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In this article, we describe the image compression scheme of the Galileo space-
craft and the downstream data domain signal processing algorithms that enable
efficient and robust transmission of data to Earth.

I. Introduction

We present a robust implementation of the Galileo image compression system. Due to the loss of the
high-gain antenna, the mission was replanned to incorporate advanced data compression, error correction,
and other downlink communication functions to maximize data return. Most instrument data will be
highly edited and compressed before downlink through a noisy and unpredictable channel. The data
compression schemes share a common disadvantage: channel errors in the compressed data tend to
propagate in the reconstructed data. To ensure reliable communication, we incorporated a number of
data domain error-recovery schemes in the downlink communication processing system. We developed a
feedback concatenated decoder (FCD) for error correction and error detection and a containment strategy
to prevent error propagation and realign the reconstructed data after decoder failure. We also developed
a frame repair scheme that combats phase inversions and symbol insertion/deletion in the channel and a
frame merging scheme that prevents data loss due to station hand over. The schematic diagram of the
spacecraft and ground data processing systems are shown in Figs. 1 and 2, respectively.1 The sample-
domain gap processing scheme in the Deep Space Communications Complex Galileo telemetry subsystem
(DGT) is not discussed here.

II. Image Compression

The Galileo image compression scheme is a block-based lossy image compression algorithm that
uses an 8 × 8 integer cosine transform (ICT) [2]. The algorithm is similar in functionality to the
baseline Joint Photographic Experts Group (JPEG) standard, which converts a fixed-length string
into a variable-length string. A major difference between the JPEG standard and the Galileo com-
pression scheme is that the JPEG standard uses an 8 × 8 discrete cosine transform (DCT). The
ICT is an integer approximation of the DCT. The ICT requires only integer arithmetic, making

1 The error correction coding, frame merging, and frame repair schemes apply to all telemetry data. The integer cosine
transform (ICT) compression and error containment schemes apply to ICT image data only.
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Fig. 2.  Galileo ground data processing system.
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it much simpler to implement. Although the ICT has a much lower complexity, rate-distortion perfor-
mance is not sacrificed. This lower complexity of the ICT is necessary because the Galileo spacecraft uses
late 1970s microprocessor technology. A detailed description of the Galileo ICT implementation scheme
can be found in [1].

III. Error Correction

The Galileo error-correction coding scheme uses a (255, k) variable redundancy Reed–Solomon (RS)
code as the outer code and a (14,1/4) convolutional code as the inner code. The RS codewords are
interleaved to depth 8 in a frame. The redundancy profile of the RS codes is (94,10,30,10,60,10,30,10).
The staggered redundancy profile was designed to facilitate the novel feedback concatenated decoding
strategy [3,4]. This strategy allows multiple passes of channel symbols through the decoder. During
each pass, the decoder uses the decoding information from the RS outer code to facilitate the Viterbi
decoding of the inner code in a progressively refined manner. The FCD is implemented in software on
a multiprocessor workstation. The code is expected to operate at a bit signal-to-noise ratio of 0.65 dB
and at a bit-error rate of 10−7. Figure 3 shows the schematic of the FCD architecture. In this article,
we discuss the implementation and operation aspects of the FCD task only. The FCD novel node/frame
synchronization scheme is discussed in [5]. The FCD code selection and performance analysis are discussed
in detail in [6].

If, due to errors beyond its capability to correct, the FCD cannot decode the data, the FCD will invoke
the “frame repair” utility and the “gap processing” utility. Gap processing involves using good decoded
data from either side of the gap and attempts to fill in data that are missing (the gap) because of loss of
synchronization or hardware glitches. The frame repair utility attempts to correct any symbol insertions,
deletions, or inversions due to transmission reception problems. The reprocessed data are then fed back
to the FCD for another attempt at decoding.
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Fig. 3.  FCD schematics.
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A. The (255,k) Variable Redundancy Reed–Solomon Code

All RS codes for the Galileo mission use the same representation of the finite field GF (256). To be
precise, GF (256) is the set of elements

GF (256) = 0, α0, α1, α2, · · · , α254

where α, by definition, is a root of the primitive polynomial

p(x) = x8 + x7 + x2 + x+ 1

(i.e., p(α) = 0). In the encoding/decoding process, each power of α is represented as a distinct nonzero
8-bit pattern. The zero byte is the zero element in GF (256). The basis for GF (256) is descending powers
of α. Note that this is the conventional representation, not Berlekamp’s dual basis [7]. The RS generator
polynomial is defined as

g(x) =
n−k−1∏
i=0

(
x− αβ(i+L)

)
=
n−k∑
i=0

gix
i

where n denotes the codeword length in bytes, k denotes the number of information bytes, and αβ is a
primitive element of GF (256). The parameter β is chosen in some applications to minimize the bit-serial
encoding complexity. Since the Galileo RS encoders are implemented in software, there is little advantage
in preferring a particular value of β. The parameter L is chosen such that the coefficients of g(x) are
symmetrical. This reduces the number of Galois field multiplications in encoding by nearly a factor of
two.

The Galileo mission utilizes four distinct RS codes. We define RS(n, k) to be an RS code that accepts
as input k data bytes and produces as a codeword n bytes, where n > k. An RS(n, k) code can correct
t errors and s erasures if 2t + s ≤ n − k. The codes are referred to as RS(255, 161), RS(255, 195),
RS(255, 225), and RS(255, 245). Specifically, the parameters β and L of the four codes are

RS(255, 161) β = 1, L = 81
RS(255, 195) β = 1, L = 98
RS(255, 225) β = 1, L = 113
RS(255, 245) β = 1, L = 123

The four RS codes, which are interleaved to depth 8, are arranged in a transfer frame as shown in
Fig. 3. The RS decoders use a time-domain Euclidean algorithm to correct both errors and erasures. The
details of the decoding algorithm are discussed in [8].

B. The (14,1/4) Convolutional Code and Its Parallel Viterbi Decoder

The (14,1/4) convolutional code used for the Galileo mission is the concatenation of a software (11,1/2)
code and an existing hardware (7,1/2) code. The choice of convolution code is constrained by the existing
(7,1/2) code, which is hardwired in the Galileo telemetry modulation unit (TMU), and by the processing
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speed of the ground FCD. The generator polynomials of the (11,1/2) code and the (7,1/2) code in octal
are (3403,2423) and (133,171), respectively. The generator polynomials of the equivalent (14,1/4) code
are (26042,36575,25715,16723).

The Viterbi decoder for the (14, 1/4) code is implemented in software in a multiprocessor workstation
with a shared-memory architecture. The use of a software decoder is possible due to the slow downlink rate
of the Galileo mission. The advantages of a software-based decoder are the low development cost and the
flexibility allowed to perform feedback concatenated decoding. We examined two different approaches to
parallelize the Viterbi algorithm: (1) state-parallel decomposition in which each processor is equally loaded
to compute the add–compare–select operations per bit and (2) round-robin frame decoding that exploits
the multiple processors by running several complete, independent decoders for several frames in parallel.
Our early prototypes indicate that the first approach requires a substantial amount of interprocessor
synchronization and communication, and this greatly reduces the decoding speed. The second approach
requires minimum synchronization and communication, since each processor is now an entity independent
of the other processors. The performance scaling is nearly perfect. We chose the round-robin approach for
the FCD Viterbi decoder. The details of the FCD software Viterbi decoder implementation are described
in [9].

IV. Frame Repair

A. Anomalous Frames

Sometimes a frame is received that has an adequate SNR, but the frame markers at the beginning
and end of it have too many or too few symbols in between them and/or have opposite polarity. This
indicates that some symbol insertions, deletions, and/or phase inversions, known collectively as anomalies,
occurred somewhere in the frame. (A phase inversion at symbol x is an event where the symbols after
x are detected with the opposite phase of the symbols before x. So, if the transmitted symbols were
all +1, the received symbols, in the absence of noise, would be +1 up to the inversion and −1 for all
symbols after that, or at least until the next phase inversion.) Because a high-redundancy Reed–Solomon
codeword with too many errors is vastly more likely to be not decodable than to decode incorrectly, one
can make guesses about how to fix the codeword and safely assume that a guess is correct if it results
in a decodable codeword. (For Galileo’s highest-redundancy Reed–Solomon codeword, which can correct
up to 47 errors, if more than 47 errors occur, the probability of decoding incorrectly is ≤1/47!.)

However, while guessing may be safe, it is not likely to be successful unless there is some reason for
making a particular guess.

The two frame markers at either end of an anomalous frame only indicate the most likely situation in
terms of whether or not a phase inversion occurred and how many symbols were inserted or deleted. There
is always the possibility, of course, that the two markers have the same polarity because two inversions
occurred in the frame, or that they have three more symbols than expected between them because five
symbols were inserted in one area and two were deleted in another part of the frame. However, identifying
and fixing (presumably rare) problems like this would be prohibitively complicated and time consuming,
so the simplest explanation, namely that all anomalies occurred at the same point in the frame, is always
assumed. This means that any symbols between the first and last anomaly in a frame will be useless, but
if the affected interval is sufficiently small (which depends on how bad the rest of the symbols are), the
errors can be tolerated.

B. Repairing Anomalous Frames

A frame that is undecodable due to anomalies in a single location can be decoded if this location
is guessed correctly. A guess is tested by creating a modified version of the received frame with the
appropriate number of symbols inserted or deleted, and/or with a phase inversion made, at the guessed
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location. The frame is then Viterbi decoded, the result is deinterleaved, and Reed–Solomon decoding is
attempted on the resulting eight words. If the highest redundancy Reed–Solomon codeword can then be
decoded, it is extremely likely that the guess was approximately correct. The reason the guess need not
be exact is that the effect of an incorrect guess is that essentially all of the Reed–Solomon symbols in
between the actual anomaly location and the guessed one are incorrect but, if the gap is small enough, the
Reed–Solomon decoder can correct those additional errors. Once the location is approximately known,
the guess can be refined by trying nearby locations and choosing the one that minimizes the number of
errors the Reed–Solomon decoder corrects. Then the frame, modified to reflect the refined guess, is sent
on to the FCD for redecoding.

C. Finding Anomalies in a Frame

In this section, we describe the algorithm we use to find anomalies in a frame known to have some
anomalies, under the assumption that they all occur at a single location. One rather simple-minded
method is to try each of the 65,536 locations in the frame, one at a time. This, however, would take an
unreasonable amount of time, because Viterbi decoding is slow. Slightly less simple minded is to do a
binary search, since you only need to get close enough to the correct location. Thus, you first guess the
location halfway through the frame, then 1/4 of the way, then 3/4, and so on. This method, in fact, is
used when everything else fails, but it can still take a very long time unless you are lucky. Before resorting
to this, some other educated guesses are made. If any of the following methods succeeds, meaning that
the highest-redundancy Reed–Solomon codeword is decoded, the guess is then refined and the modified
frame is sent to the FCD, as explained above. If not, the next method is tried. The first method: If a data
rate change occurred at some point during the frame, that location is guessed, since anomalies are known
to be common when data rate changes occur.2 The second method: The adjustments are made at the end
of the frame, which means that the frame is Viterbi decoded essentially as is. If the anomaly happens to
be near enough to the end of the frame, this will work, but the real reason for trying this first is that the
branch metrics along the decoded path are saved for use in the next step if this method does not succeed.
The third method: If insertions or deletions are known to have occurred, the branch metrics mentioned
above are analyzed. Although the effect is subtle when the SNR is low, the mean value of the metrics will
be slightly higher after the location of the anomaly is reached than before it. This analysis results in an
estimate of where this increase occurred, and this estimate is used as the next guess. The fourth method:
If only a phase inversion is known to have occurred (i.e., the frame is the correct length, but the markers
on either end have opposite phase), the transparency of the Galileo (14,1/4) convolutional code means
that the output of the Viterbi decoder, after a transient in the vicinity of the inversion, is the same as it
would have been without an inversion, except with the opposite sign. Thus, in this special case, one can
make multiple guesses without having to Viterbi decode a whole frame each time. It is only necessary
to invert all the Viterbi decoded symbols (from the original frame) after the guessed location and then
attempt Reed–Solomon decoding. A binary search is used to make guesses throughout the frame, each of
which can quickly be tested. The fifth method: The last resort is the binary search described previously.
If this fails, frame repair is not accomplished.

V. Frame Merging

Because of the large frame size (65,536 symbols) and low bit rates that Galileo will be using, a single
frame will take close to one-half hour to transmit at the lowest bit rate. The lowest bit rate is used near
the beginning and end of a pass, when the SNR is lowest, and it is not unlikely that a frame that starts
out with an adequate SNR may not be completed before the signal is lost or that it becomes noisy enough
to render the whole frame undecodable. Because the ground stations have overlapping coverage, the next
station may pick up the signal in the middle of the same frame. Thus, each of two stations may have an

2 It is also observed in operation that the location in a frame when a data rate change occurs can differ from the predicts
by a multiple of a 128-second span of symbols. Some frames were recovered by guessing on the 128-second boundary in
the vicinity of the predicted data-rate change location.
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incomplete and/or too noisy version of the same frame. Because of the nature of the encoding algorithm,
a partial frame by itself is essentially useless. Since the best part of each frame is the worst part of the
other, it seems obvious to try to paste them together somehow. If the SNR at the crossover point, where
the falling SNR at the first station equals the rising SNR at the second, is high enough, one could make a
good frame by just using the symbols from the first station up to that point and from the second station
after that point. However, even if the SNR at the crossover point is significantly below the decoding
threshold, by adding the symbols from the two frames together, theoretically 3 dB could be gained in
the vicinity of the crossover point, assuming the noise at the two stations is independent, a reasonable
assumption. Farther from the crossover point, one could still combine symbols from the two frames, but
with weights reflecting their relative SNRs. Note that this requires estimates of the SNR throughout both
frames and that the results can be expected to depend on the accuracy of these estimates.

The problem is made much more complicated by the fact that a low SNR not only makes symbols
noisy, it can also cause anomalies, as can rate changes. In passes where both frame markers surrounding
a frame are identified, the presence of anomalies is usually apparent. Notice, however, that this does not
give any information about where in the frame the anomalies are. This case may be common, since frame
markers can be detected at SNRs way below the threshold of decodability. In other cases, a frame may
be incomplete in one or both passes or may have enough symbols for a frame but be so badly corrupted
near one end that the marker cannot even be found.

A. Procedure

Here we describe the procedure that will be used to merge two undecodable versions of a frame into
one decodable one for Galileo. The result of this algorithm is a small number of candidate merged frames
that must then be sent to the FCD for attempted decoding.

The first step is to identify any frames that can be merged. This is done by finding frame markers near
the end of the first pass and the beginning of the second one, and by the time tags, in order to determine
which frames have some symbols in both passes. For each such frame, and each pass, the frame may be
either partially or fully present. When an entire frame is present (in either pass), the two end markers
indicate the most likely situation in terms of whether or not a phase inversion occurred and how many
symbols were inserted or deleted. For the same reasons as those presented in Section IV, the simplest
explanation, namely that all anomalies occurred at the same point in the frame, is always assumed.

When only part of a frame is present (in either pass), there is less information about what type of
anomalies occurred. However, an estimate of the number of insertions or deletions can be made using
time tags, which for Galileo occur once per second, and multiple trials can be performed for a few values
near the estimate. For each value, one trial is done assuming an inversion occurred and another assuming
otherwise. Notice that this procedure for finding anomalies is different from the frame repair case as it
primarily depends on finding a correlation between two versions of a frame. But as in the frame repair
case, the candidate modifications must be tested by attempting to decode the whole frame.

It is assumed, again because of prohibitive complexity and running time, that only one of the two
passes has anomalies in it. More precisely, if a frame could have anomalies in either pass, it is first
assumed that anomalies only occurred in the first pass, and next that anomalies only occurred in the
second pass, with each case resulting in at least one candidate merged frame. Then, whichever frame
one is assuming to be the one containing anomalies is analyzed to find the most likely location of the
anomalies. This is done using dynamic programming to find the location that, if you compensate for
the anomalies as if they were there, maximizes the correlation between the two frames in the region of
overlap.
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B. Example

Figure 4 illustrates a simplified example with 32-symbol frames (not including the marker). We will
refer to the two received versions of the illustrated frame as frame A and frame B. Frame A is partial,
whereas frame B is whole but clearly has two too many symbols and an inversion somewhere. Suppose
that dynamic programming reveals that the best place (maximum correlation between frames A and B) in
frame B to delete two symbols and invert all subsequent symbols is after symbol y11. Then the candidate
frame shown would be produced, where

zi =
{
aixi + (1− ai)yi, if i ≤ 11
aixi + (1− ai)(−yi+2), otherwise

and

ai =


SNR(xi)

SNR(xi) + SNR(yi)
, if i ≤ 11

SNR(xi)
SNR(xi) + SNR(yi+2)

, otherwise

In practice, the SNR estimates are unlikely to be very accurate and, in any case, are not made on a
symbol-by-symbol basis, but rather over, perhaps, a minute; the algorithm uses whatever it gets.

In this example, additional candidate frames would be produced, based on the assumption that frame B
is anomaly free and frame A may not be. Even though we know frame B has anomalies, this may be
helpful if frame A also has anomalies and frame B’s anomalies all happen to be very close to the beginning
marker, which is plausible since the SNR is probably lowest there. The “anomaly free” frame B is obtained
by inverting all the symbols in the frame and throwing out y1 and y2. An estimate of the number of
symbol insertions or deletions in frame A is obtained by using the time tags to estimate the time t of
symbol x21 and by finding i such that t falls between the estimated times of symbols yi and yi+1 (t1 and
t2, respectively.) For instance, suppose that i = 24, with t closest to t1. Then the most likely case is that
frame A is missing one symbol, and the next most likely is that it is missing two, and both hypotheses
will be used to generate candidate frames.

MARKER x1 x4x3x2 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21

y1 y4y3y2 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 y25y24y23 y26 y27 y28 y29 y30 y31 y32 y33 y34

STATION B
INVERTED
MARKER

MARKER

z1 z4z3z2 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 z19 z20 z21 z22 z25z24z23 z26 z27 z28 z29 z30 z31 z32MARKER MARKER

STATION A

MERGED FRAME

Fig. 4.  Frame merge example.
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VI. Error Containment

If all these attempts fail to correct the data, then the final step is to minimize error propagation.
Because any corruption of data in a compressed data stream can cause magnified errors due to prop-
agation, safeguards were introduced into the compressed data stream to minimize these effects. First,
images are compressed independently by groups of 8 rows, which we called slices, with a synchronization
marker inserted at the beginning, so any bit errors during data transmission can be isolated. Second, the
decompression algorithm includes provisions for detection of errors so that the error containment mode
will be activated.

These two safeguards are used together in the following manner: If an error is detected during decom-
pression, the decompression algorithm will start a search for the synchronization marker. This marker
is 32-bits wide and consists of 2 fields: a 7-bit sequencing field and a 25-bit fixed-pattern field. The
7-bit field will identify where the slices belong relative to the whole image, and the 25-bit field is used for
synchronization. Using these safeguards, error propagation can at most be isolated to 8 rows of image
data.

Figures 5 and 6 show two ICT compressed/reconstructed images of Ganymede (moon of Jupiter) that
are corrupted with random errors in the compressed data of a bit-error rate (BER) of 0.0001 and 0.001,
respectively. In both images, the ICT error containment scheme detects the onset of the uncorrectable
errors, prevents them from propagating beyond 8 rows, and automatically resynchronizes the good data
thereafter. Thus, the majority of the image areas remain intact and can still be used for scientific
investigation.

Fig. 5.  Ganymede with BER = 0.0001.
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Fig. 6.  Ganymede with BER = 0.001.
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