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In this article, we investigate the use of wavelets for frequency tracking in the
presence of high dynamics. In particular, we construct automatic frequency control
loops that are based on correlating the incoming sinusoidal signal with Fourier-
based functions and with Daubechies-4 wavelet functions. Both loops are compared
based on their abilities to track an input frequency with varying degrees of frequency
rate. For each loop, we show the steady-state frequency error and corresponding
steady-state variance as a function of the frequency rate of the input signal. The
results indicate that when the input frequency rate is close to zero (nearly con-
stant frequency input), the Fourier-based loop achieves lower variance than does
the wavelet-based loop. As the frequency rate increases (high dynamics), the per-
formance of the Fourier-based loop degrades, and ultimately the Fourier-based loop
ceases to track. Meanwhile, the wavelet-based loop achieves a lower steady-state
error and continues to successfully track in frequency rate ranges where the Fourier-
based loop breaks down. Thus, this study suggests that wavelets can be a viable
alternative to traditional Fourier-based frequency tracking loops when the input is
undergoing high dynamics. This type of dynamics could be found in applications
such as space probes descending through a turbulent and unpredictable planetary
atmosphere. However, during normal spacecraft cruise, more traditional Fourier-
based loops will outperform wavelet-based loops.

I. Introduction

In coherent communications systems, automatic frequency control (AFC) loops often are used for
initial frequency acquisition and subsequent tracking of modulated and unmodulated sinusoidal signals.
When the signal is corrupted by additive Gaussian white noise, frequency tracking is accomplished by
adaptively estimating the frequency using a variety of estimation techniques. Traditionally, frequency
estimation procedures are based on the maximum a priori (MAP) method, which is based on correlating
the incoming signal with an appropriately chosen set of orthonormal functions. In an open-loop setting,
the MAP estimate is equated to the discrete frequency corresponding to the sinusoid with which the
received signal achieves maximum correlation. For complex sinusoidal signals with constant frequency
and additive white noise, the best basis [in the sense of maximizing the signal-to-noise ratio (SNR)] is
the Fourier basis. This represents the “matched filter” in the sense that the incoming signal has the
same form as the basis functions. Closed-loop variants of this method involve adjusting the frequency of
a locally generated oscillator (NCO) so as to minimize the frequency of an error signal whose frequency
corresponds to the difference between the frequency of the received signal and that of the NCO. Thus,
when the frequency of the error signal is sufficiently small, as it is in the tracking mode, the MAP frequency
estimate of the received signal is equated to the frequency of the NCO. Alternatively, suboptimal closed-
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loop procedures, such as the differentiator and cross-product AFC [1], adjust the frequency of the NCO
so as to minimize (in absolute value) the discrete derivative of the spectrum of the incoming signal.

In principle, the MAP method and its variants assume that the frequency is constant during the
observation interval. In particular, the Fourier-based AFC loop would be optimal (in the sense of reducing
jitter) when the frequency is constant. When the incoming signal is undergoing high dynamics, such as
those transmitted by probes during their descents into unpredictable planetary atmospheres, the Fourier
spectrum of the signal undergoes smearing and, hence, the Fourier basis may not be the optimal basis.
This is in fact the dilemma faced by a Fourier-based estimation scheme: On the one hand, a shorter
integration time (or, equivalently, observation window) is required to reduce the smearing caused by
high dynamics. On the other hand, a longer integration time is required to raise the detection SNR.
Thus, as will be shown in some examples, if the dynamics are high enough and the SNR low enough, a
Fourier-based AFC loop with a fixed observation window eventually will break down.

As a possible remedy to the above problem, a wavelet-based AFC loop is considered in this article.
The main feature of wavelets that can make them advantageous for spectral analysis is the fact that
high-frequency components require shorter integration times than do low-frequency components. As a
result, increasing the observation window does not introduce a major smearing effect, as it does for a
Fourier-based loop. Indeed, we will show that the wavelet-based open-loop variance at high frequencies
is not affected by the size of the observation window. Consequently, when the signal is undergoing
high dynamics, reducing the observation window does not increase the variance of the frequency error
provided it is large enough. Moreover, because large frequency components can be estimated using
shorter integration times, we can obtain large frequency errors much faster by using a wavelet-based
loop than we would by using a Fourier-based loop. This is an important advantage when considering
frequency acquisition issues. However, there are two disadvantages associated with wavelets. First, a
wavelet-based loop is more difficult to implement than the well-understood Fourier-based loop. Second,
when the frequency is constant, leading to small frequency errors, longer integration times are required.
Hence, reducing the observation interval can increase the variance at low frequencies. In fact, for the
constant input case, the wavelet basis does not represent the matched filter and, thus, the Fourier-based
loop achieves lower variance than the wavelet-based loop. Thus, what we would expect (and what this
investigation will confirm) is that wavelet-based AFC loops are better at tracking a signal when the
frequency rate is large. This would be useful for tracking a probe that is descending through a planetary
atmosphere, such as at Jupiter. In this case, the dynamics would be very large and unpredictable and
a Fourier-based loop might not be able to track the signal. However, when the frequency is constant or
completely predictable, such as the case during normal spacecraft cruise, more traditional Fourier-based
loops perform better than do wavelet-based loops.

In [2], frequency tracking loops based on short-time discrete Fourier transform and Harr wavelet
functions were compared. Only constant-frequency input signals were considered. The purpose of this
article is to extend the analysis to the variable input case and further investigate the above ideas more
concretely. In particular, we consider the use of wavelets in an AFC loop in the presence of high dynamics
and compare the results with Fourier-basis functions. Although the approach used in this article will be
valid for any wavelet family, the Daubechies-4 (D4) wavelet was chosen here because of its desirable
properties. It is compactly supported with a power spectrum that exhibits a single clear peak with small
side lobes. In Section II, we present the general setting and also describe the general form of the AFC loops
to be considered. In order to verify the simulation examples, in Section III we develop a generic theory
that predicts the open-loop performance of MAP-based AFC loops based on any orthonormal basis. In
Section IV, this theory is confirmed with simulations using D4 wavelets and Fourier basis functions. In
Section V, we investigate and compare the tracking behavior of the closed loops with a high frequency
rate.
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II. General AFC Loop Structure

The AFC loops to be considered in this article will have the graphical representation given in Fig. 1.
The complex tone signal to be tracked is given by r(t) = A exp(2πjfct), where fc is the unknown frequency.
After the received signal is passed through a rectangular bandpass filter (BPF), we obtain the input signal
to the AFC loop:

s(t) = r(t) + n(t) (1)

where n(t) is a zero-mean complex white Gaussian noise process with power spectral density (PSD) N0.
The input signal is mixed with the NCO signal at frequency fo, and the result is passed through a lowpass
filter (LPF) to produce the complex error signal z(t) = I(t) + jQ(t), where the in-phase component, I(t),
is given by

I(t) = A cos(2πfet) + xn(t) cos(2πfet)− yn(t) sin(2πfet) (2)

and the quadrature component, Q(t), is defined by

Q(t) = A sin(2πfet) + xn(t) sin(2πfet) + yn(t) cos(2πfet) (3)

where xn(t) and yn(t) are the baseband quadrature components of n(t), each having PSD N0, and fe is
the frequency error, defined as

fe = fc − fo (4)

The error signal, z(t), is then passed through a spectrum analyzer, which is assumed to be based on pro-
jecting the error signal onto a set {ψ1, · · · , ψM , ψ∗1 , · · · , ψ∗M} of 2M complex orthonormal basis functions
for a duration of T seconds. The resultant projection coefficients are then used in a detection algorithm
aimed at estimating the error frequency, fe(t). In discrete time, the frequency of the NCO is updated at
time k + 1 using the recursion

fo(k + 1) = fo(k) +G(f̂e(k)) (5)

where G is an operator representing the loop filter (LF) and f̂e(k) is the estimate of the true frequency
error, fe(k).
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Fig. 1.  Feed-back type of AFC loop.
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In order to analyze the steady-state behavior of Eq. (5), we will obtain a probability density function
(PDF) for the random process f̂e(k) conditioned on fe(k), which ultimately will depend on the basis func-
tions {ψn} and the detection algorithm. A subsequent open-loop analysis assuming constant frequency
input will help us analyze the closed loop in the presence of high dynamics.

III. Open-Loop Analysis

We assume that a function ψn(t) belonging to the basis set is of the form

ψn(t) = ψnR(t) + jψnI(t) (6)

where the real-valued function ψnR(t) is orthogonal to the real-valued function ψmI(t) over the interval
[0, T ] in the sense that

〈ψnR, ψmI〉 =
∫ T

0

ψnR(t)ψmI(t)dt = 0 1 ≤ m,n ≤M (7)

and that each set {ψnR} and {ψnI}, n = 1, · · · ,M forms an orthonormal set under the inner product
defined by Eq. (7). It follows immediately that the set {ψn} forms an orthonormal basis with respect to
the inner product defined by

〈s(t), g(t)〉 =
∫ T

0

s(t)g∗(t)dt (8)

where s(t) and g(t) are complex valued. Let c+n and c−n be defined by

c+n = 〈z(t), ψn(t)〉

c−n = 〈z(t), ψ∗n(t)〉

 (9)

where z(t) is the error signal with in-phase and quadrature components defined in Eqs. (2) and (3). With
the error frequency fe fixed, the following are easily shown (e.g, [3] ):

(1) Both c+n and c−n are complex Gaussian random variables with real and imaginary parts
having variance σ2 = N0, and their respective means are given by

µ+
n = 〈se(t), ψn(t)〉

and

µ−n = 〈se(t), ψ∗n(t)〉

where se(t) = A exp(2πjfet).
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(2) Let g+
n = |c+n | and g−n = |c−n |. Following arguments similar to those in [3], we can show

that g+
n is Rician with a PDF of

f(g+
n ) = I0

(
g+
n

σ2
|µ+
n |
)
g+
n

σ2
exp

(
−(g+

n
2 + |µ+

n |2)
2σ2

)
(10)

where I0(x) is the zeroth-order modified Bessel function and g−n is also Rician with the
mean |µ−n | replacing |µ+

n | in Eq. (10).

(3) The g+
n is independent and uncorrelated with g+

m for m 6= n and is independent and
uncorrelated with g−m for all m. We note here that the uncorrelation property follows
from the orthogonality of the basis functions.

From the above properties, we can derive a PDF of the error frequency estimate, f̂e, conditioned on
the true error, fe. But first, we must assume a loop filter G and a detection algorithm. When the input
frequency is constant, we may assume the loop filter is simply a gain, g . The detection algorithm we
assume is maximum a priori (MAP). In this case, the error estimate, f̂e, is set to the frequency that
corresponds to the maximum component of the vector G = (g+

1 , · · · , g+
M , g

−
1 , · · · g−M ). In other words,

f̂e =
M∑
n=1

f+
n ĝ

+
n +

M∑
n=1

f−n ĝ
−
n (11)

where f+
n (f−n = −f+

n ) is the frequency associated with the coefficient g+
n (g−n ), and ĝ+

n (ĝ−n ) is 1 if g+
n (g−n )

is the maximum component of the vector G and otherwise is zero. For simplicity, we redefine each of the
2M components of the vector G as gn, with corresponding frequency fn, and we express Eq. (11) simply
as

f̂e =
2M∑
n=1

fnĝn (12)

where ĝn = 1 if {gn ≥ gm ∀m} and 0 otherwise. Given the true error, fe, it follows from Eq. (12) that f̂e
takes on the value fn with probability pn, where

pn = P [gn ≥ gm, 1 ≤ m ≤ 2M ] =
∫ ∞

0

fn(gn)

2M−1∏
m 6=n

∫ gn

0

fm(gm)dgm

 dgn (13)

where fm, the PDF of gm, is of the form given in Eq. (10). The S-curve and variance curve for this
estimator are obtained by computing the expectation and variance of f̂e, respectively:

S(fe) = : E
(
f̂e|fe

)
=

2M∑
n=1

fnpn (14)

σ2
n = : var

(
f̂e|fe

)
=

2M∑
n=1

f2
npn − (E(f̂e|fe))2 (15)
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Note that, if we let the effective noise process ne(fe) = f̂e − S(fe), then ne(fe) is a zero-mean process
with variance given by Eq. (15).

IV. Wavelet Basis

The previous results apply to any orthonormal basis functions. In this section, we will specialize
the results to D4 wavelets and then compare the results to standard Fourier basis functions. Here, we
only summarize the basic definitions of wavelets. A good introduction to wavelets can be found in [4].
Procedures for constructing Daubechies wavelets can be found in [5].

We begin with real-valued wavelets. The real-valued wavelets considered here take the form

ψRn,k(t) = 2−(n/2)ψR(2−nt− k) t ∈ R (16)

where ψR(t) is referred to as a mother wavelet. Thus, ψRn,k(t) is simply a scaling and translation of
the mother wavelet, ψR(t). Typically, ψRn,k(t) has a significant frequency component at frequency f =
±2−n, and its support is near t = 2nk. Thus, the projection coefficient of a real-valued signal onto
ψRn,k(t) represents the signal component at time t = 2nk and frequency f = ±2n. In this sense, a
wavelet expansion of a nonstationary signal decomposes the signal into a time–frequency plane. Such
a decomposition becomes very useful for estimating a time-varying frequency profile of a signal. In the
context of frequency tracking, we require complex-valued basis functions so that positive frequencies can
be distinguished from negative frequencies. We accomplish this by defining the function ψI(t), which is
the Hilbert transform of ψR(t), and we define the complex-valued mother wavelet, ψ(t) = ψR(t) + jψI(t).
Finally, the complex-valued basis functions are defined as

ψn,k(t) = ψRn,k(t) + jψIn,k(t) (17)

where ψIn,k(t) is a scaling and translation of ψI(t) as in Eq. (16). For D4 wavelets, the real and imaginary
parts of the mother wavelet are shown in Figs. 2 and 3, while the power spectrum of the complex-
valued mother wavelet is shown in Fig. 4. Note that the support of the mother wavelet is [0,3]. It
follows immediately from the definition that the support of the wavelet ψn,k(t) is [2nk, 2n(k + 3)], and,
as mentioned earlier, this function has a corresponding frequency component at f = 2−n (its complex
conjugate has a component at f = −2−n). In particular, the Fourier transform amplitude of ψn,k is given
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Fig. 3.  The imaginary part of D4.
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Fig. 4.  The D4 mother wavelet power spectrum.
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by 2−n/2|Ψ0(2nw)|, where Ψ0(w) is the Fourier transform of the mother wavelet. Thus, the frequency
resolution changes in multiples of two. When the frequency error is small (much less than 1 Hz), then we
would be able to obtain very good frequency resolution by setting a large enough value for the maximum
n (i.e., the lowest frequency). However, this would be at the expense of increasing the observation window
(support of the lowest-frequency wavelet). In contrast, large frequency errors (much greater than 1 Hz)
require shorter observation times but provide poorer frequency resolution.

For each fixed integer n, the set {ψn,0, ψn,±1, · · ·} forms an orthonormal system, as does the set
{ψ0,k, ψ±1,k, · · ·} for each fixed integer k. We assume that −N2 ≤ n ≤ N1 for some positive integers N1

andN2, which implies that our frequency range is [2−N1 , 2N2 ]. This in turn implies a minimum observation
interval of [0, 2N13]. For each n, there exists a corresponding Kn

max such that 2n(Kn
max + 3) ≤ 3 × 2N1 .

With these ranges for n and their corresponding Kn
max, we form an orthonormal set of M complex-valued

wavelet functions (for resolving positive frequencies) along with their M complex conjugates (to resolve
negative frequencies). This constitutes the wavelet basis set, which is orthonormal on the interval [0, T ],
where T = 3× 2N1 . The same construction applies to any wavelets of the form given in Eq. (17).

It is easily verified that the set of wavelets constructed above fits within the general framework de-
veloped in the last section. In particular, we may apply Eqs. (14) and (15) to predict the S-curve and
the variance curve. Assuming a frequency range of [−1, 1] Hz, we applied Eqs. (14) and (15) at different
SNR [defined as 10 log(A/N0) dB-Hz] levels. These results are shown in Figs. 5 and 6 in the dotted lines
along with simulated S-curves and variance curves (stars) for positive frequencies only. In these figures,
we used N1 = 7 and N2 = 0, which implies a minimum frequency estimate of ±2−7 = ±0.0078 and a
maximum of ±1. To obtain such small values, we require an observation window of length 3 × 27 =
384 seconds. For smaller values of N1, we can still maintain the same performance for frequency offsets
away from zero, but we pay the price when the frequency error is small. This is depicted in Figs. 5(b)
and 6(b), where we show the S-curves and variance curves corresponding to N1 = 3, 4, 5, and 7 with the
SNR fixed at 10 dB-Hz. Note that the S-curves are identical in the range [0, 1], with slight differences
in the region (fe > 1). The variance curves also are almost identical in the frequency range away from
zero. Thus, for initial offsets away from zero, the performance is not affected by the window size (and,
hence, we can obtain the estimate of the offset rather quickly). However, in the tracking mode, smaller
observation intervals yield larger variances. Figure 7 shows a more detailed behavior of the variance
curve for small fe at a 10 dB-Hz SNR. As N1 decreases, the variance at the origin increases because the
minimum resolvable positive frequency 2−N1 is sufficiently far away from zero, and as such, the presence
of noise can produce a maximum projection coefficient that corresponds to any of the other frequencies in
the interval [−1,1]. This is consistent with the notion that wavelets require shorter times for acquisition
but longer times for tracking.
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In order to compare the previous results with more traditional AFC loops, we now consider Fourier
basis functions, which are known to be optimal in the sense of obtaining the Cramer–Roa lower bound
(i.e., they represent the “matched filter”) when the input frequency is constant. The basis functions ψn(t)
are given by

ψn(t) =
1√
T

exp
(

2πj
n

T
t
)

n = 0,±1, · · · ,±M (18)

where T is a positive integer denoting the observation interval and M is an integer multiple of T that
determines the desired frequency range. One can check that this set of functions forms an orthonormal
basis on the interval [0, T ]. In Figs. 8 and 9, we show the S-curve and variance curve at a 0 db-Hz
SNR and for different values of the observation interval T . Here we use different values for T and M
such that the frequency range is [−1, 1] Hz. As expected, the error and variance decrease with increasing
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window size at almost all frequency ranges. This is different from what was observed in the wavelet case
[Fig. 6(b)]. On the other hand, by comparing the results in Fig. 9 with those obtained for the wavelets
at 0 dB-Hz in Fig. 6, the clear superiority of the Fourier basis functions is evident when fe lies in the
range [−1, 1]. When |fe| > 1, (e.g., if we lose lock and the error is outside our range), we note that the
error estimate obtained using the Fourier functions immediately approaches zero (the mean value in the
range [−1, 1]) and the variance immediately arrives at its maximum value. For the wavelets, the same
qualitative behavior occurs but at a much slower pace. Thus, if the frequency offset is moderately outside
the predetermined range of [−1, 1], the wavelet-based AFC loop would yield a better estimate of the offset
than would the Fourier-based loop.

V. Closed-Loop Performance With High Frequency Rate

In this section, we examine the performance of the AFC loops with high-dynamic input. In particular,
we assume that the input frequency is of the form

fc(t) = αt α > 0 (19)
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We begin our analysis assuming no noise. We assume that in steady state the error is small enough such
that linear analysis applies. In this case, we express the error estimate, f̂e, as

f̂e = S(fe) = S0fe +O(f2
e ) (20)

where S(fe) is given in Eq. (14) and S0 = S′(0). With fe given as in Eq. (4), the NCO linear dynamics
corresponding to Eq. (5) reduce to

fo(k + 1) = (1− gS0)fo(k) + gS0fc(k) (21)

Applying the Z-transform to Eq. (21) and using fc(k) = αk, the resulting Z-transform of fe is given by

Z(fe) =
z − 1

z − 1 + gS0

αz

(z − 1)2
(22)

Applying a well-known limit theorem (see [6]) to obtain the error fe in steady state, we obtain

lim
k→∞

fe(k) = lim
z→1

(z − 1)Z(fe) =
α

gS0
=

α

4BL
(23)

where BL is the loop bandwidth. In the simulations to follow, we assume the input frequency given by
Eq. (19). Note that, using Eq. (23), the simulations can be used to approximate BL for the different AFC
loops under consideration. Again, we begin by examining the AFC loop with Fourier basis functions.
In the dashed line of Fig. 10, we show the steady-state frequency error as a function of the frequency
rate α and for a fixed observation interval of T = 3 seconds and a loop gain of g = 1. The frequency
resolution always is set to [−4α, 4α], and we assume the MAP detection algorithm. As Eq. (23) suggests,
the steady-state error increases with increasing values of the rate α, but for α > 3.5, the loop breaks
down and the error grows without bound. From the same plot, the inferred value for the loop bandwidth
BL [using Eq. (23)] is BL = 0.2726 Hz.

We now consider the AFC loop with the wavelet basis functions. Again, we assume T = 3 seconds and
g = 1, which implies that the smallest frequency that f̂e can take on is 1 Hz. The maximum frequency
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that f̂e can take on (2N2 for some integer N2 > 0) will also depend on α, and in the absence of noise,
this choice does not affect the steady-state error provided it is large enough to resolve the maximum
frequency error within a single observation interval. The solid line in Fig. 10 shows the steady-state error
as a function of α. Note that the wavelet-based AFC loop achieves a smaller steady-state error than does
the Fourier-based loop. More importantly, the wavelet-based loop continues to track for a much larger
range for α. The inferred value for the wavelet-based loop bandwidth is BL = 0.3776 Hz.

Figure 11 is similar to Fig. 10 except now the SNR is 20 dB-Hz. Again, we observe the same behavior
for the steady-state error, with the Fourier-based loop breaking down near α = 3. Figure 12 shows the
corresponding steady-state variance for both loops. The D4 loop obtains a lower steady-state variance
up to α = 2 Hz/s, then the variance grows by a significant amount, and then it goes down again. This
nonlinear behavior of the variance can be explained by considering the frequency spacing for wavelets for
frequencies much larger than 1 Hz. When the true frequency range is near 9 Hz (i.e., α = 3 in a 3-second
window), the two nearest frequencies are at 8 and 16 Hz. Thus, a misdetection of the true frequency can
cause a large variance in an ensemble of estimates. We note that increasing the SNR to 30 dB-Hz reduced
the steady-state error variance at α = 3 from 7.866 to 4.137 Hz2, and the variance at α = 5 from 2.65 to
1.133 Hz2. We expect that similar highly nonlinear behavior will hold for any wavelet since the frequency
spacing also will be logarithmic. This is not the case for the Fourier-based loop, where the frequency
spacing for large frequencies is the same as it is for small frequencies. However, although the variance of
the error does not grow very much as α increases in the Fourier-based loop, the allowable frequency rate
range for which the Fourier loop can track is much smaller than that for the wavelet-based loop. This
same behavior is seen in Figs. 13 and 14, which show the steady-state error and corresponding variance
of the error when the observation window is extended to T = 6 seconds. Again, the SNR is 20 dB-Hz.
By comparing the steady-state errors (Fig. 11 for T = 3 and Fig. 13 for T = 6), we see that the error
increased by a factor of approximately two. Thus, for example, the Fourier-based loop cannot track when
the frequency rate is greater than 1.5 Hz/s when T = 6, and 3.0 Hz/s when T = 3.
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Fig. 12.  Steady-state variance (20 dB-Hz).
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Fig. 11.  Steady-state error (20 dB-Hz).
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VI. Conclusion

The main results of this study can be summarized as follows: When the input frequency is constant
or very slowly varying, the S-curves and variance curves illustrate that the Fourier-based loop will per-
form better than the wavelet-based loop for any fixed observation interval. In fact, tracking a constant
frequency using a wavelet-based loop will require an unnecessarily large observation interval. Therefore,
using wavelets when the frequency is constant offers no advantages. On the other hand, when the signal
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Fig. 13.  Steady-state error (20 dB-Hz).
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is undergoing high dynamics, the wavelet-based loop performs better than does the Fourier-based loop.
Our results indicate that if the frequency rate is large enough (depending on observation interval and the
SNR), then the Fourier-based loop ceases to track while the wavelet-based loop continues to track. This
suggests that a wavelet-based loop can be considered in future applications where the frequency dynamics
are significant and unpredictable. What we did not discuss in this article are improvements to the MAP
detection algorithm. This area will need more investigation. Also, we did not discuss the problem of
frequency-rate estimation. Our initial investigation has shown that wavelets can also be promising for
estimating the frequency rate. This will also be considered in detail in the near future. However, other
families of wavelets, as well as other Daubechies wavelets, will have to be tested and their performances
analyzed before we can truly assess the benefit of using wavelets for frequency tracking.
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