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Proper modeling of the Global Positioning System (GPS) satellite yaw attitude
is important in high-precision applications. A new model for the GPS satellite yaw
attitude is introduced that constitutes a significant improvement over the previously
available model in terms of efficiency, flexibility, and portability. The model is
described in detail, and implementation issues, including the proper estimation
strategy, are addressed. The performance of the new model is analyzed, and an
error budget is presented. This is the first self-contained description of the GPS
yaw attitude model.

I. Introduction

On June 6, 1994, the U.S. Air Force implemented a yaw bias on most Global Positioning System
(GPS) satellites. By January 1995, the implementation was extended to all the satellites except SVN 10.
The yaw bias was introduced as a way to make modeling of the yaw attitude of the GPS satellites
during shadow crossings possible [2]. The yaw attitude of a biased GPS satellite during eclipse seasons is
markedly different from the yaw attitude of a noneclipsing satellite or from that of an unbiased satellite.
The yaw attitude of the GPS satellite has a profound effect on precise applications. Mismodeling the
satellite attitude can cause decimeter-level error in the positioning of ground stations with certain GPS-
based techniques and skew media calibrations. This required the development of a special attitude model
for biased GPS satellites. In addition to the yaw bias effects, that model also corrected other mismodeling
that existed in the old model, namely, that of the “noon turn.”

The first attitude model written for the biased constellation was made freely available to the GPS
community in the form of a collection of FORTRAN routines [1]. For simplicity, this model is referred to
in this article as GYM94 (for GPS Yaw Attitude Model—94). GYM94 was implemented in JPL’s GIPSY
software and, in various forms, in other high-precision geodetic packages. The model was successfully
used within JPL’s routine processing of daily GPS orbits and ground station coordinates for the Inter-
national Global Positioning System Service (IGS). The model had some drawbacks, though. Mainly, it
was cumbersome to implement and very demanding of computer resources, namely, memory and central
processing unit (CPU) time.

In this article, we describe a new model for the GPS satellite attitude, referred to as GYM95. The
model is analytic, in contrast to the numerical nature of GYM94, which required sequential processing
in time. A time series of yaw rates estimated by the routine GPS processing at JPL will be analyzed to
demonstrate the need to estimate the yaw rates.
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II. Background

The analysis that led to the implementation of the yaw bias on GPS satellites is described in Bar-Sever
et al. [2]. A general description of the first yaw attitude model can also be found there. For completeness,
we give here a brief summary.

The nominal yaw attitude of a GPS satellite is determined by satisfying two constraints: first, that
the navigation antennas point toward the geocenter and, second, that the normal to the solar array
surface will be pointing at the Sun. To meet these two conditions, the satellite has to yaw constantly.
The resulting yaw attitude algorithm is singular at two points—the intersections of the orbit with the
Earth–Sun line. At these points, the yaw attitude is not single-valued, as any yaw angle allows optimal
view of the Sun. In the vicinity of these singular points, the yaw rate of the spacecraft, required to
keep track of the Sun, is unbounded. This singularity problem was largely ignored prior to the release of
GYM94. While this mismodeling problem could be fixed easily through the realization of a finite limit on
the spacecraft yaw rate, a bigger problem existed that could only be addressed by changing the attitude
control subsystem (ACS) on board the spacecraft. The ACS determines the yaw attitude of the satellite
by using a pair of solar sensors mounted on the solar panels. As long as the Sun is visible, the signal from
the solar sensors is a true representation of the yaw error. During shadow, in the absence of sunlight, the
output from the sensors is essentially zero and the ACS is driven in an open-loop mode by the noise in
the system. It turns out that even a small amount of noise can be enough to trigger a yaw maneuver at
maximum rate. To make it possible to model the yaw attitude of the GPS satellites, the ACS had to be
biased by a small but fixed amount. Biasing the ACS means that the Sun sensor’s signal is superposed
with another signal (the bias) equivalent to an observed yaw error of 0.5 deg (the smallest bias possible).
As a result, during periods when the Sun is observed, the satellite yaw attitude will be about 0.5 deg in
error with respect to the nominal orientation. During shadow, this bias dominates the open-loop noise
and will yaw the satellite at full rate in the direction of the bias. Upon shadow exit, the yaw attitude of
the satellite can be calculated, and the Sun recovery maneuver can also be modeled.

GYM94 accounted for the yaw bias as well as the limit on the yaw rate. It computed the satellite yaw
angle through numerical integration of a control law. Its output was a large file containing the yaw attitude
history and, optionally, partial derivatives of the yaw attitude with respect to the yaw rate parameter.
This file could later be interpolated to retrieve a yaw angle at the requested time. This process required
relatively large amounts of computer memory and CPU time. In addition, the model’s complex control
law—a simulation of the onboard attitude determination algorithm—did not allow much physical insight
into the problem and was hard to tune. To overcome all these deficiencies, the GYM95 model was created.
GYM94 was used in studies of GPS calibration for the DSN since September 1994, and the design of the
new attitude model drew on the experience accumulated with GYM94. GYM95 is simple enough to be
described by a small set of formulas, allowing easy implementation in different computing environments.
Its analytic nature, as opposed to the numerical nature of GYM94, allows queries at arbitrary time points
with great savings in computer resources. Finally, it allows more flexibility in tuning and adapting it to
the changing conditions of the GPS constellation.

III. The New Yaw Attitude Model (GYM95)

A. Overview

The yaw attitude of a GPS satellite can be divided into four regimes: nominal attitude, shadow
crossing, postshadow maneuver, and noon turn. Most of the time (and for noneclipsing satellites all the
time), the satellite is in the nominal attitude regime. The postshadow maneuver begins immediately after
emerging from the Earth’s shadow and lasts until the satellite has regained its nominal attitude. This
phase can last from 0 to 40 min. The noon-turn maneuver does not occur until the beta angle goes below
about 5 deg and can last between 0 and 40 min.

38



     

We will start by defining a few important terms in Table 1 and the notation used, and then describe the
yaw attitude during each of the four regimes, including the governing formulas. Finally, we will describe
how to tie all the regimes together into one functional model and analyze any built-in errors.

Table 1. Definition of terms.

Term Definition

Orbit midnight The point on the orbit furthest from the Sun.

Orbit noon The point on the orbit closest to the Sun.

Orbit normal The unit vector along the direction of the satellite’s angular momentum, treating
the satellite as a point mass (equals position × velocity, where the order of
the cross-product is important).

Sun vector The direction from the spacecraft to the Sun.

Beta angle The acute angle between the Sun vector and the orbit plane. It is defined as
positive if the Sun vector forms an acute angle with the orbit normal and
negative otherwise.

Orbit angle The angle formed between the spacecraft position vector and orbit midnight,
growing with the satellite’s motion.

Yaw origin A unit vector that completes the spacecraft position vector to form an
orthogonal basis for the orbit plane and is in the general direction of the
spacecraft velocity vector.

Spacecraft-fixed z-axis The direction of the GPS navigation antennas.

Nominal spacecraft-fixed x-axis A unit vector orthogonal to the spacecraft-fixed z-axis
such that it lies in the Earth–spacecraft–Sun plane and points in the general
direction of the Sun (note that this definition is not single valued when the
Earth, spacecraft, and Sun are collinear).

Spacecraft-fixed x-axis A spacecraft-fixed vector, rotating with the spacecraft, such that far
enough from orbit noon and orbit midnight, it coincides with the nominal
spacecraft-fixed x-axis. Elsewhere, it is a rotation of the nominal
spacecraft-fixed x-axis around the spacecraft-fixed z-axis.

Nominal yaw angle The angle between the nominal spacecraft-fixed x-axis and the
yaw-origin direction, restricted to be in [−180,180]. It is defined to have a sign
opposite to that of the beta angle.

Yaw angle The angle between the spacecraft-fixed x-axis and the yaw-origin direction,
restricted to be in [−180,180], also termed “actual yaw angle.”

Yaw error The difference between the yaw angle and the nominal yaw angle, restricted
to be in [−180,180].

Midnight turn The yaw maneuver the spacecraft is conducting from shadow entry until it
resumes nominal attitude sometime after shadow exit.

Noon turn The yaw maneuver the spacecraft is conducting in the vicinity of orbit noon
when the nominal yaw rate would be higher than the yaw rate the spacecraft is
able to maintain. It ends when the spacecraft resumes nominal attitude.

Spin-up/down time The time it takes for the spacecraft to spin up or down to its maximal
yaw rate. The spacecraft is spinning down when it has to reverse its yaw rate.

The notation used is as follows:

µ = orbit angle

β = beta angle

E = Earth-spacecraft-Sun angle

b = yaw bias inserted in the satellite ACS
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B = actual yaw angle induced by b

Ψ = actual yaw angle

Ψn = nominal yaw angle

t = current time, s

ti = time of shadow entry

te = time of shadow exit

tn = start time of the noon-turn maneuver

t1 = spin-up/-down time

Ψi = yaw angle upon shadow entry

Ψe = yaw angle upon shadow exit

R = maximal yaw rate of the satellite

RR = maximal yaw-rate rate of the satellite

Angle units, i.e., radians or degrees, will be implied by context. Radians will usually be used in
formulas, and degrees will usually be used in the text. FORTRAN function names are used whenever
possible with the implied FORTRAN functionality, e.g., ATAN2(a,b) is used to denote arc-tangent(a/b)
with the usual FORTRAN sign convention.

B. The Nominal Attitude Regime

The realization of the two requirements for satellite orientation mentioned above yields the following
formula for the nominal yaw angle:

Ψn = ATAN2(−TAN(β), SIN(µ)) +B(b, β, µ) (1)

where β is the beta angle, µ is the orbit angle, measured from orbit midnight in the direction of motion,
and B is the yaw bias (see below). It follows from this formula that the sign of the yaw angle is always
opposite that of the beta angle.

Ignoring the time variation of the slow-changing beta angle leads to the following formula for the
yaw rate (there are simpler formulas, but they contain removable singularities that are undesirable for
computer codes):

Ψ̇n = TAN(β)× COS(µ)× µ̇

SIN(µ)2 + TAN(β)2
+ Ḃ(b, β, µ) (2)

where µ̇ varies little in time and can safely be replaced by 0.0083 deg/s. Notice that the sign of the
nominal yaw rate is the same as the sign of the beta angle in the vicinity of orbit midnight (µ = 0).

The singularity of these two formulas when β = 0 and µ = 0, 180 is genuine and cannot be removed.

C. The Yaw Bias

Like any medicine, the yaw bias has its side effects. Outside shadow, it introduces yaw errors that
are actually larger that 0.5 deg. To fully understand this, we have to describe the ACS hardware, which
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is beyond the scope of this article. The underlying reason is that the output of the solar sensor is
proportional not to the yaw error but to its sine, and it is also proportional to the sine of the Earth–
spacecraft–Sun angle, E. So, in order to offset a bias of b deg inserted in the ACS, the satellite has to
actually yaw B deg, where B is given by:

B(b, β, µ) = B(b, E) = ASIN
0.0175× b

SIN(E)
(3)

The hardware-dependent proportionality factor is 0.0175, and the Earth–spacecraft–Sun angle, E, the
beta angle, β, and the orbit angle, µ, satisfy the following approximate relationship:

COS(E) = COS(β)× COS(µ) (4)

and E is restricted to [0,180]. Equation (3) becomes singular for E less then 0.5013 deg. This has no
effect on the actual yaw because a small value of E implies that the spacecraft is in the middle of a
midnight turn or a noon turn and is already yawing at full rate. The value of B does have a significant
effect, though, on the timing of noon-turn entry and on the yaw angle shortly before that. For example,
for E = 5 deg, which is the typical threshold value for noon-turn entry, the actual yaw bias is B ≈ 6 deg.

The bias rate, Ḃ, is given by

Ḃ(b, β, µ) = −0.0175× b× COS(E)× COS(β)× SIN(µ)× µ̇

COS(B)× SIN(E)3
(5)

The ACS bias, b, can be ±0.5 deg or 0 deg. With few exceptions, to be discussed below, the bias is always
set to b = −SIGN(0.5, β) since this selection was found to expedite the Sun recovery time after shadow
exit.

D. The Shadow-Crossing Regime

As soon as the Sun disappears from view, the yaw bias alone is steering the satellite. On most satellites,
the yaw bias has a sign opposite to that of the beta angle. To correct for the bias-induced error, the
satellite has to reverse its yaw rate upon shadow entry. For those satellites with bias of equal sign to
that of the beta angle, there is no yaw reversal. The bias is large enough to cause the satellite to yaw
at full rate until shadow exit, when the bias can be finally compensated. The yaw angle during shadow
crossing depends, therefore, on three parameters: the yaw angle upon shadow entry, Ψi, the yaw rate
upon shadow entry, Ψ̇i, and the maximal yaw rate, R. Let ti be the time of shadow entry and let t be
the current time, and define

t1 =
SIGN(R, b)− Ψ̇i

SIGN(RR, b)
(6)

to be the spin-up/-down time. Then the yaw angle during shadow crossing is given by

Ψ =
{

Ψi + Ψ̇i × (t− ti) + 0.5× SIGN(RR, b)× (t− ti)2 t < ti + t1
Ψi + Ψ̇i × t1 + 0.5× SIGN(RR, b)× t21 + SIGN(R, b)× (t− ti − t1) else

(7)

Using this formula, we avoid the singularity problem of the nominal attitude at midnight.
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E. The Postshadow Maneuver

This is the trickiest part of the yaw attitude model. The postshadow maneuver depends critically
upon the yaw angle at shadow exit. The ACS is designed to reacquire the Sun in the fastest way possible.
Upon shadow exit, the ACS has two options: One is to continue yawing at the same rate until the nominal
attitude is resumed; the second is to reverse the yaw rate and yaw at full rate until the nominal attitude
is resumed. In this model, we assume that the decision is based on the difference between the actual
yaw angle and the nominal yaw angle upon shadow exit, and we denote this difference by D. If te is the
shadow-exit time, then

D = Ψn(te)−Ψ(te)−NINT
(

Ψn(te)−Ψ(te)
360

)
× 360 (8)

and the yaw rate during the postshadow maneuver will be SIGN(R,D).

Given the yaw angle upon shadow exit, the yaw rate upon shadow exit, SIGN(R, b), and the yaw rate
during the postshadow maneuver, we can compute the actual yaw angle during the postshadow maneuver
by using Eq. (7) with the appropriate substitutions. This yields

t1 =
SIGN(R,D)− SIGN(R, b)

SIGN(RR,D)
(9)

Ψ =
{

Ψ(te) + SIGN(R, b)× (t− te) + 0.5× SIGN(RR,D)× (t− te)2 t < te + t1
Ψ(te) + SIGN(R, b)× t1 + 0.5× SIGN(RR,D)× t21 + SIGN(R,D)× (t− te − t1) else

(10)
The postshadow maneuver ends when the actual yaw attitude, derived from Eq. (10), becomes equal to
the nominal yaw attitude. The time of this occurrence is computed in GYM95 by an iterative process
that brackets the root of the equation Ψ(t) = Ψn(t), where the time dependence of Ψn(t) is introduced
by substituting µ = µe + 0.0083× (t− te) in Eq. (1). This equation can be solved as soon as the satellite
emerges from shadow. Once the time of resuming nominal yaw is reached, the satellite switches back to
that regime.

F. The Noon-Turn Regime

The noon-turn regime starts in the vicinity of orbit noon, when the nominal yaw rate reaches its
maximal allowed value, and ends when the actual yaw attitude catches up with the nominal regime.
First, we have to identify the starting point, and this can be done by finding the root, tn, of the equation
Ψ̇n(t) = −SIGN(R, β), where Ψ̇n(t) is the nominal yaw rate from Eq. (2). After the start of the noon
turn, the yaw angle is governed by Eq. (7), again with the proper substitutions. This yields

Ψ = Ψn(tn)− SIGN(R, β)× (t− tn) (11)

The end time is found by the same procedure that is used to find the end time of the postshadow
maneuver.

G. The Complete Model

Satellite position and velocity, as well as the timing of shadow crossings, are required inputs to GYM95.
The model is able to bootstrap, though, if these input values are unavailable far enough into the past.
For example, if the satellite is potentially in the postshadow regime upon first query, there is a need to
know the shadow-entry time so that all the inputs to Eqs. (9) and (10) be known. If this shadow-entry
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time is missing from the input, the model can compute it approximately, as well as the shadow-exit time.
Once all the timing information is available, yaw angle queries can be made at arbitrary time points. The
model will decide the relevant yaw regime and compute the yaw angle using the correct formula. Given
the above formulas, it is an easy matter to compute the partials of the yaw angle with respect to any
parameter of the problem, the most important of which is the maximal yaw rate, R.

H. Model Fidelity

The fidelity of the model is a measure of how accurately it describes the true behavior of the satellite.
This is hard to measure because there is no high-quality telemetry from the satellite and because the
estimated value of the main model parameter, namely, the yaw rate, depends on many other factors beside
the attitude model itself: data, estimation strategy, and other models for the orbit and the radiometric
measurements. Nevertheless, based on the experience accumulated thus far with this model and its
predecessor, GYM94, it is possible to come up with an educated guess of the inaccuracy of GYM95.

The nominal attitude regime is believed to be very accurate. The only source of error is mispointing
of the satellite, which is poorly understood and relatively small (of the order of 1 deg around the pitch,
yaw, and roll axes). Compensations for the dynamic effect of this error source are discussed in [3] and
[4], where they are treated, properly, within the context of the solar pressure model.

Modeling the midnight turn accurately is difficult. Inherent uncertainties like the exact shadow-entry
and -exit times are a constant error source. Inaccuracies in shadow-entry time are more important than
inaccuracies in shadow-exit time because errors in the former are propagated by the model throughout the
midnight-turn maneuver. In contrast, error in the shadow-exit time will affect the postshadow maneuver
only. Either way, the inaccuracy will be manifested through a constant error in the yaw angle, something
that can be partially compensated through the estimation of the yaw rate. The length of the penumbra
region is usually about 60 s. Sometime during this period, the yaw bias kicks in. GYM95 puts that time
midway into penumbra. The maximum timing error is, therefore, less than 30 s. A worst-case scenario,
ignoring the short spin-up/-down period and using a yaw rate of 0.13 deg/s, will give rise to a constant
yaw error of 30 × 0.13 ≈ 4 deg throughout the midnight turn. A more realistic estimate is 3 deg, even
before applying yaw rate compensation, after which the rms error will remain the same, but the mean is
expected to vanish. Another error source is the uncertainty in the value of the maximal yaw-rate rate,
RR. This parameter is weakly observable and, therefore, hard to estimate. The nominal value used in
GYM95 is 0.00165 deg/s2 for Block IIA satellites and 0.0018 deg/s2 for Block II satellites, and it should
be at least 70-percent accurate. The long-term effects of a yaw-rate rate error can be computed from the
second part of Eq. (7) as

Ψ(RR) =
Ψ̇i × SIGN(R, b)− 0.5× Ψ̇2

i − 0.5× SIGN(R, b)2

sign(RR, b)

A worst-case scenario assuming Ψ̇i = −SIGN(R, b) = 0.13 and 30-percent error in the yaw-rate rate would
give rise to a yaw error of about 5 deg. These assumptions also imply a very short shadow duration so
the error will not be long lasting. For long shadow events, Ψ̇i ≈ 0, and the resulting yaw error is about
1 deg. Again, this error can be partially offset by estimating the yaw rate.

The main error source for the noon turn is the timing uncertainty of the onset of the maneuver. This
uncertainty is not expected to be larger than 2 min. A 2-min error will cause a constant yaw error of about
15 deg, assuming a yaw rate of 0.13 deg/s. The relatively short duration of the noon turn diminishes
somewhat the effects of such a large error. Estimating the yaw rate will decrease the error further.

The value of the yaw rate is not considered here as an error source. Any nominal value stands to be
at least 10 percent in error (see below). Since errors due to yaw rate grow in time, this parameter must

43



   

be estimated or, alternatively, a previously estimated value should be used. For example, an error of
0.01 deg/s in the yaw rate will give rise to a 30-deg error in yaw at the end of a 50-min shadow event.

Although unlikely, errors from different sources can add up. In that case, the maximal error for each
regime is as follows: 2 deg for the nominal yaw regime, 9 deg for the midnight-turn regime, and 15 deg
for the noon-turn regime. Typical errors are expected to be less than half of these values.

IV. The Estimated Yaw Rates

As part of the implementation of the GYM models at JPL, the yaw rates of all eclipsing satellites
are estimated for every midnight turn and every noon turn. In JPL’s GIPSY software, this is done
by treating the yaw rate as a piece-wise constant parameter for each satellite. The parameter value is
allowed to change twice per revolution, midway between noon and midnight. Since a small error in the
yaw rate can cause a large yaw error over time and, since our a priori knowledge of the yaw rate is not
sufficiently accurate, we found it necessary to iterate on the yaw rate value. JPL routinely publishes the
final estimates for the yaw rates as daily text files. Unfortunately, due to a software bug, the archived yaw
rates for dates prior to February 16, 1995, were in error. This leaves a period of about 2 months when the
estimated yaw rates are available. Figure 1 depicts the estimated yaw rates for each eclipsing satellite,
for each midnight turn, and for each noon turn, from February 16 to April 26, 1995. The accuracy
of the estimates depends on the amount of data available during each maneuver and this, in turn, is
proportional to the duration of the maneuver. The longer the maneuver, the better the estimate. The
effect of a reduced estimation accuracy during short maneuvers is mitigated by the fact that the resulting
yaw error is also proportional to the duration of the maneuver. For long maneuvers, e.g., a midnight turn
at the middle of the eclipse season, the estimates are good to 0.002 deg/s, which leads to a maximal yaw
error of about 6 deg. A similar error level is expected for short maneuvers. Noon turns occur only during
the middle part of the eclipse season. In Fig. 1, they can be distinguished from midnight-turn rates by the
larger formal error associated with them, since they are typically short events of 15- to 30-min duration.
As a result, the scatter of the noon-turn rates is larger than that of the midnight-turn rates. Toward
the edges of the eclipse season, the quality of the yaw rate estimates drops, again because of the short
duration of the shadow events. The most striking feature in Fig. 1 is the discontinuity of the estimated
yaw rates in the middle of the eclipse season, corresponding to the beta angle crossing zero. No plausible
explanation is currently available for this jump. SVN 29 is the only satellite that does not have a jump
discontinuity; this is also the only satellite that does not undergo a bias switch in the middle of the eclipse
season. SVN 31 is the only satellite with a jump from high yaw rates to low yaw rates as the beta angle
transitions from positive to negative. There is nothing otherwise special about SVN 31. The ratio of the
high yaw-rate values to the low yaw-rate values is about 1.3 for all satellites.

Within each half of the eclipse season, the midnight yaw rates are fairly constant, varying by 10 percent
or less. The noon-turn yaw rates seem to be more variable. This is not only a consequence of the weak
observability but also of the fact that the spacecraft is subject to a varying level of external torque during
the noon turn as the eclipse season progresses.

The modeling of the postshadow maneuver is a problem for which a satisfactory solution has not
yet been found. The source of the problem is that the presence of the postshadow regime makes the
estimation of the yaw rate into a nonlinear problem. There is always a critical value of the yaw rate
such that, for higher values, the spacecraft will reverse its yaw upon shadow exit and, for lower values,
the spacecraft will retain its yaw rate until the end of the midnight turn. If this critical value falls in
the range of feasible yaw rates—which it often does—it becomes very hard to figure out what kind of
maneuver the satellite is doing upon shadow exit. To avoid this postshadow ambiguity, we have been
rejecting measurement data from shadow exit until about 30 min thereafter.
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Fig. 1.  Estimated yaw rates with their formal errors versus GPS week for coplanar (C-plane) (a) SVN 28,
(b) SVN 31, (c) SVN 36, and (d) SVN 37 and for F-plane (e) SVN 18, (f) SVN 26, (g) SVN 29, and (h) SVN 32.
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