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Depending on the basis used for comparison, it is possible to predict different
gains when applying carrier arraying to a conventional coherent receiver. In the
past, the specific performance comparisons were made between the arrayed and
nonarrayed cases assuming a fixed carrier-tracking closed-loop bandwidth. While
the notion of loop bandwidth for the nonarrayed loop with a single input is well
defined and meaningful, the comparable notion for an arrayed loop with multiple
inputs is not uniquely defined since it depends on the knowledge of the statistical re-
lation, e.g., degree of correlation, among the various antenna inputs. To circumvent
the need for such knowledge, which is often not completely available, we suggest
in this article an alternate criterion for comparing arrayed and nonarrayed loops,
namely, fixed steady-state phase error, which, in the arrayed case, is independent
of the statistical relation among the antenna inputs. We show that, in this case,
the gain derived from carrier arraying is quite different from that obtained under
the assumption of fixed-loop bandwidth, which suggests that one should exercise
care when comparing arrayed and unarrayed loops in that the criterion used for
comparison should be directly applicable to the situation at hand.

I. Introduction

Carrier arraying is a technique for automatically aligning the phases of a multitude (say N) of received
carriers possibly at geographically separated locations so as to allow them to be coherently combined,
thereby improving the overall signal-to-noise ratio (SNR) performance of the system. Previous analysis
[1] of such a carrier-arraying system focused on the tracking performance of the first receiver (where the
carrier arraying is performed) as measured by its closed-loop rms phase jitter and radio loss associated
with the data detection process. It was shown in [1] that when the loop bandwidths of stations 2,
3, · · · , N are much narrower than that of the first station, then carrier arraying could offer a significant
enhancement in station 1’s loop SNR, thereby reducing its rms phase jitter and associated radio loss
relative to the no carrier-arraying case.

The specific performance comparisons made in [1] between the arrayed and nonarrayed cases assumed
a fixed carrier-tracking closed-loop bandwidth. As such, the authors of [1] first evaluated station 1’s loop
bandwidth after carrier arraying and then computed the loop SNR enhancement (reduction in rms phase
jitter) with this bandwidth set equal to this same quantity prior to arraying. While the latter notion of
loop bandwidth (i.e., for the nonarrayed loop with a single input) is well defined and meaningful (see any
standard text on phase-locked loop (PLL) theory, e.g., [2]), the former notion of loop bandwidth (i.e., for
an arrayed loop with multiple inputs) is not uniquely defined since it depends on the statistical relation
among the antenna inputs. Thus, the performance comparisons derived and illustrated in [1] depend on
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the particular definition of loop bandwidth in the presence of carrier arraying assumed in that reference.
In what follows, we shall expand on this notion, starting out with an interpretation of the comparisons
made in [1]. Following that, we shall suggest an alternate criterion for comparing arrayed and nonarrayed
loops that has the advantage of being independent of the definition of loop bandwidth applied. We shall
see that, in this case, the gain derived from carrier arraying is quite different from that obtained under
the assumption of fixed-loop bandwidth. This suggests that one should exercise care when comparing
arrayed and unarrayed loops in that the criterion used for comparison should be directly applicable to
the situation at hand.

Although our results will be presented in a form that allows for any order loops, to keep matters
simple and allow for comparisons that are easy to comprehend, we shall specifically consider the case of
first-order loops.

II. Stochastic Differential Equation of Operation

Illustrated in Fig. 1 is the carrier-arraying system identified in [1] and in Fig. 2 its equivalent block
diagram based on linear loop operation for all station receivers. The stochastic differential equation of
operation of station 1’s carrier-tracking loop (the one that is arrayed) is (see Eq. (A-2) of [1] with θm = 0)1

θ̂1 =
K1F1(p)

p

[√
P1β1

(
θ1 − θ̂1

)
+

N∑
i=2

√
Piβi

(
θi − θ̂i − θ1

)
+

N∑
i=2

βiNi

]
(1)

where Pi is the signal power of the received signal at station i; Ni is a zero-mean, variance N0i/2 Gaussian
random variable representing the additive noise in station i’s receiver; K1 is the total loop gain of station
1’s carrier-tracking loop (prior to arraying); and F1(p) is the transfer function of the loop filter with p
denoting the Heaviside operator. Similarly, the stochastic differential equation of loop operation for the
remaining station receivers is given by (see Eq. (A-4) of [1] with θm = 0)

θ̂i =
KiFi(p)

p

[√
Pi

(
θi − θ̂i − θ1

)
+Ni

]
, i = 2, 3, · · · , N (2)

Substituting Eq. (2) into Eq. (1) and defining the gain ratio γi =
√
Pi/P1, it is straightforward to show

that

θ̂1 = H1(p)

{
θ1 +

N1√
P1

+
N∑
i=2

(
βi
β1

)
γi (1−Hi(p))

[(
θi − θ̂1

)
+

Ni√
Pi

]}
(3)

where

H1(p) =
K1

√
P1F1(p)β1

p+K1

√
P1F1(p)β1

Hi(p) =
K1

√
PiFi(p)

p+Ki

√
PiFi(p)


(4)

1 To keep the normalization of the loop gains completely general, we do at this point set the combining weight β1 equal to
1, as was done in [1].
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For the special case of two antennas (N = 2) with equal powers (P1 = P2 = P or γ2 = 1), Eq. (3)
simplifies to

θ̂1 = H1(p)
{
θ1 +

N1√
P

+
(
β2

β1

)
(1−H2(p))

[(
θ2 − θ̂1

)
+
N2√
P

]}
(5)

Without loss in generality, we shall focus the remainder of our discussion on this special case since it is
sufficient to illustrate the points that need to be made.

III. Defining the Loop Bandwidth

For a carrier-tracking loop with a single input, θ, and a single output, θ̂, the single-sided loop noise
bandwidth, BL, is defined by

2BL
4=

1
2πj

j∞∫
−j∞

|H(s)|2ds (6)

where

H(s) 4=
θ̂(s)
θ(s)

(7)

with s denoting the LaPlace transform operator. For a first-order loop with F (s) = 1, Eq. (6) evaluates
to the well-known result [2]

BL =
K
√
P

4
(8)

whereas for a second-order loop with imperfect integrating loop filter, F (s) = (1 + sτ2)/(1 + sτ1), the
result is

Bl =
r + 1

4τ2

(
1 + τ2
rτ1

) ∼= r + 1
4τ2

r =
K
√
Pτ2

2

τ1

(9)

where the approximation is valid for the usual case rτ2 >> τ1.

In the carrier-arraying case, we are dealing with an arrayed loop (station 1) that has a single output,
θ̂1, and, in general, multiple inputs, i.e., θ1, θ2, · · · , θN . For such a system, the definition of loop bandwidth
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for station 1’s receiver is not uniquely defined since it indeed depends on the relation of the other receiver
inputs, θ2, · · · , θN , to its own input, θ1. In the simplest scenario with just two antennas, the received
signals at antenna 1 and antenna 2 differ only in a constant delay, τ = ∆θ/ωc, between them, where ωc
is the radian carrier frequency common to both. Thus, for this scenario, we would have θ2 = θ1 + ∆θ,
i.e., θ1and θ2 are totally correlated, in which case Eq. (5) becomes

θ̂1 = H1(p)
{
θ1 +

N1√
P

+
(
β2

β1

)
(1−H2(p))

[
θ1 + ∆θ − θ̂1 +

N2√
P

]}
(10)

or equivalently,

θ̂1 =

H1(p)
[
1 +

(
β2

β1

)
(1−H2(p))

]
1 +

(
β2

β1

)
H1(p) (1−H2(p))

 θ1 +

 H1(p)
(
β2

β1

)
(1−H2(p))

1 +
(
β2

β1

)
H1(p) (1−H2(p))

 ∆θ (11)

Even for this assumption of totally correlated θ1 and θ2, the definition of loop bandwidth is not well
defined since, in general, it depends on the value of ∆θ.

If one makes the assumption that ∆θ = 0 (corresponding to the case of perfect delay compensation),
then in accordance with Eq. (7), the loop bandwidth would be given by

2BL1 =
1

2πj

j∞∫
−j∞

∣∣∣∣∣∣∣∣
H1(s)

[
1 +

(
β2

β1

)
(1−H2(s))

]
1 +

(
β2

β1

)
H1(s) (1−H2(s))

∣∣∣∣∣∣∣∣
2

ds (12)

For first-order loops, Eq. (12) evaluates to

BL1 =
K ′1

[
β2

1K
′
2 +K ′1β1(β1 + β2)2

]
4 (β1K ′2 +K ′1β1(β1 + β2))

K ′i
4= Ki

√
P

(13)

which for K ′2 << K ′1β1, i.e., station 2’s loop narrowband with respect to station 1’s loop prior to arraying,
simplifies to

BL1 =
K1

√
Pβ1

4

(
1 +

β2

β1

)
= (BL1)0

(
1 +

β2

β1

)
(14a)

where (BL1)0
4= K ′1β1/4 = K1

√
Pβ1/4 denotes the loop bandwidth of station 1’s receiver prior to arraying

(i.e., with β2 = 0).
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For second-order loops with imperfect integrating loop filters Fi(s) = (1 + sτ2i)/(1 + sτ1i), i = 1, 2,
and the same assumption regarding station 2’s loop being narrowband with respect to that of station 1
prior to arraying, Eq. (12) evaluates to

BL1 = (BL1)0

1 + r1

(
1 +

β2

β1

)
1 + r1



r1 =
√
PK1β1τ

2
21

τ11

(14b)

Although not explicitly stated, the definition of loop bandwidth given in Eq. (14) corresponding to ∆θ = 0
is the case assumed in [1] (compare Eq. (14b) with Eq. (23) of [1]).

When ∆θ 6= 0 but constant, then one can argue that, under the assumption of station 2’s loop being
narrowband with respect to station 1’s loop prior to arraying, the 1−H2(p) factor in the numerator of
the second term in Eq. (11) will for all practical purposes filter out the dc component due to ∆θ. Hence,
the dynamics of the output, θ̂1, are dominated by the input, θ1, and to a first approximation the loop
bandwidth after arraying would be the same as in the previous case where ∆θ = 0 was assumed. In other
situations, ∆θ may not be constant, i.e., θ1 and θ2 may not be totally correlated and, hence, the loop
bandwidth will depend on the statistical properties of ∆θ.

In summary then, the definition of loop bandwidth applied in a multiple input system such as a
carrier-arrayed loop is dependent on the relation assumed among its inputs. In what follows, we suggest
an alternate basis for comparing arrayed and unarrayed performances that has the advantage that it
does not depend on ∆θ; hence, one does not have to make any assumption regarding its statistical
properties. More generally, we suggest an alternate normalization of the problem wherein the relation
between the other receiver inputs, θ2, θ3, · · · , θN , and that corresponding to the receiver being arrayed,
i.e., θ1, is inconsequential. Before presenting this alternate formulation, we briefly review the performance
comparison in terms of rms phase jitter made in [1] using the criterion of equal loop bandwidths prior to
and after arraying, which strictly speaking is only proper when ∆θ = 0. This is done so that it can later
be contrasted to the analogous performance comparison using the suggested alternate basis.

IV. Evaluation of Phase Jitter Variance

Letting φ1
4= θ1−θ̂1 denote the phase error in station 1’s carrier-tracking loop, then it is straightforward

to show that Eq. (11) can be written in the form

φ1 =

 1−H1(p)

1 +
(
β2

β1

)
H1(p)(1−H2(p))

 θ1 −
 H1(p)

(
β2

β1

)
(1−H2(p))

1 +
(
β2

β1

)
H1(p)(1−H2(p))

 ∆θ

−

 H1(p)

1 +
(
β2

β1

)
H1(p)(1−H2(p))

 (
N1√
p

)
−

 H1(p)
(
β2

β1

)
(1−H2(p))

1 +
(
β2

β1

)
H1(p)(1−H2(p))

 (
N2√
P

)
(15)
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Denoting variances of the Gaussian noise random variables by σ2
Ni = N0i/2, i = 1, 2, then the variance of

the phase jitter in station 1’s carrier-tracking loop in the presence of arraying would be

σ2
φ1 =

(
N01

2P

)
1

2πj

j∞∫
−j∞

∣∣∣∣∣∣∣∣
H1(s)

1 +
(
β2

β1

)
H1(s)(1−H2(s))

∣∣∣∣∣∣∣∣
2

ds

+
(
N02

2P

)
1

2πj

j∞∫
−j∞

∣∣∣∣∣∣∣∣
H1(s)

(
β2

β1

)
(1−H2(s))

1 +
(
β2

β1

)
H1(s)(1−H2(s))

∣∣∣∣∣∣∣∣
2

ds (16)

Evaluating Eq. (16) for first-order loops gives

σ2
φ1 =

(
N01(BL1)0

P

)  β1 +
K ′2
K ′1

β1 + β2 +
K ′2
K ′1

 +
(
N02(BL1)0

P

) (
β2

β1

)2

 β1

β1 + β2 +
K ′2
K ′1


 (17)

which for K ′2 << K ′1β1 and N01 = N02 = N0 simplifies to

σ2
φ1 =

(
N0(BL1)0

P

) 
1 +

(
β2

β1

)2

1 +
β2

β1

 (18)

If we now write Eq. (18) in terms of the definition of loop bandwidth given in Eq. (14a), then we
obtain

σ2
φ1 =

(
N0BL1

P

) 
1 +

(
β2

β1

)2

(
1 +

β2

β1

)2

 (19)

If using this definition of loop bandwidth, we hold the loop bandwidth fixed prior to and after arraying,
then since σ2

φ1 = N0BL1/P represents the variance of the phase jitter prior to arraying, the arraying gain
(loop SNR improvement factor) is given by

G
4=

(
1 +

β2

β1

)2

1 +
(
β2

β1

)2 (20)
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which when optimized with respect to the combining weight ratio β2/β1 yields (β2/β1)opt = 1 and, hence,
Gopt = 2, i.e., a 3-dB gain! This result is what would be predicted by the results in [1] if two first-order
loops and equal power-to-noise ratios at both antennas, i.e., P1/N01 = P2/N02

4= P/N0 were assumed.
Also, in order to realize the gain predicted by Eq. (20), i.e., to hold the loop bandwidth fixed, station 1’s
total loop gain, K ′1, must be renormalized (divided by) the factor 1 + β2/β1, which, for the optimum
design, implies division of K ′1 by a factor of 2. This can be accomplished by including a 1/2 gain factor
in series with the loop filter F1(s).

V. Computation of Arraying Gain Based on Fixed Steady-State Phase Error

It is well known that when a frequency offset exists in the received signal to a carrier-tracking loop,
then a steady-state phase error, φss, will exist. If the loop input phase is modeled as θ(t) = θ+ Ωt, then
for a first-order loop, φss is given by

φss =
Ω

K
√
p

=
Ω

4BL
(21)

whereas for a second-order loop with imperfect integrating loop filter F (s) = (1 + sτ2)/(1 + sτ1), the
result is

φss =
Ω

rτ1/τ2
2

∼=
Ω

rτ1/τ2

(
r + 1
4BL

)
(22)

where the approximation is in the same sense as that used in Eq. (9). Since from Eq. (21) or Eq. (22) we
see that φss is inversely proportional to BL, then for the carrier-arraying application, keeping φss fixed
prior to and after arraying can be construed as maintaining a fixed-loop bandwidth. The importance
of this normalization in terms of fixed φss is that, as we shall soon see, the value of φss in station 1’s
carrier-tracking loop is unaffected by the presence of the arraying, provided that the same frequency offset
is present at the input of the other receivers, e.g., for the two-antenna case, assuming as before that the
inputs to the two antennas only differ by a fixed delay (θ2 − θ1 = ∆θ).

Setting N1 and N2 equal to zero in Eq. (15), we have

φss1 = lim
t→∞

φ1(t) = lim
s→0

sΦ1(s)

= lim
s→0

 s(1−H1(s))

1 +
(
β2

β1

)
H1(s)(1−H2(s))

 (
θ1
s

+
Ω1

s2

)
− lim
s→0

 sH1(s)
(
β2

β1

)
(1−H2(s))

1 +
(
β2

β1

)
H1(s)(1−H2(s))

 (
∆θ
s

)

(23)

For first-order loops, Eq. (23) becomes
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φss1 = lim
s→0

 s2(s+K ′2)

s2 + s

[
K ′1β1

(
1 +

β2

β1

)
+K ′2

]
+K ′1β1K ′2

 (
θ1
s

+
Ω1

s2

)

− lim
s→0


(
β2

β1

)
s2K ′1β1

s2 + s

[
K ′1β1

(
1 +

β2

β1

)
+K ′2

]
+K ′1β1K ′2

 (
∆θ
s

)
=

Ω
K ′1β1

=
Ω

K1

√
Pβ1

=
Ω

4(BL1)0

(24)

independent of ∆θ and β2. Thus, as previously predicted, the steady-state error in station 1’s carrier-
tracking loop is unchanged when carrier arraying is added to the receiver. A similar conclusion is reached
for second-order loops, namely, the steady-state phase error in station 1’s carrier-tracking loop, with or
without arraying, is given by [see Eq. (22)]

φss1 =
Ω1

r1τ11/τ2
21

∼=
Ω

r1τ11/τ21

(
r1 + 1

4(BL1)0

)
(25)

The upshot of the above is that in order to maintain a fixed steady-state phase error when carrier
arraying is employed in a receiver, the total loop gain should not be renormalized at all! Hence, the phase
jitter variance is given by Eq. (18) with no renormalization of the loop bandwidth and, thus, the arraying
gain using fixed φss1 as a basis of comparison with the unarrayed case is

G
4=

(
1 +

β2

β1

)
1 +

(
β2

β1

)2 (26)

which when optimized with respect to β2/β1 yields (β2/β1)opt =
√

2−1 = 0.414 and, hence, Gopt = 1.207,
i.e., only a 0.82-dB gain! This result has been confirmed by computer simulation.

VI. Conclusions

What has been shown here is that, depending on the basis used for comparison, it is possible to predict
different gains when applying carrier arraying to a conventional coherent receiver. Thus, it is concluded
that one should exercise caution when attempting to compare the performance of a coherent receiver
before and after carrier arraying in that one should have a complete knowledge of the relative phase and
frequency conditions of the signals being received at the various antenna inputs.
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