unless we are able to cleverly exploit
additional information about the source [3].

Another advantage is that, as we will see in the next section, this technique is naturally progressive. In
a progressive transmission system, each successive data segment transmitted provides higher-resolution
information about the signal. Using a buffer, we can choose to transmit only some of the data segments.
This provides a convenient method for trading rates between blocks, so that more resources can be devoted
to reproducing the high-energy signal blocks.
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V. Progressive Transmission Behavior

In designing a compression system to be used in progressive transmission or in situations where rate
constraints may result in the loss of data, it is important to consider the rate-distortion behavior of the
system when only portions of the compressed data have been received. Such performance can be improved
simply by careful choice of the order in which the compressed data are transmitted.

The typical characteristics of subband-filtered seismic data motivate our transmission strategy. Be-
cause the probability density for subband-filtered seismic data is generally zero mean (see Fig. 7), the
sign bit layers of each subband usually have high entropy. Because the energy in seismic waveforms is
often quite small, the high-order bit layers (excluding the sign bit) often consist entirely of zeros or can be
readily compressed using the block-adaptive arithmetic encoder. Finally, as mentioned in Section II, peri-
odic extension of the data is required in the subband filtering stage, which often produces high-frequency
components at the start of data segments. These initial values, which we call transients, are encoded
separately from the rest of the data. All but the lowest subband contain these transients.

Generally speaking, we transmit compressed data ordered from the most significant bit layer to the
least significant bit (LSB) layer, and within this order, proceeding from the lowest frequency to the highest
frequency subband. Initially, we skip the sign bit layer and begin with the next most significant bit layer.
If this layer consists entirely of zeros (which is usually the case), a single “0” is transmitted and we move
on to the same layer in the next higher subband. For every subband, a “0” is transmitted for each layer
consisting entirely of zeros until a “1” is transmitted at some layer `, denoting that the `th layer is not
all zeros. At this point, we transmit the sign bits (using the block-adaptive arithmetic coding procedure
already described). Then the transients for the subband are transmitted using run-length encoding of the
leading zeros, and then the (compressed) `th bit layer is transmitted. Then we proceed to the `th layer
for the next higher subband. Each subsequent bit layer of the subband is sent, compressed by arithmetic
coding.

Because the order of transmission is determined using a rather simple decision procedure, the additional
overhead required to describe the transmission order is quite small—it consists only of occasional one-bit
flags. As an example, Fig. 9 shows a seismic data sample along with waveforms reconstructed from only
small portions of compressed data for a 51.2-s (1024-point) block.

The rate-distortion progressive transmission performance of this system for one seismic data sample
can be seen in Fig. 10. The highest rate point of each curve is the final design goal, and the rest of
the curve shows the rate-distortion performance when the signal is reconstructed using only portions of
the data. It is remarkable that the curves are nearly indistinguishable. Note that a system designed to
transmit at a rate of 5 bits per sample (bps) but cut off at only 2.5 bps performs almost as well as a
system designed to operate at 2.5 bps.

VI. Distortion Measures and Artifacts

In the previous sections, we have been mostly concerned with the mean-square error (MSE) distortion
measure. However, mean-square distortion may not be a sufficient indicator of fidelity for seismic analysis
purposes. For example, Spanias et al. [6] examined the effect of transform data compression methods on
estimation of the body wave magnitude, which they call “the key parameter used in seismic analysis.”
Other distortion measures may be more relevant, depending on the interests of the seismologists who will
ultimately analyze the data. Unfortunately, we do not know of a distortion measure that seismologists
will widely accept as the most useful.

Artifacts are erroneous features that may appear in the reconstructed waveform. Different algorithms
create different artifacts depending on their modes of operation. For example, “blockiness” is an arti-
fact commonly associated with block transforms such as the DCT, while “ringing” may be produced by
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subband coding using a filter with a too sharp response. Even a given algorithm may exhibit different
artifacts depending on the bit rate at which it is operated. Some artifacts may be more objectionable
than others for correct waveform interpretation.

In this section, we illustrate two artifacts that may be observable in subband coding depending on
the mode of operation and the compression ratio. Understanding the causes and cures for such artifacts
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allows seismologists to give meaningful feedback to engineers in deciding what features of a compression
system are most important.

We are actively trying to engage the seismology community to characterize any essential artifacts pro-
duced by the proposed method [8]. One of the results of this interaction was the objection of seismologists
to the precursor artifact created by a particular subband filter, as shown in Fig. 11(b). After determining
that such an artifact was due to a filter with a too sharp response, we experimented with different, shorter
filters, producing the result shown in Fig. 11(c), which reduces the precursor problem while preserving
essentially the same compression ratio.

A different artifact is introduced when the quantizer step size is quite large (this equivalent effect may
occur if the waveform is reconstructed using only a portion of the data). In this case, each subband
will have low resolution, and because most of the energy is contained in the low frequencies, the high-
frequency subbands may all be zeroed out. This may produce the interesting smoothing effect that can
be observed in the periodogram of the reconstructed waveform shown in Fig. 12. If this frequency range
has more significance than the others, the corresponding subbands could be assigned higher priority in
the transmission and quantization stages.

0
–10,000

–5000

5000

10,000

SAMPLE NUMBER

A
M

P
LI

T
U

D
E

4003002001000 400300200100 4003002001000

PRECURSOR NO PRECURSOR

(a) (b) (c)

250

–250

0

0

E
R

R
O

R

Fig. 11.  Original and reconstructed waveforms for two different filters:  (a) original, 24 bps,
 (b) reconstructed, 0.8 bps, and (c) reconstructed, 0.8 bps (improved filter).

250



       

0

–20

–40

–60

0

–20

–40

–60

NORMALIZED FREQUENCY

N
O

R
M

A
LI

Z
E

D
 P

O
W

E
R

, d
B

Fig. 12.  Periodograms of 1024-point BHZ (20 samples/s) 
background (i.e., nonevent) data constructed from (a) the 
original and (b) the reconstructed waveform with low-
resolution quantizer.

(a)

(b)

0 π/4 π/2 3π/4 π

References

[1] A. N. Akansu and R. A. Haddad, Multiresolution Signal Processing, San Diego
California: Academic Press, 1992.

[2] A. B. Kiely, “Bit-Wise Arithmetic Coding for Data Compression,” The Telecom-
munications and Data Acquisition Progress Report 42-117, January–March 1994,
Jet Propulsion Laboratory, Pasadena, California, pp. 145–160, May 15, 1994.

[3] R. J. McEliece and T. H. Palmatier, “Estimating the Size of Huffman Code
Preambles,” The Telecommunications and Data Acquisition Progress Report
42-114, April–June 1993, Jet Propulsion Laboratory, Pasadena, California,
pp. 90–95, August 15, 1993.

[4] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Englewood Cliffs,
New Jersey: Prentice-Hall, 1975.

[5] M. Rabbani and P. W. Jones, Digital Image Compression Techniques, Belling-
ham, Washington: SPIE Press, 1991.

[6] A. S. Spanias, S. B. Jonsson, and S. D. Stearns, “Transform Methods for Seismic
Data Compression,” IEEE Trans. Geoscience and Remote Sensing, vol. 29, no. 3,
pp. 407–416, May 1991.

[7] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, New
Jersey: PTR Prentice-Hall, 1993.

[8] Workshop on the Use of Data Compression in Seismic Data Proceedings, Jet
Propulsion Laboratory, Pasadena, California, March 2, 1994.

251


