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An array feed combining system for the recovery of signal-to-noise ratio (SNR)
loss due to antenna reflector deformation has been implemented and is currently be-
ing evaluated on the Jet Propulsion Laboratory 34-m DSS-13 antenna. The current
signal-combining system operates under the assumption that the white Gaussian
noise processes in the received signals from different array elements are mutually
uncorrelated. However, experimental data at DSS 13 indicate that these noise pro-
cesses are indeed mutually correlated. The objective of this work is to develop a
signal-combining system optimized to account for the mutual correlations between
these noise processes. The set of optimum combining weight coefficients that maxi-
mizes the combined signal SNR in the correlated noises environment is determined.
These optimum weights depend on unknown signal and noise covariance parameters.
A maximum-likelihood approach is developed to estimate these unknown parame-
ters to obtain estimates of the optimum weight coefficients based on residual carrier
signal samples. The actual combined signal SNR using the estimated weight coef-
ficients is derived and shown to converge to the maximum achievable SNR as the
number of signal samples increases. These results are also verified by simulation.
A numerical example shows a significant improvement in SNR performance can be
obtained, especially when the amount of correlation increases.

I. Introduction

An array feed-combining system has been proposed for the recovery of signal-to-noise ratio (SNR)
losses caused by large antenna reflector deformations at Ka-band (32-GHz) frequencies in the Deep
Space Network [1]. In this system, a focal plane feed array is used to collect the defocused signal fields
that result from these deformations. All the signal power captured by the feed array is then recovered
using real-time signal-processing and signal-combining techniques. The optimum combiner weights that
maximize the combined signal SNR were derived in [1] under the assumption that the white Gaussian
noise processes in the received signals from different array elements are mutually uncorrelated. These
optimum weights depend on unknown signal and noise parameters that need to be estimated. The work in
[1] proposed to estimate the optimum weights from the observed residual carrier received-signal samples
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using a maximum-likelihood (ML) approach. The actual combined-signal SNR in an uncorrelated noises
environment when the estimated weights are used in place of the optimum weight coefficients was also
derived in [1].

A seven-element array feed combiner system is currently being evaluated at the JPL DSS-13 34-m
antenna. Although the work in [1] assumed mutually uncorrelated noise processes, experimental data [2]
indicate that the noise processes in the received signals from different feed elements are indeed correlated,
with correlation coefficients of the order of 0.01 under clear sky conditions. Since the noise in each of
the array feed element signals consists of receiver white noise plus noise due to background radiation, it
has been conjectured that this small correlation is caused by near-field atmospheric background noise.
Recent data gathered at DSS 13 in more adverse weather conditions, however, indicate both increases
and decreases in the observed amount of correlation. This experimental work is still in progress. Larger
correlations may also result from undesired radiation source emissions gathered by the antenna side lobes.
Moreover, our recent work [5] has shown that the array feed combining system derived in [1], which is
suboptimal in the correlated noises environment, actually can have a better performance in the presence
of correlated noises. Therefore, it is important to develop optimum signal-combining techniques that
account for the mutual correlation between the noises in the signals from different array elements. That
is the objective of this work.

As a first step towards this objective, in Section II we provide a derivation of the set of optimum
combining weight coefficients that maximizes the combined-signal SNR in this correlated noises environ-
ment. These optimum weights depend on unknown signal amplitude and phase parameters as well as
noise variance and correlation parameters. An ML approach is then developed in Section III to estimate
these unknown parameters and arrive at an ML estimate of the optimum weight coefficients based on
residual carrier received-signal samples. The actual combined-signal SNR is derived in Section IV when
the estimated weights are used in place of the optimum weights, with the details given in Appendices A
and B. The SNR performance is shown to converge to the maximum achievable SNR as the number of
signal samples used in the estimates increases. These results are also verified by simulation. Numerical
examples are given in Section V with a particular choice of noise covariance matrix and signal parame-
ters and show a significant improvement in SNR performance compared to the previous signal-combining
system developed in [1], especially when the amount of correlation increases.

II. Array Feed Signals and Optimal Combining Weights

Consider a K-element array and the NASA Deep Space Network standard residual carrier modulation
with binary phase shift keyed (PSK) modulated square-wave subcarrier [4]. The received signal from each
array element is downconverted to baseband and sampled. Similar to the combining system proposed in
[1], only the residual carrier portion of the received signal spectrum will be used to estimate the unknown
parameters in the combiner weights. The full-spectrum modulated signals from the array elements, which
contain both the modulated sidebands as well as the residual carrier spectrum, are subsequently combined.
As in [1], assume that the higher bandwidth primitive baseband signal samples are lowpass filtered by
averaging successive blocks of MB samples to yield a full-spectrum signal stream B for each array element.
Additive white Gaussian noise is assumed to be present in the primitive baseband signal sequences from
each of the array elements. The white Gaussian noises in the primitive baseband samples from different
array elements are assumed to be mutually correlated. Specifically, the noise samples corresponding to
different array elements are assumed to be mutually correlated at any given time instant, but uncorrelated
at different time instants. Let

yk(iB) = Vk[cos δ + js(iB) sin δ] + nk(iB), iB = 1, 2, · · · (1)

denote the stream B signal samples from the kth array element. The complex signal parameters Vk, 1 ≤
k ≤ K, represent the unknown signal amplitude and phase parameters induced by the antenna reflector
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deformation. Moreover, δ is the modulation index, s(iB) = ±1 is the transmitted data, and {nk(iB)}
is the zero-mean white Gaussian noise corruption in the stream B signal samples from the kth array
element. The primitive baseband signal samples are also more narrowly lowpass filtered by averaging
successive blocks of MA samples to yield a residual carrier signal stream A for each array element.
Clearly, MA > MB and η = MA/MB is the ratio of the bandwidth of stream B to stream A. Let

uk(iA) = Vk cos δ +mk(iA), iA = 1, 2, · · · (2)

denote the stream A signal samples from the kth array element. Here {mk(iA)} is the zero-mean white
Gaussian noise corruption in the stream A signal samples from the kth array element. Let A∗, AT ,
and A† denote the complex conjugate, the transpose, and the complex conjugate transpose of the
matrix A, respectively. In order to specify the correlations between the white noise sequences cor-
responding to different array elements, consider the noise vectors n(iB) = (n1(iB) · · ·nK(iB))T and
m(iA) = (m1(iA) · · ·mK(iA))T . Then {n(iB)} and {m(iA)} are each sequences of independent identi-
cally distributed (i.i.d.) zero-mean complex Gaussian random vectors of dimension K. The respective
covariance matrices RB = {rBkj} = E[n(iB)n(iB)†] and RA = {rAkj} = E[m(iA)m(iA)†] of n(iB) and
m(iA) specify the mutual correlations between the white noises in the signal streams from different array
elements. For example, rBkj is the correlation between the noise variables nk(iB) and nj(iB). Because
of the different averaging rates in streams A and B on the primitive baseband signals, it follows that
RB = ηRA. Finally, these different averaging rates also imply that m(iA) is independent of n(iB) pro-
vided that iA < iB and the samples averaged to yield m(iA) occurred prior to the samples averaged to
yield n(iB).

Application of the complex combining-weight coefficients Wk, 1 ≤ k ≤ K yields the combiner output
sequence zc(iB) = sc(iB) + nc(iB), where

sc(iB) =
K∑
k=1

WkVke
js(iB)δ (3)

and

nc(iB) =
K∑
k=1

Wknk(iB) (4)

are the signal and noise components, respectively. Define W = (W1 · · ·WK)T to be the vector of
combining-weight coefficients. The objective is to determine the optimum weight vector W that maxi-
mizes the SNR of the combiner output defined by

γ(W ) =
|E[zc(iB)]|2
Var[zc(iB)]

=
|sc(iB)|2

Var[nc(iB)]
(5)

The optimum weight vector and the maximum achievable SNR have been derived previously in [3]. For
the sake of completeness, we provide a derivation below that is slightly different from that in [3]. Define
V = (V1 · · ·VK)T to be the vector of complex signal parameters. Then, from Eqs. (3) and (4), we have
|sc(iB)|2 = |WTV |2 and Var[nc(iB)] = WTRBW

∗, substitution of which in Eq. (5) yields

γ(W ) =
|WTV |2

WTRBW
∗ (6)
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Since RB is a positive definite Hermitian matrix, there is a unitary matrix Q such that

RB = Q†D2Q (7)

where D is a real-valued K × K diagonal matrix with the kth diagonal term given by
√
rBkk. Using

Eq. (7), we have

WTRBW
∗ =

(
WTQ†D

) (
DQW ∗

)
=
(
DQW ∗

)† (
DQW ∗

)
= ||DQW ∗||2 (8)

Moreover, since Q is the inverse of the matrix Q†,

[(
DQ∗

)T ]−1

=
[
Q†D

]−1

= D−1Q (9)

Hence, by using Eq. (9), we can write

WTV = WT
(
DQ∗

)T [(
DQ∗

)T ]−1

V

=
(
DQW ∗

)† (
D−1QV

)
(10)

So substituting Eqs. (8) and (10) in Eq. (6) and applying the Schwartz inequality gets

γ(W ) =
|
(
DQW ∗

)† (
D−1QV

)
|2

||DQW ∗||2

≤
||DQW ∗||2||D−1QV ||2

||DQW ∗||2

= ||D−1QV ||2 4= γMAX (11)

Moreover, equality holds in Eq. (11) if and only if for some complex-valued constant α, DQW ∗ =
α
(
D−1QV

)
. So, by using Eq. (7), the set of optimum weight vectors WOPT that achieves γ(WOPT ) =

γMAX is given by

WOPT = α
(
Q†D−2Q

)∗
V ∗ = α (R∗B)−1

V ∗ =
α

η
(R∗A)−1

V ∗ (12)

where α is an arbitrary complex-valued constant. Moreover, it follows from Eqs. (7) and (11) that the
optimum SNR γMAX can be written as

36



γMAX =
(
D−1QV

)† (
D−1QV

)
= V †R−1

B V (13)

Note that, in the uncorrelated noises case, R−1
B = D−2. So the set of optimum weight vectors, Eq. (12),

in this case is given by WOPT = αD−2V ∗, and the optimum SNR is given by

γMAX = ||D−1V ||2 =
K∑
k=1

|Vk|2

rBkk

4= γ (14)

which is the sum of the array element output SNRs. These results for the uncorrelated noises case agree
with previous results derived in [1].

III. Parameter Estimation

The signal parameter vector V and the noise covariance matrix RA are not known and need to be
estimated to obtain an estimate of one of the optimum weight vectors,WOPT , given by Eq. (12). Assuming
that these unknown parameters are not random, we propose to use ML estimates based on the stream A
residual carrier-signal vector samples {u(iA)}, where u(iA) = (u1(iA) · · ·uK(iA))T . Instead of estimating
V directly, consider estimating X = V cos δ. Note from Eq. (2) that {u(iA)} is an i.i.d. sequence
of complex Gaussian random vectors with mean X and covariance matrix RA. It then follows from
multivariate statistical analysis [6,7] that, based on observations {u(iA − 1), · · · , u(iA − L)},

X̂ML(iA) =
1
L

iA−1∑
l=iA−L

u(l) (15)

and

R̂A,ML(iA) =
1
L

iA−1∑
l=iA−L

[
u(l)− X̂ML(iA)

] [
u(l)− X̂ML(iA)

]†
(16)

are the respective ML estimates of X and RA. By the invariant property of ML estimators,

V̂ML(iA) =
1

cos δ
X̂ML(iA) (17)

is then the ML estimate of V and

ŴOPT (iA) =
α

η

(
R̂
∗
A,ML(iA)

)−1

V̂
∗
ML(iA) (18)

is the ML estimate of WOPT given by Eq. (12).

It is well known [6,7] that X̂ML(iA) is a complex Gaussian random vector with mean X and covariance
matrix (1/L)RA. Furthermore, X̂ML(iA) and R̂ML(iA) are statistically independent, and LR̂ML(iA) has
the same distribution as the random matrix

37



A =
L−1∑
i=1

ZiZ
†
i (19)

where Zi is a sequence of i.i.d. zero-mean complex Gaussian random vectors with covariance matrix RA.
This type of distribution is called a complex Wishart distribution with parameters RA and (L−1), and A
in Eq. (19) is said to have a CW (RA, L−1) distribution [7]. It has been shown in [8] that, for L > K+1,

E[A−1] =
1

(L− 1)−KR−1
A (20)

for a K ×K CW (RA, L− 1) distributed random matrix A. Since (A∗)−1 = (A−1)∗, it then follows from
using the property of Eq. (20) for the complex Wishart matrix LR̂ML(iA) along with Eqs. (12), (17), and
(18) that, for L > K + 1,

E
[
ŴOPT (iA)

]
=
α

η
E
[(
R̂
∗
A,ML(iA)

)−1
]

E
[
V̂
∗
ML(iA)

]

=
αL

η(L−K − 1)
R∗A
−1
V ∗

=
L

L−K − 1
WOPT (21)

Hence, the ML estimate ŴOPT (iA) of the optimum weight vector WOPT is actually a biased estimate.
This is not a problem, since it is clear from Eq. (12) that the optimum weight vectors are not unique and
any complex scaled version of an optimum weight vector is also optimum. So the constant α in Eq. (18)
can be set arbitrarily. We shall set α = (L−K − 1)/L for the purpose of normalization and also assume
that L > K + 1. The ML estimate of the optimum weight vector that will be used here is, therefore,

ŴML(iA) =
L−K − 1

Lη

(
R̂
∗
A,ML(iA)

)−1

V̂
∗
ML(iA)

=
L−K − 1
Lη cos δ

(
R̂
∗
A,ML(iA)

)−1

X̂
∗
ML(iA) (22)

with mean

WO
4= E

[
ŴML(iA)

]
=

1
η
R∗A
−1
V ∗ = R∗B

−1
V ∗ (23)

that is also an optimum weight vector.

Note that V̂ML(iA) and R̂A,ML(iA) are both consistent estimates, i.e., they both converge with prob-
ability one to their respective expected values V and RA in the limit as L tends to infinity. So it follows
that ŴML(iA) also converges with probability one to the optimum weight vector WO in the limit as the
number L of samples tends to infinity. The analysis in Appendix C shows that this convergence also holds
in the mean-square sense. These properties indicate that we may expect the actual combiner output SNR
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using the estimated weight vector ŴML(iA) to also converge to the maximum achievable SNR γMAX as
L tends to infinity. That result will be shown in the next section, which derives an explicit expression for
the actual combiner output SNR for finite L.

As in [1], these weight coefficient estimates are used in a sliding-window structure to produce the
following combiner output sequence:

zc(iB) = Ŵ
T

ML(̃iA)y(iB) (24)

where ĩA is the largest integer less than iB , so that the residual carrier-signal vector samples{
u
(̃
iA − 1

)
, · · · , u

(̃
iA − L

)}
used for estimating ŴML

(̃
iA
)

occur before the full-spectrum signal vector
sample y(iB) = (y1(iB), · · · , yK(iB))T . This ensures that the noise vector n(iB) in y(iB) is statistically
independent of

{
u
(̃
iA − 1

)
, · · · , u

(̃
iA − L

)}
, and hence the statistical independence between ŴML

(̃
iA
)

and n(iB).

IV. SNR Performance Analysis

The combiner output, Eq. (24), can be written as

zc(iB) = sc(iB) + nc(iB) (25)

where

sc(iB) = Ŵ
T

ML

(̃
iA
)
V ejs(iB)δ (26)

and

nc(iB) = Ŵ
T

ML

(̃
iA
)
n(iB) (27)

are the signal and noise components, respectively. In the following analysis, V , RB , and s(iB) are assumed
to be nonrandom parameters. As noted above, ŴML

(̃
iA
)

and n(iB) are statistically independent. Since
the components of n(iB) are all of zero mean, it follows from Eqs. (26) and (27) that nc(iB) also has zero
mean and moreover is uncorrelated with sc(iB). Thus, it follows from Eq. (25) that the actual SNR γML

of the combiner output can be written as

γML =
| E[zc(iB)] |2

Var[z(iB)]
=

| E[sc(iB)] |2

Var[sc(iB)] + Var[nc(iB)]
(28)

Now, it follows from Eqs. (26) and (23) that

| E[sc(iB)] |2 = | E[Ŵ
T

ML(̃iA)]V |
2

= |WT
OV |

2
= | V †R−1

B V |2 = γ2
MAX (29)

where γMAX is the maximum achievable SNR given by Eq. (13). The explicit expression, Eq. (A-9),
for Var[sc(iB)] is derived in Appendix A. Moreover, the derivation in Appendix B yields the expression,
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Eq. (B-5), for Var [nc(iB)]. So, by using Eqs. (29), (A-9), and (B-5) in Eq. (28), one arrives at the
following expression for the actual combiner output SNR performance:

γML =
γ2
MAX

γMAX(1 + C1) + C2
(30)

where

C1 =
LK −K2 −K + 1

(L−K)(L−K − 2)
+

(L−K − 1)(L− 1)
(L−K)(L−K − 2)

(
1

Lηcos2δ

)
+

1
L−K − 2

γMAX

C2 =
K(L− 1)(L−K − 1)
L(L−K)(L−K − 2)

1
ηcos2δ

(31)

Since both C1 and C2 converge to zero as L tends to infinity, it follows from Eq. (30) that the actual
combiner output SNR γML converges to the maximum possible achievable SNR, γMAX , as the number
of signal samples, L, used in the estimates tends to infinity.

V. Numerical Example

We consider here a numerical example using aK = 7 element array feed. In this example, a modulation
index, δ = 80 deg, and a primitive sample period of T0 = 2.5 × 10−8 s are assumed. The full-spectrum
modulation signal is assumed to be of bandwidth 2 × 106 Hz, which yields MB = 20. Moreover, the
ratio of the full-spectrum bandwidth to the residual-carrier bandwidth is η = MA/MB = 200. A nominal
PT /N0 of 65 dB-Hz is considered with a corresponding γ = (PT /N0)MBT0 (recall that γ, which is given by
Eq. (14), is the sum of the array element SNRs). The white Gaussian noise processes in the received signals
from different array feed elements are assumed to be correlated. Moreover, the correlation magnitudes
are assumed to be inversely proportional to the distances between feed centers (this assumption has not
been verified for the array feed system at DSS 13). In the numerical examples below, the following noise
covariance matrix is considered:

RB =



1 ρmaxe
−j( 4π

7 +φ) ρmaxe
−j( 10π

7 +φ) ρmaxe
−j( 6π

7 +φ) ρmaxe
−j( 2π

7 +φ) ρmaxe
−j( 12π

7 +φ) ρmaxe
−j( 8π

7 +φ)

ρmaxe
j( 4π

7 +φ) 1 ρmaxe
−j( 6π

7 +φ) ρmax√
3
e−j(

2π
7 +φ) ρmax

2 ej(
2π
7 −φ) ρmax√

3
e−j(

8π
7 +φ) ρmaxe

−j( 4π
7 +φ)

ρmaxe
j( 10π

7 +φ) ρmaxe
j( 6π

7 +φ) 1 ρmaxe
j( 4π

7 −φ) ρmax√
3
ej(

8π
7 −φ) ρmax

2 e−j(
2π
7 +φ) ρmax√

3
ej(

2π
7 −φ)

ρmaxe
j( 6π

7 +φ) ρmax√
3
ej(

2π
7 +φ) ρmaxe

−j( 4π
7 −φ) 1 ρmaxe

j( 4π
7 −φ) ρmax√

3
e−j(

6π
7 +φ) ρmax

2 e−j(
2π
7 +φ)

ρmaxe
j( 2π

7 +φ) ρmax
2 e−j(

2π
7 −φ) ρmax√

3
e−j(

8π
7 −φ) ρmaxe

−j( 4π
7 −φ) 1 ρmaxe

−j( 10π
7 +φ) ρmax√

3
e−j(

6π
7 +φ)

ρmaxe
j( 12π

7 +φ) ρmax√
3
ej(

8π
7 +φ) ρmax

2 ej(
2π
7 +φ) ρmax√

3
ej(

6π
7 +φ) ρmaxe

j( 10π
7 +φ) 1 ρmaxe

j( 4π
7 −φ)

ρmaxe
j( 8π

7 +φ) ρmaxe
j( 4π

7 +φ) ρmax√
3
e−j(

2π
7 −φ) ρmax

2 ej(
2π
7 +φ) ρmax√

3
ej(

6π
7 +φ) ρmaxe

−j( 4π
7 −φ) 1


(32)

Figure 1 shows the K = 7 element feed array geometry and the relative distances between feed centers.
The main feed is labeled feed 1 and is surrounded by the six others. In the correlation matrix, Eq. (32),
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Fig. 1.  Feed array geometry
for K = 7 feeds.

the noise power in the feed-element stream B received signal samples are all assumed to be equal and
normalized to one (rBkk = 1 for all k). The maximum possible noise correlation (and also correlation
coefficient) magnitude is denoted by ρmax. The corresponding noise correlation magnitudes in this matrix
are identical and reflect an inverse dependence on distances between feed centers. The noise correlation
magnitudes between nearest neighbor feed pairs are equal to the maximum correlation magnitude ρmax
(for example, between the main feed, feed 1, and any of the outer feeds). As can be seen from Fig. 1,
the next nearest neighbor feed pairs (for example, feed 2 and feed 4) are of a distance equal to

√
3 times

the distance between nearest neighbor feed pairs, and hence have a noise correlation magnitude equal to
ρmax/

√
3. Finally, the furthest feed pairs (for example, feed 2 and feed 5) are of a distance equal to twice

the distance between closest feed pairs, and so have a noise correlation magnitude equal to ρmax/2. The
parameter φ in Eq. (32) specifies the noise correlation phases. The rationale for assigning these phases
will be described below. Since the noise power in each feed element is equal to one, the sum of the feed
element SNRs is equal to the total received power, and so γ = PT . For the complex signal parameters
vector, V , we shall use

V =
[√
γβ
√
γ (1−β)

6 ej
4π
7

√
γ (1−β)

6 ej
10π
7

√
γ (1−β)

6 ej
6π
7

√
γ (1−β)

6 ej
2π
7

√
γ (1−β)

6 ej
12π
7

√
γ (1−β)

6 ej
8π
7

]T
(33)

where 0 ≤ β ≤ 1 represents the fraction of total received signal power in the main antenna feed (feed 1)
as defined in [9]. The remaining total received signal power is then evenly distributed among the other
six feed elements (this assumption does not appear to be generally valid for severely distorted antenna
reflectors). The signal phases in Eq. (33) were chosen arbitrarily. The parameter φ in Eq. (32) specifies
the relation between the noise correlation phases and the signal parameter phases as follows: Let Vk
denote the kth component of the vector V given by Eq. (33). Then for k > j, φ = [phase of rBkj ]
− [(phase of Vk) − (phase of Vj)]. Moreover, since RB is a Hemitian matrix, −φ = [phase of rBkj ]
− [(phase of Vk) − (phase of Vj)] when j > k. That is, φ represents the difference between the phase of
the noise correlations and the phase differences between the corresponding signal components in V . The
significance of this will be discussed below.

In the numerical examples below, the signal combining scheme given by Eq. (24) will be referred
to as the correlated noises algorithm. The signal-combining scheme from [1] will, on the other hand, be
referred to as the uncorrelated noises algorithm. A comparison of the SNR performance of these two signal
combining schemes will be made below, assuming the noise covariance matrix given by Eq. (32) and the
signal parameter vector given by Eq. (33). Our previous work in [5] determined the SNR performance of
the uncorrelated noises algorithm in the environment where the noise processes in the feed element received
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signals are indeed correlated. For a given signal vector V and set of noise correlation magnitudes, the
results in [5] show that the best-case performance of the uncorrelated noises algorithm occurs when each
of the noise correlations between feed pairs has a phase that is exactly 180 deg from the phase difference
between the corresponding signal components in V . For the correlation matrix, Eq. (32), this “best case”
scenario for the uncorrelated noises algorithm occurs when the parameter φ = 180 deg. Moreover, the
worst-case performance was shown in [5] to occur when each of the noise correlations between feed pairs
has a phase that is exactly equal to the phase difference between the corresponding signal components in
V . This “worst-case” scenario for the uncorrelated noises algorithm occurs when the parameter φ = 0 deg
for the correlation matrix, Eq. (32). The numerical examples below will consider these two extreme cases
only. The performance comparisons between these two algorithms can then be made under both the
most-favorable and the least-favorable situations for the uncorrelated noises algorithm.

The SNR performances will be compared in terms of the combining gain, which is the ratio of the
actual SNR performance to the sum of the SNRs of the array feed element received signals (γML/γ
for the correlated noises algorithm). Note that γ is also the maximum achievable SNR in the uncor-
related noises environment. Hence, the combining gain represents the SNR gain relative to the best
possible performance in the uncorrelated noises environment. We shall, therefore, refer to an SNR
gain when the combining gain is positive (in dB) and to an SNR loss otherwise. The SNR perfor-
mance analysis given in Section IV showed that the combining gain γML/γ of the correlated noises
algorithm converges to the maximum possible combining gain, γMAX/γ, in the limit as the number of
samples, L, approaches infinity. Figure 2 plots this maximum possible combining gain as the phase
parameter φ in Eq. (32) is varied between 0 and 180 deg for values of ρmax equal to 0.1, 0.15, and
0.2, and when β = 0.7. These results show that the best- and worst-case scenarios for the correlated
noises algorithm are the same as those for the uncorrelated noises algorithm. These results show that

 ρMAX = 0.10

 ρMAX = 0.15

 ρMAX = 0.20

PHASE φ

Fig. 2.  Maximum possible combining gain versus φ with β = 0.7
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the maximum possible combining gain is positive for a majority of the φ phase values. Moreover, the
maximum possible combining gains increase with increasing ρmax. Simulations were also performed to
validate the analytical result, Eq. (30), that yields the combining gain for the correlated noises algorithm.
Table 1 compares the simulated combining gain to the analytical result for the best-case RB matrix (with
φ = 180 deg) at various values of ρmax and L. Table 2 displays the corresponding comparisons for the
worst-case RB (with φ = 0 deg). The simulated combining gain from these two tables can be seen to be
within 3 percent of the analytical results. This appears to validate the analysis.

Table 1. Correlated algorithm simulated
combining gain for best-case RB .

SNR Gain, dB

L ρmax Simulation Analytical

500 0.050 0.85896 0.80340

500 0.100 2.24048 2.17891

500 0.150 4.75655 4.67706

500 0.175 7.25759 7.14633

500 0.200 15.06133 14.60054

5000 0.050 0.88286 0.87982

5000 0.100 2.26456 2.25971

5000 0.150 4.78108 4.77260

5000 0.175 7.28267 7.26961

5000 0.200 15.08713 15.03570

106 0.050 0.86770 0.88821

106 0.100 2.24674 2.26859

106 0.150 4.76168 4.78312

106 0.175 7.26309 7.28324

106 0.200 15.06514 15.08578

In Fig. 3, the combining gains of both algorithms are plotted versus the number of samples, L, for
β = 0.7 (70 percent of the power in the main feed), using the best-case RB and with ρmax having values of
0.05, 0.1, and 0.15. We notice that for a fixed ρmax, the correlated noises algorithm (CNA in the figures)
actually has a smaller combining gain than the uncorrelated noises algorithm (UNA in the figures) for
small values of L below a threshold value. In the examples considered, this threshold value increases
with decreasing ρmax and is always less than about L = 500. Note that although the ML estimator is
asymptotically optimal as L → ∞, it is not necessarily the best estimator for small values of L. Hence,
the correlated noises algorithm may not have the best possible performance at small values of L. The
convergence of the combining gain to the optimum theoretically achievable value was proved in the last
section. These examples show that convergence to within 0.1 dB of the limiting value occurs at about
L = 1000 samples. Figure 4 shows the respective combining gains as a function of β, the fraction of total
received signal power in the main feed, for L = 5000 samples and values of ρmax equal to 0.05, 0.1, 0.15,
and 0.2. We can see that the performance of the correlated noises algorithm is much less sensitive to β in
this example than that of the uncorrelated noises algorithm. The performance superiority of the corre-
lated noises algorithm also increases significantly with increasing β. The respective combining gains versus
ρmax with L = 5000 and β taking on values of 0.7, 0.8, and 0.9 are shown in Fig. 5. This figure shows that
the performance improvement of the correlated noises algorithm over the uncorrelated noises algorithm
increases significantly with increasing ρmax. The results in these three figures indicate that there can be
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Table 2. Correlated algorithm simulated
combining gain for worst-case RB .

SNR Gain, dB

L ρmax Simulation Analytical

500 0.050 −0.63659 −0.68802

500 0.100 −1.05467 −1.10542

500 0.150 −1.33373 −1.38419

500 0.175 −1.43041 −1.48083

500 0.200 −1.50179 −1.55220

5000 0.050 −0.61306 −0.61410

5000 0.100 −1.03140 −1.03182

5000 0.150 −1.31079 −1.31072

5000 0.175 −1.40765 −1.40738

5000 0.200 −1.47920 −1.47877

106 0.050 −0.62206 −0.60598

106 0.100 −1.03724 −1.02373

106 0.150 −1.31348 −1.30265

106 0.175 −1.40878 −1.39931

106 0.200 −1.47881 −1.47070

UNA WITH ρMAX = 0.05

CNA WITH ρMAX = 0.05

UNA WITH ρMAX = 0.10

CNA WITH ρMAX = 0.10

UNA WITH ρMAX = 0.15

CNA WITH ρMAX = 0.15

10 100 1000 104

NUMBER OF SAMPLES L

Fig. 3.  Combining gain versus L with β = 0.7 for best-case RB.
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Fig. 4  Combining gain versus β with L = 5000 for best-case RB.
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Fig. 5.  Combining gain versus ρmax with L = 5000 for best-case RB.
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a substantial SNR gain in this best-case scenario, particularly for the correlated noises algorithm at larger
values of ρmax. We also note that the value of ρmax cannot exceed 0.2 in order to preserve the positive
definiteness of RB .

Figures 6 through 8 repeat Figs. 3 through 5, respectively, using the worst-case scenario RB matrix in-
stead, while keeping the other parameters unchanged. These examples show that this worst-case scenario
can result in an SNR loss, and the loss nominally increases with increasing ρmax. Figure 6 again shows
that convergence of the combining gain for the correlated noises algorithm to within 0.1 dB of its limiting
value occurs at about L = 1000 samples. The small sample performance of the correlated algorithm
again lags that of the uncorrelated algorithm. Similarly to Fig. 4, Fig. 7 shows that the performance
superiority of the correlated noises algorithm increases with increasing β. However, as β approaches one,
the SNR loss of the correlated noises algorithm turns around and starts to decrease with increasing ρmax.
At large values of β close to one, the correlated noises algorithm can in fact have an SNR gain even
when the uncorrelated noises algorithm still has an SNR loss. Finally, Fig. 8 shows that the SNR loss
of the correlated noises algorithm in this unfavorable situation deteriorates much slower than that of the
uncorrelated noises algorithm as ρmax increases.

UNA WITH ρMAX = 0.05

CNA WITH ρMAX = 0.05

UNA WITH ρMAX = 0.10

CNA WITH ρMAX = 0.10

UNA WITH ρMAX = 0.15

CNA WITH ρMAX = 0.15

10 100 1000 104

NUMBER OF SAMPLES L

Fig. 6.  Combining gain versus L with β = 0.7 for worst-case RB.
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VI. Conclusion

The correlated noises signal-combining scheme developed in this article has been shown to be asymp-
totically optimal as the number of residual carrier-signal samples used in the estimates of the optimum
weight coefficients increases. The numerical examples considered here show that convergence of the com-
bining algorithm’s SNR performance to the optimum achievable SNR performance level to within 0.1 dB
occurs at about L = 1000 signal samples. Hence, real-time operation is possible, although the inversion
of a complex-valued K-dimensional matrix is required at every update of the weight coefficient estimates.
The numerical examples considered here consistently demonstrate a significant performance superiority
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Fig. 7.  Combining gain versus β with L = 5000 for worst-case RB.
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Fig. 8.  Combining gain versus ρmax with L = 5000 for worst-case RB.
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of the correlated noises combining scheme over the uncorrelated noises signal-combining algorithm. It
appears to be the combining system of choice in the presence of significant correlations between the noise
processes in different array feed received signals. A degree of caution should be exercised in extrapolating
the expected amount of SNR gain or loss from the numerical examples considered in Section V. The best-
case and worst-case performances in these examples should not be viewed as being typical. Moreover,
these two cases also should not be viewed as being best- and worst-case performances in general.
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Appendix A

Combiner Output Signal Variance

An explicit expression for Var [sc(iB)] is derived in this appendix. For convenience in the following
analysis, let us use ŴML as the shortened notation for ŴML(̃iA), X̂ML for X̂ML(̃iA), and R̂A,ML for
R̂A,ML(̃iA). Using Eqs. (26) and (22), we can write

Var [sc(iB)] =Var
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Ŵ
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MLV e
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Since R̂A,ML is independent of X̂ML, we can write
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Moreover, since X̂ML(iA) is a complex Gaussian random vector with mean X and covariance matrix
(1/L)RA, we have

E
[
X̂MLX̂

†
ML

]
=

1
L
RA +XX† (A-3)

Therefore, it follows from Eqs. (A-1), (A-2), and (A-3) that
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Let Tr(A) denote the trace of a square matrix A and let IK denote the K ×K identity matrix. Recall
that LR̂A,ML is a K ×K CW (RA, L− 1) distributed random matrix. It has been shown in [8] that if A
is a K ×K CW (RA, L− 1) random matrix and C is any constant K ×K matrix, then

E
[
A−1CA−1

]
=

1
(L−K)(L−K − 2)

R−1
A CR−1

A +
1
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)
R−1
A

(A-5)

for L > K. So, using Eq. (A-5) in Eq. (A-4) gets
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Since X = V cos δ, and RB = ηRA, it follows from Eq. (29) that
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Since R−1
A is Hermitian, Tr(XX†R−1

A ) = X†R−1
A X. So we have, by using Eq. (A-7),
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Finally, using Eqs. (A-7) and (A-8) in Eq. (A-6) yields the following expression for Var[sc(iB)]:

Var [sc(iB)] =
(L−K − 1)(L− 1)
(L−K)(L−K − 2)

(
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Lηcos2δ

)
+

1
L−K − 2

γ2
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Note that Var[sc(iB)] approaches zero in the limit as L tends to infinity. This is because the estimate
ŴML(iA) converges with probability one to the optimum weight vector WO given by Eq. (23) as L tends
to infinity.
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Appendix B

Combiner Output Noise Variance

Consider next an explicit expression for Var[nc(iB)]. We shall also employ here the shortened notations
ŴML, X̂ML, R̂A,ML, as in Appendix A. Moreover, we shall use the shortened notation n for n(iB). Since
ŴML is independent of n, a derivation similar to that establishing Eq. (A-2) can be used along with
Eq. (22) to get
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Since R̂A,ML is independent of X̂ML, using the same approach on the expected value in Eq. (B-1) gets
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Next, using the property of Eq. (A-5) for the K×K CW (RA, L−1) distributed random matrix LR̂A,ML

in Eq. (B-2) results in the following expression:
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It follows from Eq. (A-3) that
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Finally, using Eq. (B-4) in Eqs. (B-3) and (13) yields
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Appendix C

Mean-Square Convergence of Estimated Weights

We employ the shortened notations ŴML, X̂ML, and R̂A,ML, similar to the usage in the previous
appendices. Since
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we need only establish that E[ŴMLŴ
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O as L −→∞ to prove the mean-square convergence

of ŴML to WO. Using Eqs. (17) and (18), we can write
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†
ML

]
=

(L− 1−K)2

L2η2 cos2 δ
E
[(
R̂
∗
A,ML

)−1

X̂
∗
MLX̂

T

ML

(
R̂
∗
A,ML

)−1
]

(C-1)

It then follows from using Eqs. (A-2) and (A-3) in Eq. (C-1) that
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So, by using the property of Eq. (A-5) for the CW (RA, L − 1) distributed random matrix LR̂A,ML in
Eq. (C-2), we can write
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O as L −→ ∞, thereby establish-

ing the mean-square convergence of ŴML to WO.
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