
       

TDA Progress Report 42-121 May 15, 1995

Trellis Complexity Bounds for Decoding
Linear Block Codes

A. B. Kiely, S. Dolinar, and L. Ekroot
Communications Systems Research Section

R. J. McEliece
California Institute of Technology

and

Communications Systems Research Section

W. Lin
California Institute of Technology

We consider the problem of finding a trellis for a linear block code that minimizes
one or more measures of trellis complexity. The domain of optimization may be
different permutations of the same code or different codes with the same parameters.
Constraints on trellises, including relationships between the minimal trellis of a code
and that of the dual code, are used to derive bounds on complexity. We define a
partial ordering on trellises: If a trellis is optimum with respect to this partial
ordering, it has the desirable property that it simultaneously minimizes all of the
complexity measures examined. We examine properties of such optimal trellises
and give examples of optimal permutations of codes, most notably the (48,24,12)
quadratic residue code.

I. Introduction

A minimal trellis is a labeled graph that can be used as a template for encoding or decoding. In [6],
we examined properties of trellises for fixed permutations of a code. A code’s minimal trellis is unique
as long as the ordering of the code’s symbols is fixed. However, different permutations of the symbols
yield different minimal trellises. An optimum minimal trellis for the code is one that minimizes a suitable
measure of trellis complexity over all possible permutations of the code. There are no known efficient
algorithms for constructing optimum minimal trellises.

We expand the results of [6] to examine the problem of finding a permutation that minimizes one or
more trellis complexity measures. We extend these results to the problem of finding a minimal complexity
trellis over all codes with the same parameters. We identify certain sufficient conditions for a code or a
permutation to simultaneously minimize all of the complexity measures.

In Section II, we discuss dimension/length profiles of a code [3,11], which are equivalent to Wei’s
generalized Hamming weights [12]. The dimension/length profiles are used to derive some straightforward
complexity bounds. We summarize some properties of these profiles, including duality relationships.
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We define a partial ordering on minimal trellises in Section III. If the minimal trellises for two codes
are comparable in terms of this partial ordering, then each of the complexity measures for one trellis is
bounded by the same measure evaluated for the other trellis. This partial ordering can sometimes be
used to identify the permutation of a code with the least (or most) complex minimal trellis, or the code
with the lowest (or highest) complexity trellis of all codes with the same parameters. The extremal codes
determined by this partial ordering turn out to meet the complexity bounds described in Section II. We
illustrate certain properties and give examples of such permutations and codes.

II. Trellis Complexity Bounds

The minimal trellis results of [6] assume a fixed coordinate ordering for the code. However, the trellis
structure and, hence, trellis complexity are different for different permutations of the code coordinates.
Massey refers to the procedure of reordering the code symbols to reduce the trellis complexity as “the art
of trellis decoding” [9, p. 9].

In this section, we identify code parameters that affect the possible trellis complexity, describe upper
and lower bounds based on these parameters, and illustrate properties of certain codes that have low
complexity trellises. Our results apply to a gamut of possible complexity measures introduced in [6]: the
maximum vertex (state) and edge dimensions (smax, emax), the total vertex and edge spans (ν, ε), and
the total numbers of vertices, edges, and mergers (V,E,M). In this article, all theorems are presented
without proof; proofs are supplied in a separate article.1

First, some notation: Let Sn denote the set of all permutations of {1, 2, · · · , n}, and for any π ∈ Sn, let
Cπ denote the code C with coordinates reordered according to π. Because the code and dual code provide
symmetric constraints on the code’s minimal trellis, the complexity bounds are developed by considering
the characteristics of both the code and its dual. We refer to an (n, k, d) code over GF (q) with dual
distance d⊥ as an (n, k, d, d⊥) code.

A. Bounds Relating One Complexity Measure to Another

The following lemma arises from the definitions of smax and emax and from the fact that the vertex
and edge dimensions, vi and ei, change by no more than one unit from one index to the next.

Lemma 1. The vertex dimensions and edge dimensions are upper bounded by

vi ≤ min{i, n− i, smax}, 0 ≤ i ≤ n

ei ≤ min{i, n+ 1− i, emax}, 1 ≤ i ≤ n

Summing the inequalities in Lemma 1 leads to the following bounding relationships among the com-
plexity measures.

Theorem 1. The total complexity measures ν, ε, V , E are upper bounded in terms of the maximum
complexity measures smax, emax by

ν ≤ smax(n− smax) (1)

1 A. B. Kiely, S. Dolinar, R. J. McEliece, L. Ekroot, and W. Lin, “Trellis Decoding Complexity of Linear Block Codes,”
submitted to IEEE Trans. Inform. Theory.

160



            

ε ≤ emax(n+ 1− emax) (2)

V ≤
[
n+

q + 1
q − 1

− 2smax

]
qsmax − 2

q − 1
(3)

E ≤
[
n+

2q
q − 1

− 2emax

]
qemax − 2q

q − 1
(4)

Since the average edge dimension over all stages is ε/n and the average vertex dimension over the last
n depths is ν/n, loose lower bounds on V and E can be obtained from Jensen’s inequality.

Theorem 2. The total complexity measures V , E are lower bounded in terms of the total span length
complexity measures ν, ε by

V ≥ 1 + nqν/n

E ≥ nqε/n

There are also tighter lower bounds on V and E in terms of ν and ε.

Theorem 3. Given a total span length ν, or equivalently ε, let ∆ε = ε − e−(n + 1 − e−) and
∆ν = ν − s−(n− s−), where e− ≤ (n+ 1)/2 and s− ≤ n/2 are the largest integers such that ∆ε ≥ 0 and
∆ν ≥ 0. Then

V ≥
[
n+

q + 1
q − 1

− 2s−
]
qs
− − 2

q − 1
+ (q − 1)qs

−
∆ν

E ≥
[
n+

2q
q − 1

− 2e−
]
qe
− − 2q

q − 1
+ (q − 1)qe

−
∆ε

This theorem follows from the observation that, for a given ν or ε, a vertex or edge dimension profile
such as the one in Fig. 1 minimizes V or E. Notice the similarity of these lower bounds in terms of s−

and e− with the corresponding upper bounds, Eqs. (3) and (4), in terms of smax and emax.

e–

AAA
∆ε

n i…1  2 …

e
i

Fig. 1.  An edge dimension profile that minimizes E subject to a 
constraint on total edge span ε.

B. Complexity Lower Bounds Based on MSGM Span Length

Every row of a generator matrix for an (n, k, d, d⊥) code must have edge-span length εi ≥ d and
vertex-span length νi ≥ d− 1. Applying this simple bound to both the code and the dual code and using
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the fact that ν⊥ = ν = ε− k leads to the following lower bounds on the span length complexity measures
ν and ε.

Theorem 4. The total lengths ν and ε of the vertex spans and edge spans for any (n, k, d, d⊥) code
are lower bounded by

ν ≥ max
{
k(d− 1), (n− k)(d⊥ − 1)

}
ε ≥ k + max

{
k(d− 1), (n− k)(d⊥ − 1)

}
Applying the Singleton bound to the inequalities in this theorem gives the weaker bounds ν ≥
(d− 1)(d⊥ − 1) and ε ≥ k + (d− 1)(d⊥ − 1).

We say that a code meeting the bounds in Theorem 4 with equality is a minimal span code. An
example is the (n, 1, n, 2) repetition code. To construct a nondegenerate (n, k, d, 2) binary minimal span
code for any d > 2 and n ≥ d + (k − 1) dd/2e, let the first row of the minimal span generator matrix
(MSGM) be

111 · · · 1︸ ︷︷ ︸
d

000 · · · 0︸ ︷︷ ︸
n−d

and form each successive row by cyclically shifting the previous row at least dd/2e positions but not more
than d positions to the right, such that the total of all the shifts is n − d. The dual of a minimal span
code is also a minimal span code. These codes are not usually good in terms of distance, though they
have very low complexity trellises.

The span length bounds in Theorem 4, combined with the bounds of Eqs. (1) and (2), lead to lower
bounds on the complexity measures smax, emax for any (n, k, d, d⊥) code:

smax(n− smax) ≥ max
{
k(d− 1), (n− k)(d⊥ − 1)

}
emax(n+ 1− emax) ≥ k + max

{
k(d− 1), (n− k)(d⊥ − 1)

}
A slightly weaker version of this bound on smax has been proved for both linear and nonlinear codes
[8]. This bound implies, for instance, that the average edge dimension emax can never be lower than
the asymptotic coding gain kd/n. We can also obtain bounds on V and E for any (n, k, d, d⊥) code by
substituting the right-hand sides of the bounds in Theorem 4 for ν and ε in Theorems 2 and 3.

C. Dimension/Length Profiles

We can see from the definitions of the complexity measures in [6] that a permutation of C that makes fi
and pi large (small) wherever possible will produce a low (high) complexity trellis. It is useful, therefore,
to find bounds on these quantities.

The support of a vector x is the set of nonzero positions in x. The support of a set of vectors is the
union of the individual supports.

Definition 1. For a given code C and any 0 ≤ i ≤ n, let Ki(C) be the maximum dimension of a linear
subcode of C having support whose size is no greater than i. The set {Ki(C), i = 0, · · · , n} is called the
dimension/length profile (DLP) [3,11].
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The DLP and similar concepts have been used recently by many other researchers to bound trellis
complexity. Extensive bibliographies are given in [3] and Kiely et al.2 Since the past and future subcodes
Pi and Fi are subcodes of C with support size no larger than i and n− i, respectively, the past and future
subcode dimensions are bounded by the DLP

pi ≤ max
π∈Sn

pi(Cπ) = Ki(C) (5)

fi ≤ Kn−i(C) (6)

These bounds, which also appeared in [4, Eq. (1.4)], are tight in the following sense: For any i, there
exists a permuted version of C that meets the bound of Eq. (5) and one that meets Eq. (6), though it
may not be possible to meet both simultaneously. The DLP of a code can be used to lower bound the
trellis complexity for any permutation of that code, as we shall see in Section II.E.

Since each Ki(C) is associated with a linear subcode of C, we can use bounds on the best possible
linear codes (i.e., codes with the largest possible minimum distance) to upper bound the DLP:

Theorem 5. For an (n, k, d, d⊥) code C and any 0 ≤ i ≤ n,

pi ≤ Ki(C) ≤ Ki(n, k, d, d⊥)

fi ≤ Kn−i(C) ≤ Kn−i(n, k, d, d⊥)

where

Ki(n, k, d, d⊥) 4= min[kmax(i, d), k − n+ i+ kmax(n− i, d⊥)]

and kmax(m, d) is the largest possible dimension for any q-ary linear block code of length m and minimum
distance d. The set

{
Ki(n, k, d, d⊥), i = 0, . . . , n

}
is called the upper dimension/length profile (UDLP)

for the code parameters (n, k, d, d⊥).

Bounds based on the UDLP may be loose, as it may not be possible for a single (n, k, d, d⊥) code and
its dual to both have a series of subcodes, all with the maximum code dimensions. However, these bounds
are important practically, because much data about the best possible codes have been tabulated [1] and,
in many cases, the UDLP bounds can be achieved with equality.

Since for any (n, k) code C, pi and fi both reach maximum values of k (f0 = k and pn = k) and can
fall from these values at a maximum rate of one unit per trellis stage, pi and fi are lower bounded as
follows:

Ki(C) ≥ pi ≥ Ki(n, k) 4= max(0, k − n+ i) (7)

Kn−i(C) ≥ fi ≥ Kn−i(n, k) = max(0, k − i) (8)

The set {Ki(C), i = 0, 1, · · · , n} is called the lower dimension/length profile (LDLP) for the code param-
eters (n, k). The LDLP stays at 0 until the last possible depth before it can rise linearly at the rate of
one dimension per depth to reach its final value of k at depth n. The LDLP can be used to upper bound
the complexity of a minimal trellis for an arbitrary (n, k) code.

2 Ibid.
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D. Properties of Dimension/Length Profiles

The DLPs possess many of the same properties as the past and future subcode dimensions that they
bound. For example, the monotonicity and unit increment properties of {pi} also hold for Ki(C), Ki(C),
and Ki(C): The increments Ki+1(n, k, d, d⊥)−Ki(n, k, d, d⊥), Ki+1(C)−Ki(C), and Ki+1(n, k)−Ki(n, k)
must equal 0 or 1 for all i. Similarly, duality properties can be easily extended.

There is a convenient relationship between the DLP of a code and that of its dual, stated in [4,
Eq. (1.12)] and [3, Theorem 3], which is equivalent to the duality relationship for generalized Hamming
weights [12, Theorem 3]. Similar relationships hold for the upper and lower dimension/length profiles:

Lemma 2. For all 0 ≤ i ≤ n, the DLP, UDLP, and LDLP satisfy the following duality relationships:

Ki(C⊥) = i− k +Kn−i(C)

Ki(n, n− k, d⊥, d) = i− k +Kn−i(n, k, d, d⊥)

Ki(n, n− k) = i− k +Kn−i(n, k)

E. Complexity Bounds From Dimension/Length Profiles

The DLP bounds, Eqs. (5) and (6), combined with the complexity definitions lead to simple bounds
on trellis complexity that are useful when the DLP of a given code is known. These bounds can be
tightened slightly by using the additional fact that the vertex and edge dimensions must be nonnegative
everywhere.

Theorem 6. The complexity measures for the minimal trellis T (Cπ) corresponding to any permutation
π of a given (n, k) code C are lower bounded by

smax(Cπ) ≥ max
i∈[0,n]

(k −Ki(C)−Kn−i(C)) (9)

emax(Cπ) ≥ max
i∈[1,n]

(k −Ki−1(C)−Kn−i(C)) (10)

ε(Cπ) ≥
n∑
i=0

max{0, k −Ki(C)−Kn−i(C)} (11)

V (Cπ) ≥
n∑
i=0

qmax{0,k−Ki(C)−Kn−i(C)} (12)

E(Cπ) ≥
n∑
i=1

qmax{0,k−Ki−1(C)−Kn−i(C)} (13)

M(Cπ) ≥ 1
q

n∑
i=1

[Ki(C)−Ki−1(C)]qmax{0,k−Ki−1(C)−Kn−i(C)} (14)
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The DLP bound, Eq. (9), on state complexity has been derived in [3,11].3 Some of the bounds in
Theorem 6 can be improved slightly when C is nondegenerate, because this condition implies that ei ≥ 1.

The UDLP bound (Theorem 5) leads to similar lower bounds on trellis complexity that apply to all
codes with given code parameters.

Theorem 7. The complexity measures for the minimal trellis T (C) representing any (n, k, d, d⊥) code
C are lower bounded by

smax(C) ≥ max
i∈[0,n]

[
k −Ki(n, k, d, d⊥)−Kn−i(n, k, d, d⊥)

]
(15)

emax(C) ≥ max
i∈[1,n]

[
k −Ki−1(n, k, d, d⊥)−Kn−i(n, k, d, d⊥)

]
(16)

ε(C) ≥
n∑
i=1

max
{

0, k −Ki−1(n, k, d, d⊥)−Kn−i(n, k, d, d⊥)
}

(17)

V (C) ≥
n∑
i=0

qmax{0,k−Ki(n,k,d,d
⊥)−Kn−i(n,k,d,d

⊥)} (18)

E(C) ≥
n∑
i=1

qmax{0,k−Ki−1(n,k,d,d⊥)−Kn−i(n,k,d,d
⊥)} (19)

M(C) ≥ 1
q

n∑
i=1

[
Ki(n, k, d, d⊥)−Ki−1(n, k, d, d⊥)

]
qmax{0,k−Ki−1(n,k,d,d⊥)−Kn−i(n,k,d,d

⊥)} (20)

Finally, the LDLP bounds, Eqs. (7) and (8), lead immediately to simple explicit upper bounds on the
various complexity measures that apply to all codes with a given length and dimension.

Theorem 8. The complexity measures for the minimal trellis T (C) corresponding to any (n, k) code
C are upper bounded by

smax(C) ≤ min(k, n− k) (21)

emax(C) ≤ min(k, n− k + 1) (22)

ε(C) ≤ k(n− k + 1) (23)

V (C) ≤
[
n+

q + 1
q − 1

− 2 min(k, n− k)
]
qmin(k,n−k) − 2

q − 1
(24)

3 A. Lafourcade and A. Vardy, “Lower Bounds on Trellis Complexity of Block Codes,” submitted to IEEE Trans. Inform.
Theory.
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E(C) ≤
[
n+

2q
q − 1

− 2 min(k, n− k + 1)
]
qmin(k,n−k+1) − 2q

q − 1
(25)

M(C) ≤
[

1
q − 1

+ max(0, 2k − n)
]
qmin(k,n−k) − 1

q − 1
(26)

The inequality, Eq. (21), is the well-known Wolf bound [13]. Note that Eqs. (2) through (4) are tighter
than Eqs. (23) through (25), except when Eqs. (21) and (22) are met with equality, in which case the
bounds are the same.

III. Best and Worst Trellises

A. Uniform Comparability

In general, to determine which of two minimal trellises is less complex, we must first choose the relevant
complexity measure. However, in some cases, one trellis may be simpler than another at every stage and
depth with respect to all of the complexity measures simultaneously.

Definition 2. For two (n, k) codes C1, C2 having minimal trellises T (C1) and T (C2), we say that
T (C1) ¹ T (C2) if pi(C1) ≥ pi(C2) and fi(C1) ≥ fi(C2) for all i. If either T (C1) ¹ T (C2) or T (C2) ¹ T (C1),
then the two trellises are uniformly comparable.

The binary relation¹ defines a partial ordering on any set of codes with the same length and dimension.
If T (C1) ¹ T (C2) and T (C2) ¹ T (C1), then the two minimal trellises have equivalent complexity, though
they may not have the same structure.

Note that if T (C1) ¹ T (C2), then at every depth and stage, T (C1) has no more vertices or edges
than T (C2), but the converse is not necessarily true. We define comparability in terms of past and
future dimensions rather than edge and vertex dimensions because this gives a closer connection to the
dimension/length profiles.

Theorem 9. If T (C1) ¹ T (C2), then all of the following trellis complexity measures for C1 are upper
bounded by those for C2:

(1) Maximum state complexity: smax(C1) ≤ smax(C2)

(2) Total span lengths: ε(C1) ≤ ε(C2), ν(C1) ≤ ν(C2)

(3) Total vertices: V (C1) ≤ V (C2)

(4) Total edges: E(C1) ≤ E(C2)

(5) Total number of path mergers: M(C1) ≤M(C2)

If two minimal trellises are not uniformly comparable, then the choice of the less complex trellis may
depend on which of the complexity measures is used as the criterion.

Uniform comparability is a very strong property that is not guaranteed to exist between any two
trellises. Our motivation for defining it and studying its consequences lies in the correspondingly strong
results obtained for the problem of finding a minimal trellis in the first place, i.e., finding the least complex
trellis that represents a fixed permutation of a fixed code. As shown by McEliece,4 the minimal trellis is
uniformly less complex at every stage and depth than any other trellis that represents the code.

4 R. J. McEliece, “On The BCJR Trellis for Linear Block Codes,” submitted to IEEE Trans. Inform. Theory.
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We define four categories of best and worst minimal trellises based on uniform comparability:

Definition 3. For a fixed code C, a permutation π∗ and the corresponding minimal trellis T (Cπ∗) are

(1) Uniformly efficient if T (Cπ∗) ¹ T (Cπ) for all π ∈ Sn
(2) Uniformly inefficient if T (Cπ) ¹ T (Cπ∗) for all π ∈ Sn

Definition 4. An (n, k, d, d⊥) code C∗ and its corresponding minimal trellis T (C∗) is

(2) Uniformly concise if T (C∗) ¹ T (C) for all (n, k, d, d⊥) codes C

(2) Uniformly full if T (C) ¹ T (C∗) for all (n, k) codes C

If a minimal trellis is uniformly efficient or uniformly concise, we can drop the qualifier “minimal”
and refer to it simply as a uniformly efficient trellis or a uniformly concise trellis, respectively. As shown
later in Theorem 17, the two worst-case categories, uniformly inefficient and uniformly full, turn out to
be equivalent.

The inclusion of d⊥ in the above definition elucidates symmetries that are hidden by consideration of
only n, k, and d. First, it preserves duality relationships, as we shall see below in Theorem 10. Second,
from a practical point of view, d and d⊥ have symmetric impact on the potential trellis complexity. There
also appears to be a deep connection between d and d⊥ for good codes: Often when d is large, d⊥ must
also be large, e.g., the extended Hamming codes and maximum distance separable (MDS) codes.

A direct consequence of [6, Theorem 1] is that uniform comparability of codes and their duals are
equivalent:

Theorem 10. T (C1) ¹ T (C2) if and only if T (C⊥1 ) ¹ T (C⊥2 ). Consequently,

(1) A permutation π∗ is uniformly efficient for C if and only if π∗ is uniformly efficient for
C⊥.

(2) A permutation π∗ is uniformly inefficient for C if and only if π∗ is uniformly inefficient
for C⊥ [4, Theorem 1].

(3) C∗ is uniformly concise if and only if C∗⊥ is uniformly concise.

(4) C∗ is uniformly full if and only if C∗⊥ is uniformly full.

In the next sections, we show that the trellis complexity bounds derived in Section II.E are met exactly
for the four categories of extremal minimal trellises.

B. Best Permutations

The following theorem shows that uniformly efficient trellises are those that achieve the DLP bounds
in Eqs. (5), (6), and Theorem 6 with equality.

Theorem 11. A permutation π∗ is uniformly efficient for a nondegenerate code C if and only if Cπ∗
meets the DLP bounds, Eqs. (5) and (6), with equality, i.e.,

pi(Cπ∗) = Ki(C) and fi(Cπ∗) = Kn−i(C) for all i.

This guarantees that Cπ∗ meets all of the lower bounds on complexity, Eqs. (9) through (14), with equality.
Conversely, if Cπ∗ meets any one of the lower bounds, Eqs. (11) through (13), with equality, then π∗ is a
uniformly efficient permutation for C.
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Theorem 11 shows that uniformly efficient permutations, which are defined in terms of trellis compa-
rability, turn out to be the same as “efficient” [3] or “strictly optimum” [4] orderings, which were defined
in terms of the DLP bounds. Note that a code may not have a permutation that meets these conditions.

A uniformly efficient permutation, if it exists, is not unique: If π∗ is uniformly efficient for C, then so
is the reverse of π∗, and in fact the number of uniformly efficient permutations must be at least as large
as the automorphism group of the code. There may also be different permutations that are uniformly
efficient and produce distinct MSGMs for the code.

Even though uniform efficiency is a very strong property to require of a trellis, there are many codes
that have uniformly efficient permutations. For example, the standard permutation of any Reed–Muller
code is uniformly efficient [4, Theorem 2]. Additional examples of uniformly efficient codes are given in
Section III.C, which lists trellises that are both uniformly efficient and uniformly concise.

We now give some theoretical results that impose necessary conditions on uniformly efficient permu-
tations.

Theorem 12. Suppose C is a code that has some uniformly efficient permutation π∗. Then for any
i, j such that i+ j ≤ n,

Ki+j(C) ≥ Ki(C) +Kj(C)

Theorem 13. If π∗ is a uniformly efficient permutation for an (n, k, d, d⊥) code C, then Cπ∗ contains
codewords of the formXd0n−d, 0n−dXd, and C⊥π∗ contains codewords of the formXd⊥0n−d

⊥
, 0n−d

⊥
Xd⊥ ,

where 0j denotes j consecutive zeros, and Xj denotes some sequence of j nonzero symbols from GF (q).

Corollary 1. If C is a binary (n, k, d, d⊥) code that has some uniformly efficient permutation π∗, then
min(d, d⊥) must be even.

By Corollary 1, the (23,12,7,8) Golay code has no uniformly efficient permutation; neither does the
(2m − 1, 2m −m− 1, 3, 2m−1) Hamming code for any m ≥ 3. Consequently, no nontrivial perfect binary
linear code has a uniformly efficient permutation.

Although many codes lack uniformly efficient permutations, there may be some permutation that
simultaneously minimizes all of the trellis complexity measures. For example, the (7,4) Hamming code is
sufficiently small that we can verify by exhaustive search that there are permutations that are optimal
with respect to all of the complexity measures despite not being uniformly efficient.

For self-dual codes, [6, Theorem 3] tells us that there is always a single permutation that simultaneously
minimizes E, V , and M . We suspect that not every code has a permutation that simultaneously minimizes
all of the complexity measures, though we do not yet know of an example that confirms this conjecture.

C. Best Codes

Uniformly concise codes are optimum in a rather strong sense. Not only do they have an efficient
permutation, but they also minimize all of the trellis complexity measures compared to all codes with the
same parameters. The following theorem shows that codes that achieve the bounds in Theorems 5 and 7
with equality are uniformly concise.

Theorem 14. An (n, k, d, d⊥) code C∗ is uniformly concise if the dimensions of its past and future
subcodes meet the bounds in Theorem 5 with equality, i.e.,

pi(C∗) = Ki(n, k, d, d⊥) and fi(C∗) = Kn−i(n, k, d, d⊥) for all i
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In this case, C∗ meets all of the lower bounds on complexity, Eqs. (15) through (20), with equality.
Conversely, if T (C∗) meets any of the bounds of Eqs. (17) through (19) with equality, then C∗ is uniformly
concise.

Table 1 lists known uniformly concise binary codes. In each case, the complexity values listed are the
lowest possible for any code with the same parameters. From Theorem 10, the dual of each code is also
uniformly concise. Generator matrices for many of these codes are given in Kiely et al.5 All of the rate
1/2 codes in the table are either self-dual or have duals that are permuted versions of the original code.

Theorem 15. All (2m,m + 1, 2m−1, 4) first-order Reed–Muller codes and their duals, the (2m, 2m

−m− 1, 4, 2m−1) extended Hamming codes, are uniformly concise.

There are also examples of code parameters (n, k, d, d⊥) for which no uniformly concise trellis can
exist. The R(r,m) Reed–Muller codes when (m = 6, r = 2, 3), (m = 7, r = 2, 3, 4) are codes that do
not meet the UDLP bounds. This is established by comparing the UDLP bounds to the known optimal
permutations for the Reed–Muller codes.

Results such as the examples above and Theorems 12 and 13 illustrate that in many instances the
UDLP bounds on complexity are not tight. An area of further research is to produce tighter bounds on
trellis complexity based on the code parameters (n, k, d, d⊥).

D. Worst Minimal Trellises

The following theorems show that uniformly inefficient and uniformly full minimal trellises are the
same as the trellises that achieve the LDLP bounds with equality.

Theorem 16. An (n, k) code C is uniformly full if and only if the dimensions of the past and future
subcodes of C meet the bounds of Eqs. (7) and (8) with equality, i.e.,

pi(C) = max(0, k − n+ i) and fi(C) = max(0, k − i) for all i

In this case, C meets all of the upper bounds on complexity, Eqs. (21) through (26), with equality.
Conversely, if C meets any one of the upper bounds, Eqs. (23) through (25), with equality, then C is
uniformly full.

Theorem 17. A minimal trellis T (Cπ∗) is uniformly full if and only if π∗ is a uniformly inefficient
permutation of C.

Many codes have uniformly inefficient trellises in their standard permutations. For example, the
minimal trellises for all cyclic, extended cyclic, and shortened cyclic codes are uniformly inefficient [5,7].
However, not every code has a uniformly inefficient permutation.

Additional examples of codes with uniformly inefficient trellises are given in the following two theorems.

Theorem 18. A self-dual code always has a uniformly inefficient permutation.

Theorem 19. If and only if a code is maximum distance separable (MDS), every permutation π
is uniformly inefficient and the corresponding trellis complexity measures equal the upper bounds in
Eqs. (21) through (26).

5 Kiely et al., op cit.
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Table 1. Some known uniformly concise binary codes. a

Code (parameters) E V M smax emax ε

Minimal span codesb

(d+ (k − 1)
⌈
d
2

⌉
, k, d, 2) 2kd 2 + 2k(d− 1) 2k − 1 min{2, 2 kd

d− 2}
Dual 4k(d− 2) + 4 2 + 2k(d− 1) 2k(d− 3) + 3 2 2 k(d− 2) + n

Reed–Mullerc R(1,m) (22m+1 + 24)/3 (22m+1 + 24)/3 3(2m−1)− 1 m m (m− 1)2m

(2m, 1 +m, 2m−1, 4) −4 −3(2m−1)− 2 +2
Extended Hamming (22m+2 + 25)/3 (22m+1 + 24)/3 (22m+1 + 24)/3 m m+ 1 m(2m − 2)
Dual −4− 3(2m+1) −3(2m−1)− 2 −9(2m−1)− 1

Extended Golay G24

(24, 12, 8, 8) self-dual 3580 2686 895 9 9 136

Reed–Muller R(2, 6)
(32, 16, 8, 8) self-dual 6396 4798 1599 9 9 202

Quadratic residue
(48, 24, 12, 12) self-dual 860156 645118 115039 16 16 502

(10, 5, 4, 4)d 60 46 15 3 3 24
Formally self-dual

(12, 6, 4, 4)d 76 58 19 3 3 30
Formally self-dual

(16, 4, 8, 2)d 88 78 11 3 3 36
Dual 132 78 55 3 4 44

(20, 6, 8, 4)d 236 206 31 4 4 66
Dual 348 206 143 4 5 74

(24, 7, 8, 4)d 300 262 39 4 4 82
Dual 444 262 183 4 5 92

(24, 8, 8, 4)d 364 302 63 5 5 86
Dual 476 302 175 5 5 94

(40, 7, 16, 4)d 940 878 63 5 5 170
Dual 1628 878 751 5 6 196

R(1, 3)⊕R(1, 3)
(16, 8, 4, 4) self-dual 88 67 22 3 3 36

G24 ⊕ G24

(48, 24, 8, 8) self-dual 7160 5371 1790 9 9 272

a Codes are grouped with their duals, which are also uniformly concise.
b d > 2, k ≤ 3.
c Complexity expressions for first-order Reed–Muller and extended Hamming codes are valid for m ≥ 3,

except emax = 3 when m = 3.
d See Kiely et al., op cit.

This theorem follows from the fact that a code is MDS if and only if every subset of k columns of its
generator matrix is linearly independent. A peculiar consequence of Theorem 19 is that every permutation
of an MDS code is also uniformly efficient, as noted by Forney [3]. This observation emphasizes that
uniform efficiency is only a relative measure of trellis complexity.

IV. Conclusion

In this article, we extended the analysis of [6] to consider permutations of a code that minimize the
complexity of a trellis representation that can be used for encoding or decoding. The analysis for a fixed
code generalizes naturally to similar results for codes allowed to vary over a domain of optimization.
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We identified two useful domains, the set of permutations of a given code and the set of all codes with
given code parameters. Within each domain, we defined uniformly best and worst minimal trellises that
are guaranteed to simultaneously minimize or maximize all of the complexity measures. We showed
that it is easy to generalize the bounds on maximum state complexity derived by other authors from the
dimension/length profile of a code to similar bounds on all the complexity measures over each optimization
domain. Furthermore, if a minimal trellis attains the bounds for some of the complexity measures, it
must necessarily be uniformly extremal, but this is not true for the simpler measures of maximum state or
edge dimension considered by other authors. This lends further credence to the argument that a measure
of total complexity (such as the total number of edges) is more useful than a measure of maximum
complexity [10].6

Unlike the case of a fixed permutation of a given code, uniformly best and worst minimal trellises
are not guaranteed to exist within the larger domains of optimization. However, we demonstrated the
usefulness of the concepts by presenting several examples of uniformly best trellises, most notably the
optimum permutation of the (48,24) quadratic residue code [2], heretofore unknown. Conversely, by
deriving some necessary existence conditions, we also identified some cases for which uniformly extremal
minimal trellises cannot exist.

We showed that the useful relationships between the trellis complexity of a code and that of its dual
developed in [6] extend naturally to optimizations over larger code domains. This approach yields many of
the same results obtained by other authors for dimension/length profiles or generalized Hamming weights,
but it emphasizes that all the duality results stem from fundamental minimal trellis relationships valid
for a fixed permutation of a code. In fact, we have argued that the symmetry of the constraints imposed
by the code and its dual on trellis complexity is so fundamental that the minimum distance of the dual
code should be included as one of the intrinsic code parameters that limits achievable complexity.
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