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This article addresses the issue of when to suppress or not to suppress the trans-
mitted carrier in designing a coherent communication system employing a carrier
tracking loop for carrier synchronization. Assuming that a phase-locked loop (PLL)
is used whenever there exists a residual carrier and a Costas loop is used whenever
the carrier is suppressed, the regions of system parameters that delineate these two
options are presented based on the desire to minimize the average probability of
error of the system.

I. Introduction

In the design of coherent communication systems, engineers are forever faced with the decision of
whether or not to suppress the transmitted carrier. In general, for a given total power available, Pt, a
fraction of the power, Pc, would be allocated to the carrier signal (which determines the accuracy of the
carrier synchronization process, e.g., the loop phase jitter) and the remainder of the power, Pd, would be
allocated to the data bearing signal (which determines the accuracy of the data detection process, e.g., the
error probability, in the presence of perfect carrier synchronization). Since it is clear that the more power
is allocated to the carrier the better will be the synchronization accuracy while at the same time the more
power is allocated to the data-bearing signal the better will be the ideal (perfect synchronization) error
probability, the issue at stake is how to trade off between these two conflicting power hungry requirements
so as to minimize the average error probability of the system. In fact, more than three decades ago, it
was shown [1] that for coherent communication systems that use a phase-locked loop (PLL) to track the
residual carrier, there always exists an optimum (in the sense of minimum average error probability) split
of the total power into the two components mentioned above. Stated another way, for sinusoidal carriers
that are phase modulated by a binary data stream, there always exists an optimum phase modulation
index and a corresponding minimum average error probability performance. When one examines the
numerical results in [1], one observes that as the ratio of data rate (R = 1/T ) to loop bandwidth (BL)
increases, the optimum fractional allocation of power to the carrier, i.e., m2 4= Pc/Pt, diminishes. In fact,
defining this ratio by δ

4= R/BL = 1/BLT , then for values of δ on the order of a few hundred (which
is typical of most system designs), the fraction of total power allocated to the carrier that yields the
minimum average error probability is on the order of m2 = 0.1 or less over a large range of total signal-to-
noise ratio (SNR), Rt = PtT/N0. This trend suggests the possibility of using a suppressed-carrier system,
i.e., m2 = 0, which itself requires replacing the PLL with a loop capable of tracking a fully suppressed
carrier, e.g., a Costas loop [2].
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Since suppressed-carrier tracking loops inherently require a significantly larger loop SNR to track the
carrier with a given accuracy (this comes about because of the nonlinear operation, e.g., multiplication of
the in-phase (I) and quadrature-phase (Q) arms of the Costas loop, needed to reestablish the carrier), the
ultimate question is whether or not there is an overall gain relative to the optimum residual carrier system
described above. In particular, is the average error probability achieved with a suppressed carrier–Costas
loop system smaller than the average error probability achieved with the optimally designed residual
carrier–PLL system? Indeed we shall show that for a wide range of total SNRs (−10 dB ≤ Rt ≤ 10 dB)
and a wide range of data rate-to-loop bandwidth ratios (10 ≤ δ ≤ 400), the suppressed-carrier system
achieves the smaller of the two average error probabilities. Thus, if it were not for other considerations,
one would conclude that for a given total available power, loop bandwidth (determined by the system
dynamics), and data rate, one should always use a suppressed carrier–Costas loop system! While, in
principle, this statement is true, one must condition it on the ability of each loop (PLL for residual
carrier and Costas loop for suppressed carrier) to stay in lock. Indeed, since as mentioned above, the
Costas loop requires a larger loop SNR than does the PLL to yield a given tracking accuracy, the same is
true in terms of the loop SNR required to maintain lock (herein referred to as the threshold value of loop
SNR.) Thus, depending on the threshold SNR values decided upon for the two loops (to be discussed later
on), there will exist a region of system parameters where one would be forced to employ a residual rather
than a suppressed-carrier system, since in this region the loop SNR of the latter is below its threshold
value whereas the loop SNR of the former is still above its threshold value. The purpose of this article
is to define these regions, which will then clearly spell out for the system designer when to choose the
suppressed-carrier option over the residual carrier one or vice versa. In the next section, we present the
theoretical background necessary to establish these regions.

II. Residual Carrier System Model

As discussed in the introduction, we consider a residual carrier system that transmits a sinusoidal
carrier of total power Pt phase modulated by a binary data stream d(t) of rate R = 1/T symbols/s. As
such, the transmitted signal is given by

s(t) =
√

2Pt sin (ω0t+ θmd(t)) (1)

where θm is the phase modulation angle and ω0 is the carrier frequency in rad/s. Using simple trigonom-
etry, s(t) can be rewritten in terms of its carrier and data components as

s(t) =
√

2Pt cos2 θm sinω0t+
√

2Pt sin2 θmd(t) cosω0t

=
√

2m2Pt sinω0t+
√

2 (1−m2)Ptd(t) cosω0t

4=
√

2Pc sinω0t+
√

2Pdd(t) cosω0t (2)

where

m2 = cos2 θm =
Pc
Pt

1−m2 = sin2 θm =
Pd
Pt

 (3)
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are the fractional carrier and data power components, respectively. The signal s(t) is transmitted over
an additive white Gaussian noise (AWGN) channel with single-sided power spectral density N0 W/Hz.

At the receiver, a PLL tracks the discrete (residual) carrier component in Eq. (2). Assuming uncoded
data and matched-filter detection, the error probability of the receiver, conditioned on a phase error φ in
the PLL, is well-known and is given as [2]

P (E;φ) =
1
2

erfc
(√

Rd cosφ
)

(4)

where Rd
4= PdT/N0 is the data detection SNR and erfc x denotes the complementary error function

with argument x. The probability density function (pdf) of the loop phase error is well-known to be a
Tikhonov distribution and is given by [2]

p (φ) =
exp (ρPLL cosφ)

2πI0 (ρPLL)
, |φ| ≤ π (5)

where I0(x) is the modified Bessel function of the first kind with argument x,

ρPLL =
Pc

N0BL
=
m2PtT

N0

1
BLT

= m2Rtδ (6)

is the loop SNR, BL is the single-sided loop noise bandwidth, and the total SNR and data rate-to-loop
bandwidth ratio are defined as

Rt
4=
PtT

N0

δ =
1

BLT

 (7)

The average error probability performance of the system is obtained by averaging the conditional error
probability of Eq. (4) over the pdf in Eq. (5), which yields

P (E) =
∫ π

−π
P (E;φ) p (φ) dφ

=
∫ π

−π

1
2

erfc
(√

(1−m2)Rt cosφ
) exp

(
m2Rtδ cosφ

)
2πI0 (m2Rtδ)

dφ

= 2
∫ π

0

1
2

erfc
(√

(1−m2)Rt cosφ
) exp

(
m2Rtδ cosφ

)
2πI0 (m2Rtδ)

dφ (8)

As stated in the introduction, for given values of Rt and δ, there exists an optimum value of m2 (or
equivalently an optimum value of θm) in the sense of minimizing P (E) of Eq. (8).

3



          

Evaluation of Eq. (8) can be performed by direct numerical integration (e.g., Riemann sum, Simpson’s
rule, etc.) or by employing a form of Gauss-quadrature integration, namely, Gauss–Chebyshev integration
[3]. In the case of the latter, making the change of variables x = cosφ in Eq. (8), we obtain

P (E) =
∫ 1

−1

1√
1− x2

f(x)︷ ︸︸ ︷
erfc

(√
(1−m2)Rtx

) exp
(
m2Rtδ x

)
2πI0 (m2Rtδ)

dx (9)

Using the Gauss–Chebyshev formula,

∫ 1

−1

1√
1− x2

f (x) dx ∼=
π

N

N∑
k=1

f (xk)

xk
4= cos

(
(2k − 1)π

2N

)


(10)

where N is a number typically much smaller than the number of points needed for numerical integration
with uniform increments, we can compute Eq. (9) from

P (E) ∼=
1

2NI0 (m2Rtδ)

N∑
k=1

erfc
(√

(1−m2)Rtxk
)

exp
(
m2Rtδ xk

)
(11)

Figure 1 numerically illustrates this result by plotting P (E) versus m2 for several values of δ with Rt
(in dB) as a parameter. (These curves are similar to those presented in [1].) Figure 2 illustrates the
corresponding optimized values of m2.

III. Suppressed-Carrier System Model

For a suppressed-carrier system, the transmitted signal is still given by Eq. (1) but with θm = 90 deg.
Thus, from Eq. (2), m2 = 0 and hence the signal simplifies to

s(t) =
√

2Pdd(t) cosω0t =
√

2Ptd(t) cosω0t (12)

At the receiver, a Costas loop tracks the suppressed-carrier signal. Again assuming uncoded data and
matched-filter detection, the error probability of the receiver, conditioned on a phase error φ in the Costas
loop, is still given by Eq. (4); however, the pdf of the loop phase error is now given by [2]

p (φ) =
exp

(ρCostas

4
cos 2φ

)
2πI0

(ρCostas

4

) , |φ| ≤ π (13)

where
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Fig. 1.  Probability of error versus m 
2 for (a)  = 10, (b)  = 50, (c)  = 200, and (d)  = 1000.

ρCostas =
Pt

N0BL
SL =

PtT

N0

1
BLT

SL = RtδSL (14)

is the loop SNR and SL is the squaring loss, which for a Costas loop with integrate-and-dump (I&D) arm
filters is given by

SL =
2Rt

1 + 2Rt
(15)

From Eq. (14) we observe, as is well-known, that the Costas loop exhibits a 180-deg phase ambiguity
in that it is as likely to lock at φ = 0 deg as it is at φ = 180 deg. Assuming that this ambiguity
can be perfectly resolved, then the average error probability performance of the system is obtained by
averaging the conditional error probability of Eq. (4) over the pdf in Eq. (13) folded into the interval
−π/2 ≤ φ ≤ π/2, which yields
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Fig. 2.  Optimized values of m 
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P (E) =
∫ π/2

−π/2
P (E;φ) p (φ) dφ

=
∫ π/2

−π/2
erfc

(√
Rt cosφ

)2
exp

(
Rtδ

4
cos 2φ

)
2πI0

(
Rtδ

4

)
 dφ

= 4
∫ π/2

0

1
2

erfc
(√

Rt cosφ
)2

exp
(
Rtδ

4
cos 2φ

)
2πI0

(
Rtδ

4

)
 dφ (16)

Once again, Eq. (16) can be evaluated by direct numerical integration or by employing Gauss–Chebyshev
integration. For the latter, we again make the change of variables x = cosφ in Eq. (16) to obtain

P (E) = 2
∫ 1

0

1√
1− x2

g(x)︷ ︸︸ ︷
erfc

(√
Rtx

) exp
(
Rtδ

4
(
2x2 − 1

))
2πI0

(
Rtδ

4

) dx (17)

Defining the even function

f(x) =
{

g(x) 0 ≤ x ≤ 1
g (−x) −1 ≤ x ≤ 0 (18)
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then Eq. (17) can be rewritten as

P (E) =
∫ 1

−1

1√
1− x2

f(x)︷ ︸︸ ︷
erfc

(√
Rt |x|

) exp
(
Rtδ

4
(
2x2 − 1

))
2πI0

(
Rtδ

4

) dx (19)

Using the Gauss–Chebyshev formula of Eq. (10), we obtain

P (E) ∼=
1

2NI0

(
Rtδ

4

) N∑
k=1

erfc
(√

Rt |xk|
)

exp
(
Rtδ

4
(
2x2

k − 1
))

(20)

where xk is defined as in Eq. (10).

IV. Performance Comparison

What is interesting is to compare the minimum average error probability of the residual carrier system
(i.e., the best design) as obtained by minimizing Eq. (8) [or Eq. (11)] with respect to m2 with the error
probability of the suppressed-carrier system obtained from Eq. (17) [or Eq. (20)] for the same values of
Rt and δ. This implies a comparison of the two systems for equal total available power, loop bandwidth,
and data rate. Figure 3 is a plot of P (E) versus Rt in dB for two values of δ, where for the residual
carrier case the minimum value of P (E) as discussed above is used. We observe from this figure that
over the wide range of values of Rt and δ considered, the Costas loop always results in a smaller average
error probability! Figure 4 is a plot of the corresponding optimum values of m2 (those that produce the
minimum average error probability for the residual carrier case) versus Rt in dB. We observe that as
Rt and δ increase, the optimum value of m2 approaches zero, suggesting the use of a suppressed-carrier
system.

The curves in Fig. 3 are an illustration of the results in Eq. (8) [or Eq. (11)] for the residual carrier
system and Eq. (17) [or Eq. (20)] for the suppressed-carrier system without regard to whether the loop
SNR in each case is sufficiently high for the loop (PLL or Costas) to remain in lock. Since, in practice,
a residual versus suppressed carrier comparison only has significance in the range of system parameters
where the loops can indeed remain in lock (i.e., at or above a threshold value of loop SNR), we must now
restrict the above results to the regions where this constraint is satisfied. For a PLL, it is reasonable to
assume that the loop is locked (i.e., the cycle slip rate is sufficiently small) when ρPLL ≥ 7 dB. Since,
as seen above, the Costas loop tracks a doubled phase error process, the loop SNR needed to maintain
lock must be, at the least, 6-dB higher than the PLL [compare Eqs. (5) and (13)]. In addition, since the
loop S-curve for the Costas loop is of the form sin 2φ, whereas that for the PLL is of the form sinφ, then
the effective linear region of loop operation is half as wide for the former as it is for the latter. Thus, an
additional 3 dB should be required of the Costas loop threshold SNR. Taking these facts into account,
it is reasonable to assume that a Costas loop is locked when ρCostas ≥ 16 dB. It is important to note
that these threshold values of loop SNR for the PLL and Costas loop are not hard and fast numbers in
that the failure of a loop to remain in lock is somewhat of a soft phenomenon. However, by choosing
7 dB and 16 dB as typical of the loop thresholds, we are able to portray a simple graphical illustration
of the system parameter regions that are useful to the system engineer in deciding between residual and
suppressed-carrier designs.
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Fig. 3.  Error probability performance of residual and
suppressed-carrier systems.
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If in Eq. (14) we set ρCostas = 101.6 = 39.81 (corresponding to 16 dB), then using Eq. (15), we arrive
at the following:

Rtδ
2Rt

1 + 2Rt
= 39.81 (21)

which is quadratic in Rt and has the solution

Rt =
39.81

2δ
+

√(
39.81

2δ

)2

+
39.81

2δ
(22)

Figure 4 is a plot of Rt versus δ in accordance with Eq. (22). The region above the top curve represents
the range of system parameters where the Costas loop SNR is sufficient to track, and thus in this region,
one would always employ a suppressed-carrier system. Note that this critical curve can be obtained
without resorting to any error probability calculations.

For the residual carrier system, we obtain an analogous critical curve by taking the locus of points
of minimum error probability obtained from Fig. 1 with the further constraint that ρPLL = m2

optRtδ
= 100.7 = 5.01 (corresponding to 7 dB). The curve so obtained is also illustrated in Fig. 4. The region
between the two curves represents the range of system parameters where the Costas loop is below thresh-
old, i.e., it will not maintain lock, but the PLL is above threshold, i.e., it will maintain lock. Thus, in
this region, one would employ a residual carrier system. The region below the lower curve represents the
range of system parameters where both the PLL and the Costas loops are below threshold and, thus, one
should design the system to operate in this region.
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V. Conclusion

It has been shown that, for coherent communication systems that employ either a phase-locked loop
(PLL) or a Costas loop for carrier synchronization, whenever the loop can indeed be locked, the system
should be designed as a suppressed-carrier system. This conclusion is reached based on the desire to
minimize the average error probability of the system.
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