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The performance of a scheme proposed for automated routine monitoring of
deep-space missions is presented. The scheme uses four different tones (sinusoids)
transmitted from the spacecraft (S/C) to a ground station with the positive iden-
tification of each of them used to indicate different states of the S/C. Performance
is measured in terms of detection probability versus false alarm probability with
detection signal-to-noise ratio as a parameter. The cases where the phase of the
received tone is unknown and where both the phase and frequency of the received
tone are unknown are treated separately. The decision rules proposed for detect-
ing the tones are formulated from average-likelihood ratio and maximum-likelihood
ratio tests, the former resulting in optimum receiver structures.

I. Introduction

It has been proposed that automated routine monitoring of deep-space missions be provided by trans-
mitting one out of n (typically n = 4) different subcarriers (tones) from the spacecraft (S/C) and then
using a small automated terminal (for example, a 6-m low Earth orbiter terminal (LEO-T)-class) ground
station to detect the presence or absence of each possible tone. The positive identification of each of
the tones at the receiver will indicate different stages of the S/C, for example, S/C healthy, S/C needs
help, S/C is going to transmit telemetry, etc. Since each of these tones is transmitted from the S/C to
the ground over an additive white Gaussian noise (AWGN) channel along with the added possibility of
Doppler distortion, the above-mentioned detection problem to be solved at the receiver can be formulated
as a binary hypotheses test of signal plus noise versus noise only. In the most general case, the signal
is modeled as a constant power sinusoid with unknown [i.e., uniformly distributed on (−π, π)] phase
and unknown (i.e., uniformly distributed in some interval (f1, f2) governed by the amount of Doppler)
frequency.

The optimum solution to problems of this nature is based upon maximum-likelihood (ML) consid-
erations of the type discussed in VanTrees [1]. In particular, the solution takes the form of a binary
hypothesis likelihood ratio test against a threshold whose value depends on the specified false alarm and
detection probabilities, the available signal power-to-noise spectral density ratio, and the duration of

1 This work was performed under a NASA Summer Faculty Fellowship at the Jet Propulsion Laboratory, Communications
Systems and Research Section.
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the observation of the hypotheses. We shall see that there are, in principle, two detection/estimation
philosophies suggested by the ML approach, corresponding respectively to what is commonly known as
noncoherent detection, wherein no attempt is made to estimate the unknown parameters prior to detec-
tion, and pseudocoherent detection, wherein an attempt is made to first estimate the parameters (using
an ML approach) and then to use these estimates to aid in the detection process [2]. Since there appears
to be some question about which is the better approach, we shall consider both approaches, discuss their
philosophical differences, and compare their performances.

This article is organized in two parts. In Part 1, we consider the problem of optimally detecting
a sinusoidal signal of known amplitude (power) and frequency but of unknown phase [i.e., uniformly
distributed on (−π, π)] transmitted from a S/C to the ground over an AWGN channel. In so far as
the optimum receiver design is concerned, the problem will be formulated as a binary hypothesis test of
signal plus noise versus noise only with a single unknown parameter (i.e., carrier phase). In Part 2, we
consider the added possibility of Doppler distortion, which produces an uncertainty in the received carrier
frequency. Once again, the problem can be formulated as a binary hypothesis test of signal plus noise
versus noise only, where now the signal is modeled as a constant power sinusoid with unknown phase and
unknown frequency. Unfortunately, however, the theory for this case is not as well developed in [1] as for
the case where frequency is known. Nevertheless, other researchers [3–6] have examined problems of this
type in the context of frequency-hopped (FH) or direct sequence (DS) spread spectrum communication
systems, and we shall make use of their results wherever appropriate.

Part 1. Known Frequency and Unknown Phase

II. The Average-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Consider the transmission of a fixed (known) amplitude sinusoid with known frequency and unknown
phase over an AWGN channel. As such, the received signal can be modeled over the interval of observation
0 ≤ t ≤ T as corresponding to either of two hypotheses, namely,

r(t) = s(t, θ) + n(t) =
√

2P cos(ωct+ θ) + n(t) (1a)

when indeed the signal was sent (hypothesis H1) or

r(t) = n(t) (1b)

when the signal was not sent (hypothesis H0). In Eq. (1a), P, ωc respectively denote the known signal
power and radian carrier frequency, and θ denotes the unknown carrier phase assumed to be uniformly
distributed in the interval (−π, π). Also, n(t) denotes the AWGN with single-sided power spectral density
N0 W/Hz.

The optimum detection of a signal transmitted over an AWGN channel is the solution to the problem
of finding the likelihood ratio (LR), defined as the ratio of the conditional probability density functions
(pdf’s) of the received signal under the two hypotheses, namely,

Λ(r(t)) 4=
p (r(t)|H1)
p (r(t)|H0)

(2)

and then comparing this ratio to a suitable chosen threshold to decide between H1 and H0, i.e.,
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Λ(r(t))

H1

>
≤
H0

η (3)

In the case where all parameters of the signal are known, the evaluation of the numerator and denominator
of Eq. (2) is straightforward, namely,

p (r(t)|H1) =
1√
πN0

exp

− 1
N0

T∫
0

(r(t)− s(t))2dt



p (r(t)|H0) =
1√
πN0

exp

− 1
N0

T∫
0

r2(t)dt


(4)

When the signal has an unknown parameter, e.g., the phase θ, then to compute the numerator of Eq. (3),
we must first condition the pdf p (r(t)|H1) on the unknown parameter (θ) and then average over this
parameter, i.e.,

p (r(t)|H1) =
∫ π

−π
p (r(t)|H1, θ) pθ(θ)dθ (5)

where pθ(θ) denotes the pdf of the unknown parameter θ. In our situation, the phase is assumed to be
completely unknown and, thus, pθ(θ) is a uniform distribution. Also note that this conditioning on the
unknown parameter is now necessary in the denominator of Eq. (3) since the signal does not explicitly
appear in p(r(t)|H0) [see Eq. (4)]. Hence, combining Eqs. (3) through (5), the average-likelihood ratio
(ALR)2 becomes

Λ(r(t)) =

1
2π
∫ π
−π p(r(t)|H1, θ)dθ

p(r(t)|H0)
=

1
2π
∫ π
−π

1√
πN0

exp
{
− 1
N0

∫ T
0

(r(t)− s(t, θ))2dt

}
dθ

1√
πN0

exp
{
− 1
N0

∫ T
0
r2(t)dt

}

= exp
{
−PT
N0

}
1

2π

∫ π

−π
exp

{
2
N0

∫ T

0

r(t)s(t, θ)dt

}
dθ

= exp
{
−PT
N0

}
1

2π

∫ π

−π
exp

{
2
√

2P
N0

∫ T

0

r(t) cos(ωct+ θ)dt

}
dθ (6)

2 We shall refer to this formulation as an average-likelihood ratio (ALR) test to distinguish it from another (in general, less
optimum) approach to be discussed shortly, in which a best (maximum-likelihood) estimate of the unknown parameter is
obtained first and then used in the detection process. We shall refer to the latter approach as a maximum-likelihood ratio
(MLR) test. This vernacular is not standard in the literature. What is important to understand here is that the words
average and maximum refer to the manner in which the unknown parameter is handled, i.e., the estimation part of the
problem and not the manner in which the decision on the hypothesis is made, i.e., the detection part of the problem. We
shall be more explicit and mathematically precise about these differences later on in the article.
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In arriving at the final result in Eq. (6), we have noted that the term exp
{
−
∫ T

0
r2(t)dt/N0

}
is common

to both the numerator and denominator and, thus, cancels, and also that

exp

{
− 1
N0

∫ T

0

s2(t, θ)dt

}
= exp

{
−2P
N0

∫ T

0

cos2(ωct+ θ)dt

}
= exp

{
−PT
N0

}
(7)

assuming ωcT >> 1, as is typically the case. Defining the in-phase (I) and quadrature (Q) correlations

Lc
4=
∫ T

0

r(t)
√

2 cosωctdt

Ls
4=
∫ T

0

r(t)
√

2 sinωctdt

then Eq. (6) can be rewritten as

Λ(r(t)) = exp
{
−PT
N0

}
1

2π

∫ π

−π
exp

{
2
√
P

N0
L cos(θ + α)

}
dθ = exp

{
−PT
N0

}
I0

(
2
√
P

N0
L

)
(8)

where

L
4=
√
L2
c + L2

s

α
4= tan−1 Ls

Lc

(9)

Comparing Λ(r(t)) to a threshold η is equivalent to comparing ln Λ(r(t)) to ln η. Thus, taking the natural
logarithm of Eq. (8), we obtain the equivalent decision rule

ln I0

(
2
√
P

N0
L

) H1

>
≤
H0

ln η +
PT

N0
(10)

Finally, since ln I0(x) is a monotonic function of its argument, x, and since PT/N0 can be absorbed into
the decision threshold, then the decision rule of Eq. (10) can be further simplified to

2
√
P

N0
L

H1

>
≤
H0

ξ (11)

or, equivalently,
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L2

H1

>
≤
H0

ξ2N
2
0

4P
4= γ (12)

i.e., the optimum decision of signal present versus signal absent is determined from a comparison of
the output of a square-law envelope detector with a normalized threshold, γ, whose value is determined
from the specifications on false alarm probability and detection probability (see the next section). An
implementation of the decision rule in Eq. (12) is illustrated in Fig. 1.

( )2•

H1
>
≤ γ
H0

Ls

Lc ( )2•( ) dt
0

T∫

•( ) dt
0

T∫

•

r (t)

2 sinωc 
t

2 cosωc 
t

Fig. 1.  Average-likelihood  (noncoherent) detector for detection of a single sinusoidal
tone with known frequency and unknown phase in AWGN.

B. Performance (Receiver Operating Characteristic)

The performance of the receiver in Fig. 1 is described in terms of its false alarm probability (PF ),
defined as the probability of deciding H1 (signal is present) when indeed H0 is true (signal is absent), and
its probability of detection (PD), defined as the probability of deciding H0 (signal is absent) when indeed
H1 is true (signal is present). These probabilities are readily computed from knowledge of the first and
second moments of the Gaussian random variables Lc and Ls [see Eq. (8)] under the two hypotheses,
namely,

H0 : E{Lc} = E{Ls} = 0

var {Lc} = var {Ls} =
N0T

2

H1 : E{Lc|θ} =
√
PT cos θ

E{Ls|θ} = −
√
PT sin θ

var {Lc} = var {Ls} =
N0T

2



(13)

To compute PF , we observe that, under hypotheses H0, L is a Rayleigh random variable (L2 is a central
chi-squared random variable). Thus,
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PF = Pr{H1|H0} = Pr{L2 > γ|H0} =
∫ 2π

0

∫ ∞
√
γ

1
2π(N0T/2)

L exp
(
− L2

N0T

)
dLdθ

=
∫ ∞
√
γ/N0T

2R exp(−R2)dR = exp
(
− γ

N0T

)
(14)

Similarly, we observe that, under hypothesis H1, L is a Rician random variable (L2 is a noncentral
chi-squared random variable). Thus,

PD = Pr{H1|H1} = Pr{L2 > γ|H1} =
∫ ∞
√
γ

1
N0T/2

L exp
(
−L

2 + β2

N0T

)
I0

(
2Lβ
N0T

)
dL

β2 4= (E{Lc|θ})2 + (E{Ls|θ})2 = PT 2

=
∫ ∞
√

2γ/N0T

R exp
(
−R

2 + d2

2

)
I0(Rd)dR = Q

(
d,

√
2γ
N0T

)


(15)

where

d2 4=
2PT
N0

=
2E
N0

(16)

is the detection signal-to-noise ratio (SNR) and Q(α, β) is the Marcum Q-function defined by [1]:

Q(α, β) =
∫ ∞
β

z exp
(
−z

2 + α2

2

)
I0(αz)dz (17)

Combining Eqs. (14) and (15) and eliminating the normalized detection threshold, one obtains the receiver
operating characteristic (ROC) given by

PD = Q
(
d,
√
−2 lnPF

)
(18)

which is illustrated in Fig. 2 for several values of the parameter d (or, equivalently, E/N0). Alternatively,
PD is plotted versus d2 with PF as a parameter in Fig. 3.

III. The Maximum-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Although the exact evaluation of the numerator of the likelihood ratio in Eq. (2), i.e., p(r(t)|H1) is
obtained from the law of conditional probability as described by Eq. (5), namely, conditioning on the
unknown parameter and averaging its distribution, it is also possible to approximate this numerator
by first finding the ML estimate of the unknown parameter and then substituting this value into the
conditional probability p(r(t)|H1, θ). That is, we approximate p(r(t)|H1) by p

(
r(t)|H1, θ̂ML

)
, in which

case the likelihood ratio test (now referred to as the maximum-likelihood ratio (MLR) test) becomes
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Fig. 2.  ROC: frequency known and phase unknown.
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Λ(r(t)) ∼=
p
(
r(t)|H1, θ̂ML

)
p (r(t)|H0)

H1

>

≤
H0

η (19)

We refer to this approach of first optimally estimating the phase and then using this estimate to aid
the detection process as pseudocoherent detection. It is important at this point to emphasize that in the
general context of problems of this type, i.e., detection of signals with completely unknown parameters,
the performance of a receiver derived from MLR considerations (e.g., a pseudocoherent receiver) is never
better than the performance of the ALR receiver (e.g., a noncoherent receiver), which is indeed optimum
under the assumed conditions. Thus, at best, one could hope that the MLR receiver would perform equally
well as does the ALR receiver. In the next section, we shall indeed reveal the extent to which this equality
in performance can be achieved for the problem at hand. First, however, let us derive the ML estimate
of phase, namely, θ̂ML, to be used in approximating the numerator of the likelihood ratio.

The ML estimate of θ is defined as

θ̂ML = max
θ

p (r(t)|H1, θ)
p (r(t)|H0)

(20)

Using Eq. (4) in Eq. (20), it is straightforward to show that

θ̂ML = max
θ

exp

{
2
N0

∫ T

0

r(t)s(t, θ)dt

}
= max

θ
exp

{
2
√

2P
N0

∫ T

0

r(t) cos (ωct+ θ) dt

}

= max
θ

exp

{
2
√
P

N0
L cos(θ + α)

}
(21)
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where the envelope, L, and the phase, α, are defined by Eq. (9) together with Eq. (8). Since L is
positive and independent of θ, then the maximization required in Eq. (21) is achieved when the argument
of the cosine function is equal to zero. Thus,

θ̂ML = −α (22)

An implementation of this ML estimator of the unknown channel phase is illustrated in Fig. 4. Also
illustrated in Fig. 4 is the pseudocoherent detector that employs this ML phase estimator, which can be
obtained by taking the natural logarithm of Eq. (19). We now find the decision rule based on the MLR
test in Eq. (19) and compare it with that of the previously discussed ALR test. Using Eq. (22) in Eq. (19)
gives, by analogy with Eq. (8),
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θ̂

tan−1

PHASE
MODULATOR

MLθ̂

MAXIMUM-LIKELIHOOD PHASE ESTIMATOR

2 cosωc 
t

2 sinωc 
t

H1
>
≤ γ
H0

( ) dt
0

T∫ •

( ) dt
0

T∫ •

r (t)

( ) dt
0

T∫ •

Lc

Ls

Lc
Ls

−

2 (cos ωc 
t ML)+

Fig. 4.  Maximum-likelihood phase estimator and pseudocoherent detector.

Λ(r(t)) ∼= exp
{
−PT
N0

}
exp

{
2
√
P

N
L cos

(
θ̂ML + α

)}
= exp

{
−PT
N0

}
exp

{
2
√
P

N0
L

}
(23)

Taking the natural logarithm of Eq. (23), we then have, by analogy with Eq. (10),

2
√
P

N0
L

H1

>
≤
H0

ln η +
PT

N0
(24)

Since, as previously noted, the term PT/N0 can be absorbed into the decision threshold, then an equiv-
alent test to Eq. (24) is

2
√
P

N0
L

H1

>
≤
H0

ξ (25)

which is identical to Eq. (11)! Thus, we conclude that in this particular circumstance, the MLR test
(pseudocoherent receiver) and the ALR test (noncoherent receiver) are identical. Hence, the performance
of the pseudocoherent receiver is also described by Figs. 2 and 3. It is to be emphasized again that
the equivalence found here between ALR and MLR receivers is not typical and applies only in this very
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special case of the detection of a signal with known frequency and unknown phase. More often than
not, the receiver derived from the MLR approach will have an inferior performance to the optimum one
derived from the ALR approach.

IV. A More Precise Formulation of the Problem

In reality, the subcarriers that are transmitted to indicate the status of the S/C are continuous square
waves that biphase modulate the carrier. Thus, denoting the carrier radian frequency and phase by ωc
and θc (previously called θ), respectively, and the square-wave subcarrier radian frequency and phase by
ωsc and θsc, respectively, then the received signal analogous to Eq. (1a) is given by

r(t) = s(t, θc, θsc) + n(t) =
√

2P sin
(
ωct+ θc +

π

2
Sq (ωsct+ θsc)

)
+ n(t)

=
√

2P Sq (ωsct+ θsc) cos (ωct+ θc) + n(t) (26)

Assuming that the harmonics with frequencies other than the sum and difference of ωc and ωsc are filtered
out, then in so far as detection is concerned, we may consider the received signal to be3

r(t) = s (t, θc, θsc)+n(t) =
√
P {cos[(ωc + ωsc)t+ (θc + θsc)] + cos[(ωc − ωsc)t+ (θc − θsc)]}+n(t) (27)

i.e., the problem is to detect the presence or absence of two tones in an AWGN background where both
ωc and ωsc are assumed to be known but both θc and θsc are assumed to be completely unknown. For
convenience of notation, we shall rewrite Eq. (27) as

r(t) = s(t, θ+, θ−) + n(t) =
√
P {cos[ω+t+ θ+] + cos[ω−t+ θ−]}+ n(t) (28)

where

ω±
4= ωc ± ωsc

θ±
4= θc ± θsc

 (29)

At first glance, it might appear that, because the phases θc and θsc appear in the two signal tones as
their sum and difference, the detection of these tones cannot be performed independently. Interestingly
enough, θ+

4= θc + θsc and θ−
4= θc − θsc when reduced modulo 2π can be shown to be independent

uniformly distributed random variables (see the Appendix). Thus, as we shall see shortly, the detection
of two distinct sinusoidal tones with independent random phases in an AWGN background can be treated
by a likelihood ratio approach analogous to that discussed in the previous section for a single tone in the
same background.

3 In reality, the
√
P amplitude factor in Eq. (27) should be (2

√
2/π)
√
P = 0.9003

√
P to account for the amplitude of the

first harmonic in the square-wave subcarrier. For simplicity, we shall ignore this minor difference.
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A. The ALR Test

As discussed in Section II, the optimum decision rule is, in general, obtained by applying the average-
likelihood approach, which in this case means averaging the conditional likelihood function over the two
random phases θ+ and θ−. In particular, the conditional pdf of the received signal under hypothesis H1

is analogous to Eq. (5):

p(r(t|H1) =
∫ π

−π

∫ π

−π
p(r(t)|H1, θ+, θ−)pθ+,θ−(θ+, θ−)dθ+dθ− =

(
1

2π

)2 ∫ π

−π

∫ π

−π
p(r(t)|H1, θ+, θ−)dθ+dθ−

(30)

and, hence, the ALR becomes

Λ(r(t)) =

(
1

2π

)2 ∫ π
−π
∫ π
−π p(r(t)|H1, θ+, θ−)dθ+dθ−

p(r(t)|H0)

= exp
{
−PT
N0

}(
1

2π

)2 ∫ π

−π
exp

{
2
√
P

N0

∫ T

0

r(t) cos(ω−t+ θ−)dt

}
dθ−

×
∫ π

−π
exp

{
2
√
P

N0

∫ T

0

r(t) cos(ω+t+ θ+)dt

}
dθ+ (31)

Defining the I and Q correlations for the sum and difference frequencies by

Lc±
4=
∫ T

0

r(t)
√

2 cosω±tdt

Ls±
4=
∫ T

0

r(t)
√

2 sinω±tdt


(32)

then, the likelihood function of Eq. (30) can be rewritten as

Λ(r(t)) = exp
{
−PT
N0

}
I0

(√
2P
N0

L−

)
I0

(√
2P
N0

L+

)
(33)

where, analogous to Eq. (9), the envelopes corresponding to the upper and lower subcarrier tones are
given by

L±
4=
√
L2
c± + L2

s± (34)

Alternately, in terms of the log-likelihood function, we arrive at the decision rule
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ln I0

(√
2P
N0

L−

)
+ ln I0

(√
2P
N0

L+

) H1

>

≤
H0

ln η +
PT

N0
(35)

Note that now, despite the fact that ln I0(x) is a monotonic function of its argument, x, we cannot directly
simplify Eq. (35) to a form analogous to Eq. (11). Rather, to get such a form, one must approximate the
ln I0(x) function by its series and asymptotic forms for small and large arguments, namely,

ln I0(x) ∼=


x2

4
, small x

|x|, large x

(36)

Thus, for example, if we invoke the small argument approximation of the ln I0(x) function in Eq. (35),
we get the decision rule (optimum for small SNR)

L2
− + L2

+
4= L2

H1

>
≤
H0

γ (37)

where γ is again a normalized threshold [not necessarily equal to the one defined in Eq. (12)]. The
decision rule in Eq. (37) suggests the ALR structure illustrated in Fig. 5, which is analogous to that given
in Fig. 1. For the large argument approximation of the ln I0(x) function, the implementation of Fig. 5
would require square root devices in each arm entering the final summer prior to the decision device.

B. The MLR Test

Let us now again compare the noncoherent two-tone detector derived from ALR considerations and
specified by the decision rule of Eq. (35) to a pseudocoherent detector that can be derived from MLR
considerations. In particular, consider the joint ML estimates θ̂ML+, θ̂ML− of θ+, θ− defined as

θ̂ML+, θ̂ML− = max
θ+,θ−

p(r(t)|H1, θ+, θ−)
p(r(t)|H0)

(38)

which, because of the independence of θ+ and θ−, is determined as

θ̂ML+, θ̂ML− = max
θ+,θ−

exp

{
2
√
P

N0

∫ T

0

r(t) cos(ω−t+ θ−)dt

}
exp

{
2
√
P

N0

∫ T

0

r(t) cos(ω+t+ θ+)dt

}

= max
θ+,θ−

{√
2P
N0

L− cos(θ− + α−)

}
exp

{√
2P
N0

L+ cos(θ+ + α+)

}
(39)

where α± are defined in terms of L±, analogous to Eq. (9). The solution to Eq. (39) is

θ̂ML± = −α± (40)
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Fig. 5.  Average-likelihood  (noncoherent) detector for detection of a pair of independent
sinusoidal tones with known frequencies and unknown phases in AWGN.

which, when substituted in Eq. (39), gives

Λ(r(t)) ∼= exp
{
−PT
N0

}
exp

{√
2P
N0

L+

}
exp

{√
2P
N0

L−

}
= exp

{
−PT
N0

}
exp

{
2
√
P

N0
L

}
(41)

Taking the natural logarithm of Eq. (40), we get the decision rule

√
2P
N0

(L+ + L−)

H1

>
≤
H0

ln η +
PT

N0
(42)

Comparing Eq. (42) with Eq. (35), we observe that, in the two-tone case, the MLR test (which would
lead to a pseudocoherent form of detector analogous to Fig. 4) is not the same as the ALR test. However,
using the large argument approximation of the ln I0(x) function as given by Eq. (36), we see that the
ALR and MLR tests once again become equivalent. In summary then, we observe that, for detection of
a single tone in AWGN, the ALR (noncoherent) test and MLR (pseudocoherent) test are equivalent for
all SNRs, whereas for the detection of a pair of equal power tones in AWGN, the ALR and MLR tests
are equivalent only at sufficiently large SNR.

C. Performance (Receiver Operating Characteristic)

The performance of the low SNR receiver in Fig. 5 is, as before, described in terms of its false alarm
probability (PF ) and its probability of detection (PD). These probabilities are readily computed from
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knowledge of the first and second moments of the Gaussian random variables Lc± and Ls± [see Eq. (31)]
under the two hypotheses, namely,

H0 : E{Lc±} = E{Ls±} = 0

var {Lc±} = var {Ls±} =
N0T

2

H1 : E{Lc±|θ} =

√
P

2
T cos θ±

E{Ls±|θ} =

√
P

2
T sin θ±

var {Lc±} = var {Ls±} =
N0T

2



(43)

To compute PF , we observe as before that, under hypothesis H0, L2 is a central chi-squared random
variable (now with two more degrees of freedom). Thus,

PF = Pr {H1|H0} = Pr
{
L2 > γ|H0

}
=
∫ ∞
γ/N0T

r exp(−r)dr =
(

1 +
γ

N0T

)
exp

(
− γ

N0T

)
(44)

Similarly, we observe that, under hypothesis H1, L
2 is a noncentral chi-squared random variable (now

with two more degrees of freedom). Thus,

PD =Pr {H1|H1} = Pr
{
L2 > γ|H1

}
=
∫ ∞
√

2γ/N0T

R

(
R

d

)
exp

(
−R

2 + d2

2

)
I1(Rd)dR = Q2

(
d,

√
2γ
N0T

)
(45)

where d2 is the detection SNR defined as before [see Eq. (16)] and QM (α, β) is the generalized Marcum
Q-function defined by

QM (α, β) =
∫ ∞
β

z
( z
α

)M−1

exp
(
−z

2 + α2

2

)
IM−1(αz)dz (46)

Note that QM (α, β) can be obtained from Q(α, β) 4= Q1(α, β) by the relation [2, Appendix 5A]

QM (α, β) = Q(α, β) + exp
(
α2 + β2

2

)M−1∑
j=1

(
β

α

)j
Ij(αβ)

Unfortunately, the normalized detection threshold cannot be explicitly eliminated in Eqs. (39) and (40)
to give a closed-form expression for the receiver operating characteristic (ROC) analogous to Eq. (18).
However, for any range of interest, the ROC can be determined numerically. Such numerical results are
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superimposed on the single-tone detection in Figs. 2, 3(a), and 3(b). We observe that the performance
penalty associated with using a pair of subcarrier tones each with half the total power relative to the
full-power single carrier tone case is quite small, e.g., on the order of 0.4 dB or less for PF = 10−2 and
on the order of 0.3 dB or less for PF = 10−4. The degradation associated with the true optimum ALR
scheme as described by the decision rule of Eq. (35) would be even smaller. Thus, the performance curves
of the true optimum ALR scheme for two tones would lie between the solid and dashed curves in Figs. 2,
3(a), and 3(b) since indeed these performance results cannot beat those corresponding to the single-tone
case. Because of the small degradations involved, we choose not to simulate the true optimum case.

Part 2. Unknown Frequency and Unknown Phase

V. The Average-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Consider the transmission of a fixed (known) amplitude sinusoid with unknown frequency and unknown
phase over an AWGN channel. Analogous to Eq. (1), the received signal can be modeled over the interval
of observation 0 ≤ t ≤ T as corresponding to either of two hypotheses, namely,

r(t) = s(t, θ) + n(t) =
√

2P cos(ωt+ θ) + n(t) (47a)

when indeed the signal was sent (hypothesis H1) or

r(t) = n(t) (47b)

when the signal was not sent (hypothesis H0). In addition to the previously defined parameters, in
Eq. (47a), f 4= ω/2π denotes the unknown carrier frequency assumed to be uniformly distributed in the
interval (fc−B/2, fc+B/2), where as before fc denotes the nominal carrier frequency (i.e., in the absence
of Doppler). When the signal has two unknown parameters, e.g., the phase θ and frequency f , then to
compute the numerator of Eq. (3), we must first condition the pdf p(r(t)|H1) on both of the unknown
parameters and then average over them, i.e.,

p(r(t)|H1) =
∫ fc+B/2

fc−B/2

∫ π

−π
p(r(t)|H1, θ, f)pθ(θ)pf (f)dθdf (48)

where pθ(θ), pf (f) respectively denote the pdf’s of the unknown parameters θ and f . In our situation,
the phase and frequency are assumed to be completely unknown, and thus pθ(θ) and pf (f) are uniform
distributions. Hence, combining Eqs. (3) and (48), the average-likelihood ratio (ALR) becomes

Λ(r(t)) =

1
2πB

∫ fc+B/2

fc−B/2

∫ π

−π
p(r(t)|H1, θ, f)dθdf

p(r(t)|H0)

= exp
{
−PT
N0

}
1

2πB

∫ fc+B/2

fc−B/2

∫ π

−π
exp

{
2
√

2P
N0

∫ T

0

r(t) cos(ωct+ θ)dt

}
dθdf

= exp
{
−PT
N0

}
1
B

∫ fc+B/2

fc−B/2
I0

(
2
√
P

N0
L(f)

)
df (49)
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where

L(f) 4=
√
L2
c(f) + L2

s(f) (50)

with

Lc(f) 4=
∫ T

0

r(t)
√

2 cos 2πftdt

Ls(f) 4=
∫ T

0

r(t)
√

2 sin 2πftdt


(51)

It should be noted that L(f) is nothing more than the magnitude of the complex Fourier transform (FT)
of r(t) in the interval 0 ≤ t ≤ T . If r(t) is band limited to W Hz, then for large WT , the real and
imaginary components of this complex FT, namely, Lc(f), Ls(f) can be approximated by the discrete
Fourier transforms (DFTs)

Lc(f) =
√

2
1

2W

2WT∑
n=1

r
( n

2W

)
cos
(

2πf
n

2W

)

Ls(f) =
√

2
1

2W

2WT∑
n=1

r
( n

2W

)
sin
(

2πf
n

2W

)


(52)

Comparing Λ(r(t)) to a threshold produces (after suitable normalization) the ALR decision rule

∫ fc+B/2

fc−B/2
I0

(
2
√
P

N0
L(f)

)
df

H1

>
≤
H0

η (53)

Since Eq. (53) is overly demanding to implement, one discretizes the frequency uncertainty interval into
G = B/T−1 = BT subintervals to each of which is associated a candidate frequency fi; i = 0, 1, 2, · · · , G−1
located at its center. As such, the integration over the continuous uncertainty region in Eq. (53) is
approximated by a discrete (Riemann) sum and, hence, the approximate decision rule becomes

G−1∑
i=0

I0

(
2
√
p

N0
L(fi)

) H1

>
≤
H0

η (54)

which has the implementation representation of Fig. 6. It is important to understand that spacing the
frequencies fi; i = 0, 1, 2, · · · , G−1 by 1/T guarantees independence of the noise components that appear
at the output of each spectral estimate channel. However, orthogonality of the signal components of these
same outputs depends on the true value of the received frequency relative to the discretized frequencies
fi; i = 0, 1, 2, · · · , G−1 assumed for implementation of the receiver. That is, if the true received frequency
happens to fall on one of the fi’s, then a signal component will appear only in the corresponding spectral
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Fig. 6.  Average-likelihood  (noncoherent) detector for detection of a single sinusoidal tone with unknown frequency and
unknown phase in AWGN.

estimate channel, i.e., all other channels will be noise only. On the other hand, if the true received
frequency falls somewhere between two of the fi’s, then we have a loss of orthogonality in that a spillover
of signal energy occurs in the neighboring spectral estimates. The worst-case spillover would occur when
the true received frequency is midway between two of the fi’s.

We conclude this section by noting that a decision metric similar to Eq. (54) arises in the study of
FH or DS/low probability of intercept (LPI) optimum ALR (noncoherent) detection [3–5], where in the
FH case, fi; i − 0, 1, 2, · · · , G − 1 corresponds to the G possible frequencies that the transmitted signal
can hop to and the detection is based on observation of a single hop of duration TH = T , and in the DS
case G is the number of possible code sequences that can occur in the observation interval. Many of the
results obtained from these works are directly applicable to the problem at hand.

B. Performance

It is tempting for large values of G (as is typically the case) to apply a central limit theorem argument
to the left side of Eq. (11), i.e., approximate it as a Gaussian random variable in so far as computing the
receiver operating characteristic associated with this decision rule [4]. Unfortunately, it was shown in [5]
that following such an approach is very poor when compared with results obtained from simulation or
numerical methods applied to the true decision rule of Eq. (11), even for values of G as large as 1000 or
10,000. In fact, it is stated in [5] that G on the order of “ten thousands is not guaranteed to be large
enough to validate the Gaussian approximation.” Thus, to obtain the true receiver performance, we too
must resort to simulation and/or numerical methods, such as those suggested by Requicha [7], wherein
the characteristic function and fast Fourier transforms (FFTs) are used to compute approximate values
of the distribution function associated with the left-hand side of Eq. (11). More about this later on.
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VI. The Maximum-Likelihood Ratio Test

A. Derivation of the Optimum Decision Rule and Associated Receiver Structure

Although the exact evaluation of the numerator of the likelihood ratio in Eq. (2), i.e., p(r(t)|H1) is
obtained from the law of conditional probability as described by Eq. (5), namely, conditioning on the
unknown parameters and averaging over their distribution, it is also possible to approximate this numer-
ator by first finding the ML estimates of the unknown parameters and then substituting these values into
the conditional probability p(r(t)|H1, θ, f). That is, we approximate p(r(t)|H1) by p(r(t)|H1, θ̂ML, f̂ML),
in which case the likelihood ratio test (now referred to as the maximum-likelihood ratio (MLR) test)
becomes

Λ(r(t)) ∼=
p
(
r(t)|H1, θ̂ML, f̂ML

)
p(r(t)|H0)

H1

>
≤
H0

(55)

where

θ̂ML, f̂ML
4= max

θ,f

p(r(t)|H1, θ, f)
p(r(t)|H0)

(56)

The maximization over θ required in Eq. (56) can be performed identically to that in Section III [see
Eq. (23)]:

max
θ

p(r(t)|H1, θ, f)
p(r(t)|H0)

= exp
(
−PT
N0

)
exp

(
2
√
P

N0
L(f)

)
(57)

where L(f) is as defined in Eq. (50). Thus, the optimum maximum a posteriori (MAP) decision rule
becomes

max
f

exp
(
−PT
N0

)
exp

(
2
√
P

N0
L(f)

) H1

>
≤
H0

η (58)

Since the exponential is a monotonic function of its argument, we have the equivalent decision rule4

max
f

L(f)

H1

>
≤
H0

√
γ (59)

which results in a spectral maximum form of receiver. Again, because of the excessive demand placed on
the implementation by the need to evaluate Eq. (59) over a continuum of frequencies, we again quantize
the frequency uncertainty interval into G = BT subintervals, each with an associated candidate frequency

4 We define the normalized threshold equal to
√
γ to be consistent with the notation used in Part 1. In this way, when G

is equated to unity, then our results obtained here will reduce to those given in Part 1 for the MLR decision rule.
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fi; i = 0, 1, 2, · · · , G−1 located at its center. Thus, the frequency continuous decision rule of Eq. (59) can
be approximated by the decision rule

max
i
L(fi)

H1

>
≤
H0

√
γ (60)

which suggests the receiver of Fig. 7. Here again, as with Eq. (54), the orthogonality of the spectral
estimates is not guaranteed unless the frequency of the received signal falls on one of the fi’s. Also, since
L(fi); i = 0, 1, 2, · · · , G represents a uniform sampling of L(f), then in view of Eq. (52), we can implement
Fig. 7 with FFT techniques.
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>
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L (ƒ0 )

L (ƒG–1 )

Lmax

Fig. 7.  Maximum-likelihood detector for detection of a single sinusoidal tone with unknown frequency and
unknown phase in AWGN.

B. Performance

The performance of the MLR decision rule of Eq. (60) can be obtained analytically since the pdf of
G independent random variables can be explicitly written in terms of the pdf’s of individual random
variables, which in turn are obtained from the results in Part 1. The procedure is as follows.

1. Best-Case Performance. Consider first the optimistic (best) case, where the actual received
carrier frequency is indeed equal to one of the G frequencies, say fk used to approximately implement
the optimum decision rule as per the discussion following Eq. (59). Under H1, G − 1 of the L(fi)’s are
Rayleigh distributed with pdf [see Eq. (14)]

pL(fi)(L) =
2

N0T
L exp

(
− L2

N0T

)
; L ≥ 0 (61)
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and the single L(fi) that is associated with the received signal carrier frequency, namely L(fk), is Rician
distributed with pdf [see Eq. (15)]

pL(fk)(L) =
2

N0T
exp

(
−L

2 + β2

N0T

)
I0

(
2Lβ
N0T

)
; L ≥ 0, β2 = PT 2 (62)

Let P ∗F denote the per frequency channel false alarm probability, i.e.,

P ∗F = Pr {L(fi) >
√
γ|H0} =

∫ ∞
√
γ

2
N0T

L exp
(
− L2

N0T

)
dL = exp

(
− γ

N0T

)
(63)

which is independent of fi. Then, the overall false alarm probability, PF , is given by

PF = Pr
{

max
i
L(fi) >

√
γ|H0

}
= 1− Pr {L(f0) ≤ √γ, L(f1) ≤ √γ, · · · , L(fG−1) ≤ √γ|H0}

= 1−
G−1∏
i=0

Pr {L(fi) ≤
√
γ|H0} = 1−

G−1∏
i=0

(1− Pr {L(fi) >
√
γ|H0})

= 1− (1− P ∗F )G = 1−
(

1− exp
(
− γ

N0T

))G
(64)

Since, under H1, G− 1 of the spectral estimates (i.e., the ones containing noise only) have the same pdf,
namely Eq. (61), as under H0, and one spectral estimate has the Rician pdf of Eq. (62), then the overall
probability of detection, Pd, is determined from

PD = Pr
{

max
i
L(fi) >

√
γ|H1

}
= 1−

G−1∏
i=0

(1− Pr {L(fi) >
√
γ|H1}) = 1−(1− P ∗F )G−1 (1− P ∗D) (65)

where P ∗D corresponds to the detection probability of the single-frequency channel containing the signal,
i.e.,

P ∗D = Pr {L(fi) >
√
γ|H1} = Q

(
d,

√
2γ
N0T

)
; d2 =

2PT
N0

(66)

Substituting Eqs. (63) and (65) into Eq. (66) gives

PD = 1−
(

1− exp
(
− γ

N0T

))G−1(
1−Q

(
d,

√
2γ
N0T

))
(67)

or, equivalently, the overall probability of miss, PM , is
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PM
4= 1− PD =

(
1− exp

(
− γ

N0T

))G−1(
1−Q

(
d,

√
2γ
N0T

))
(68)

Note that, for G = 1, Eqs. (64) and (67) reduce, respectively, to Eqs. (14) and (15).

The ROC can be determined by eliminating the normalized threshold between Eqs. (64) and (67), in
which case one obtains

PD = 1− (1− PF )(G−1)/G

(
1−Q

(
d,
√
−2 ln

(
1− (1− PF )1/G

)))
(69)

2. Worst-Case Performance. The worst-case performance occurs when the actual received carrier
frequency is indeed midway between two of the G frequencies used to approximately implement the
optimum decision rule as per the discussion following Eq. (59). Under H0, the false alarm performance is
still described by Eq. (64). However, under H1, all G spectral estimates are now Rician distributed with
pdf’s of the form in Eq. (62), namely,

pL(fi)(L) =
2

N0T
L exp

(
−L

2 + β2
i

N0T

)
I0

(
2Lβi
N0T

)
; L ≥ 0 (70)

where the βi’s are determined as follows. Since [see Eq. (15)]

β2
i
4= (E {Lc(fi)|θ, f})2 + (E {Ls(fi)|θ, f})2 (71)

then, assuming that the actual received carrier frequency, f , is situated midway between fk and fk+1,
which are separated by 1/T , i.e., f = fk + 1/2T , Eq. (70) is evaluated as (for simplicity, we ignore the
edge effects at the ends of the frequency uncertainty band)

β2
i = PT 2

 sin
(
π

(
k − i+

1
2

))
π

(
k − i+

1
2

)


2

=


PT 2

(
2
π

)2

; i = k, k + 1

PT 2

(
2
π

)2( 1
1 + 2(k − i)

)2

; i 6= k, k + 1

4= PT 2Γi (72)

Finally then, analogous to Eq. (70), the detection probability would be given by

PD = 1−
G−1∏
i=0

(
1−Q

(
Γid,

√
2γ
N0T

))
(73)

which, in general, depends on fk, i.e., the location of f within the uncertainty band.

It has been suggested in [5] that the two nearest spectral estimates (envelopes) to the frequency
location of the received signal dominate the performance, i.e., the spillover effect of signal in the other
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frequency slots can be ignored to a first-order approximation. When this is done, then, under H1, two of
the spectral estimates are identically Rician distributed and the remaining G− 2 are identically Rayleigh
distributed. In this case, Eq. (73) is replaced by an expression somewhat like Eq. (67), namely,

PD = 1−
(

1− exp
(
− γ

N0T

))G−2(
1−Q

((
2
π

)
d,

√
2γ
N0T

))2

(74)

which is now independent of the frequency location of the signal. Combining Eqs. (64) and (74), the
ROC is approximately given by

PD = 1− (1− PF )(G−2)/G

(
1−Q

((
2
π

)
d,
√
−2 ln

(
1− (1− PF )1/G

)))2

(75)

VII. A More Precise Formulation

As discussed in Section IV of Part 1, the true transmitted signal corresponds to a sinusoidal carrier
phase modulated by a square-wave subcarrier of radian frequency ωsc. At the receiver, the harmonics
with frequencies other than the sum and difference of ωsc and ωc are filtered out, which means that in so
far as detection is concerned, the received signal in the absence of frequency uncertainty can be modeled
as

r(t) = s(t, θc, θsc) + n(t) =
√
P {cos [(ωc + ωsc)t+ (θc + θsc)] + cos [(ωc − ωsc)t+ (θc − θsc)]}+ n(t)

(76)

In the presence of frequency uncertainty due, for example, to Doppler shift, both the upper and lower
frequency tones in Eq. (76) will be shifted from their nominal values with the higher-frequency tone
experiencing a larger shift than that corresponding to the lower-frequency tone. If, however, the subcarrier
frequency is much smaller than the carrier frequency, i.e., ωsc << ωc, as is the case of interest, then for all
practical purposes, one can associate the frequency uncertainty with the carrier as discussed in Section V.A
and assume to a first-order approximation that both upper and lower frequency tones experience the same
frequency shift. Stated another way, we can assume that, in so far as detection is concerned, we observe
a pair of tones whose frequencies are unknown (but by the same amount), each in a band B Hz centered
around its nominal value. Furthermore, the uncertainty band is assumed to be very narrow with respect
to the subcarrier frequency, i.e., B << fsc.

A. The ALR Test

Analogous to what was done in Part 1, the conditional pdf of the received signal under hypothesis H1

is given by

p(r(t)|H1) =
(

1
2π

)2 1
B

∫ fc+B/2

fc−B/2

∫ π

−π

∫ π

−π
p(r(t)|H1, θ+, θ−, f − fsc, f + fsc)dθ+dθ−df (77)

whereupon the ALR becomes

Λ(r(t)) = exp
{
−PT
N0

}
1
B

∫ fc+B/2

fc−B/2
I0

(√
2P
N0

L−(f)

)
I0

(√
2P
N0

L+(f)

)
df (78)
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In Eqs. (77) and (78), the spectral envelopes at the lower and upper tones are defined by

L±(f) 4=
√
L2
c±(f) + L2

s±(f) (79)

together with

Lc±(f) 4=
∫ T

0

r(t)
√

2 cos [2π(f ± fsc)t] dt

Ls±(f) 4=
∫ T

0

r(t)
√

2 sin [2π(f ± fsc)t] dt


(80)

Discretizing the integration interval results in the approximate decision rule

G−1∑
i=0

I0

(
2
√
P

N0
L+(fi)

)
I0

(
2
√
P

N0
L−(fi)

) H1

>
≤
H0

η (81)

where the spectral envelopes required in Eq. (81) are defined analogously to Eqs. (79) and (80), with the
continuous random variable f replaced by the discrete random variable fi; i = 0, 1, · · · , G − 1. As was
the case for the single-tone result in Section V.A, the performance (ROC) of the decision rule in Eq. (81)
cannot be obtained analytically.

B. The MLR Test

Without going into great detail, it is straightforward to show (using the results of Section IV.B) that
the MLR test analogous to Eq. (58) becomes

max
f

exp
(
−PT
N0

)
exp

(
2
√
P

N0
L+(f)

)
exp

(
2
√
P

N0
L−(f)

) H1

>
≤
H0

η (82)

or, equivalently,

max
f

(L−(f) + L+(f))

H1

>
≤
H0

√
γ (83)

which has the discretized version

max
i

(L−(fi) + L+(f))

H1

>
≤
H0

√
γ (84)
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Unfortunately, the performance of the receiver that implements the decision rule of Eq. (84) also cannot
be obtained analytically.

VIII. Numerical Results

Since the performance of none of the ALR optimum decision rules can be evaluated analytically and
since the same is true for some of the MLR decision rules, a computer simulation of these metrics has
been developed to numerically evaluate such performance. The results of such simulations are described
as follows. Figure 8 is a sample illustration of the ROC for the case of a single tone with unknown phase
and frequency (as described in Section V) and a detection SNR d2 = 2PT/N0 = 6 dB. Both ALR and
MLR cases are illustrated, corresponding, respectively, to the decision rules of Eqs. (54) and (60). Also,
both the best- and worst-case input frequency scenarios are considered, corresponding, respectively, to the
cases where the actual input frequency is indeed equal to one of the G frequencies used to approximately
implement the decision rule and the case where the actual input frequency falls midway between any
two of these G frequencies. Clearly, the actual system performance corresponding to an input frequency
arbitrarily chosen in the uncertainty band will lie between these two performance bounds. We observe
from the results in Fig. 8 that the difference between best- and worst-case performance is relatively small,
as well as is the difference between the ALR (optimum) and MLR (suboptimum) decision rules. There
is a significant difference, however, between the performance for G = 10 and G = 100, indicating the
sensitivity of the performance degradation to a factor of 10 increase in frequency uncertainty. Also,
comparing Fig. 8 with the analogous curve in Fig. 2, corresponding to the case of unknown phase but
known frequency, we again see a rather significant degradation in performance when the frequency is
unknown even by only a factor of 10 relative to the observation bandwidth (reciprocal of the observation
time, T ), i.e., G = 10.
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Fig. 8.  ROC:  frequency and phase unknown (single-tone)
simulation results.

As verification of the MLR simulation results, we present in Fig. 9 the analogous analytical results
obtained from Eqs. (69) and (75). Recall that in arriving at Eq. (75) the assumption was made that
the energy spillover effect of the signal into the other frequency slots is dominated by the two adjacent
ones. Thus, ignoring edge effects, it was not necessary to average over all possible worst-case (mid-
way) input frequency positions. In the computer simulation, this assumption was not invoked, as the
input frequency was allowed to occur midway between any two adjacent frequencies. Despite this analysis
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Fig. 9.  ROC single tone, analytical MLR results:  (a) G = 10 and (b) G = 100.
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approximation, however, comparison of the results in Figs. 8 and 9 reveals excellent agreement between
analysis and simulation, i.e., the assumption of only adjacent signal energy spillover used to arrive at
Eq. (75) has been justified. Also indicated in Fig. 8 is the analytical result corresponding to known phase
and frequency (recall that this result is the same for both MLR and ALR) that allows a more direct
assessment of the performance degradation due to lack of perfect frequency knowledge.

Since the curves in Fig. 8 are drawn for a fixed value of detection SNR d2 = 2PT/N0, then assuming
that P/N0 is specified, this implies that the observation interval, T , is also held constant. Thus, changing
the value of G = BT from 10 to 100 directly translates into a change by a factor of 10 in the frequency
uncertainty regionB, which accounts for the observed degradation in performance. Another interpretation
of the numerical data can be obtained by again holding P/N0 fixed but observing the effect on system
performance of increasing T for a fixed frequency uncertainty region B. This necessitates plotting the
ROC with both d2 and G increasing linearly with T . Such a plot for the ALR decision rule with best-case
input frequency is illustrated in Fig. 10, where the ROC is plotted for values of G = 10, 20, 40, and 80 (T
increasing by a factor of 2) and corresponding values d2 = 6, 9, 12, 15 dB. To directly see the dependence
of MLR system performance on detection SNR, Fig. 11 illustrates the behavior of detection probability,
PD, versus detection SNR, d2, for a fixed false alarm probability, PF = 10−2, and values of G = 10 and
100. These curves are obtained from numerical evaluation of the analytical results in Section VI. Since
along any curve G is held fixed, one can interpret these results as keeping the frequency uncertainty band,
B, and observation time, T , fixed and observing the change in performance as P/N0 is varied.

The penalty associated with detecting a pair of subcarrier tones (each at half the total transmitted
power) as opposed to a single carrier tone (at full transmitted power) is illustrated by the numerical
results in Fig. 12. Here we plot the ROC for both the single- and double-tone cases for the ALR decision
rule with best-case input frequency and a detection SNR equal to 6 dB. The results for the single-tone
case are taken directly from Fig. 8. We observe a significant performance penalty associated with using a
double-tone detection scheme. Figure 13 illustrates for the double-tone detection scheme results analogous
to Fig. 10 for the single-tone detection scheme. Here again, by comparing the two figures, we observe a
significant penalty associated with using a pair of equal half-power subcarrier tones rather than a single
tone at full power.
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Fig. 10. ROC simulation results:  frequency and phase unknown
(single tone), ALR , best-case input  frequency.
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Fig. 12.  ROC:  frequency and phase unknown (single/double tone),
ALR, best-case input frequency.
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G = 80, d 2 = 15 dB
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Fig. 13.  ROC simulation results:  frequency and phase unknown
(double tone), ALR, best-case input frequency.
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Appendix

On the Independence of the Sum of Difference of Two Uniformly
Distributed Random Variables Modulo 2 π

Consider two independent random phases θA and θB that are each uniformly distributed in the semi-
closed interval [−π, π). Define the sum and difference of these two random variables by

θ′+
4= θA + θB

θ′−
4= θA − θB

 (A-1)

and the modulo 2π versions of these random variables by

θ+
4=
(
θ′+
)

mod 2π
= (θA + θB)mod 2π

θ−
4=
(
θ′−
)

mod 2π
= (θA − θB)mod 2π

 (A-2)

The probability density functions (pdf’s) of θ′+ and θ′− are triangular in the semiclosed interval [−2π, 2π),
i.e., they are the convolutions of two uniform pdf’s, whereas the pdf’s of their modulo 2π reduced versions,
θ+ and θ−, are once again uniformly distributed in [−π, π) (see Fig. A-1). We would now like to show
that θ+ and θ− are indeed independent random variables. To do this, we shall show that the conditional
pdf pθ−(θ−|θ+) satisfies pθ−(θ−|θ+) = pθ−(θ−), i.e., it is a uniform distribution in [−π, π). Similarly, it
can be shown that pθ+(θ+|θ−) = pθ+(θ+).

Let θ+ be any positive value in its region of definition, i.e., 0 ≤ θ+ ≤ π. Then, θA and θB are related
as follows:

θB =
{
−θA + θ+ − 2π, −π < θA ≤ −π + θ+

−θA + θ+, −π + θ+ ≤ θA ≤ π
(A-3)

From Eq. (A-1), we find that

θ′− =
{

2θA − θ+ + 2π, −π < θA ≤ −π + θ+

2θA − θ+, −π + θ+ ≤ θA ≤ π
(A-4)

Thus, from Eq. (A-4) and the fact that θA is uniform in the interval [−π, π), the conditional pdf pθ′−(θ′−|θ+)
appears as in Fig. A-2(a). Reducing θ′+ modulo 2π produces the conditional pdf pθ−(θ−|θ+) as illustrated
in Fig. A-2(b), i.e., a uniform distribution in the interval [−π, π) Q.E.D.

97



      

pθ' (θ 
' )±± pθ (θ )± ±

π 2π–π–2π π–π
θ ±

Fig. A-1.  The PDF of the sum and difference of (a) two uniformly distributed random variables and (b) two
uniformly distributed random variables reduced modulo 2π.
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Fig. A-2.  Conditional PDF of the sum and difference of (a) two uniformly distributed random variables
and (b) two uniformly distributed random variables reduced modulo 2π.
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