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Using a matrix method proposed a number of years ago by Prabhu and Rowe for
computing the power spectrum of digital frequency-modulated carriers, we obtain
explicit expressions for this power spectrum when the baseband signaling is a binary
pulse-shaped random data stream with nonoverlapping pulses. Particular attention
is paid to the conditions under which a discrete spectral component can exist.

I. Introduction

In a companion article [1], the power spectrum of angle-modulated phase-shift-keyed (PSK) signals
was considered with emphasis on the effects of intersymbol interference (ISI). Using an approach taken
by Prabhu and Rowe [2], it was shown that, depending on the shape and duration of the phase pulse,
it was possible to have both continuous and discrete line spectrum components. In particular, even in
the absence of ISI, pulse shaping alone can result in the presence of a discrete spectrum for the phase-
modulated signal. In fact, for pulses that are time limited to a single transmission interval, the only pulse
shape that does not produce a discrete line spectrum is a purely digital (±1) one.

A formulation similar to that in [2] was developed one year later by Prabhu and Rowe to obtain
the power spectrum of digital frequency-modulated signals [3]. As for the PSK case, it is possible to
have both discrete and continuous spectrum components; however, the criterion for the existence of a
discrete line spectrum is quite different for the frequency-modulation case. In this article, we illustrate a
simple example of the application of this criterion for the case of binary full-response continuous-phase
modulation (CPM). Special cases of this are continuous-phase frequency shift keying (CPFSK), where
the frequency pulse is rectangular, and minimum shift keying (MSK), which itself is a special case of
CPFSK corresponding to a modulation index equal to 0.5.

II. Mathematical Signal Model

Consider a digital angle-modulated carrier of the form

x(t) = Re {exp [j2πfct+ φ(t) + θ]} (1)

where fc is the carrier frequency, θ is a random phase assumed to be uniformly distributed in (−π, π),
and φ(t) is a digital angle modulation. Then, the power spectrum of x(t) can be expressed in terms of
the power spectrum of the equivalent complex baseband modulation, v(t) = exp (jφ(t)), by
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Sxx(f) =
1
4
Svv (f − fc) +

1
4
Svv (f + fc) (2)

Thus, it is sufficient to consider the power spectrum Svv(f).

Assume now that φ(t) is in the form of a continuous-phase binary FSK signal, namely,

φ(t) =
∫ t

fd(u)du

fd(t) =
∞∑

n=−∞
akh(t− kT )


(3)

where ak denotes the data bit in the kth signaling interval that takes on values ±1 with equal probability
and

h(t) = 2πhg(t) (4)

with h the frequency modulation index and g(t) the normalized frequency pulse having the property

∫ KT

0

g(t)dt =
1
2

(5)

Here K is the number of transmission intervals over which g(t) is assumed to exist. Since, as stated in the
introduction, we are interested here only in the case of full-response CPM, we shall specifically consider
only the case of K = 1, frequency pulses time limited to a single transmission interval.

III. Conditions for the Existence of a Discrete Power Spectrum for
Nonoverlapping Pulses— K = 1

Define the two equivalent complex baseband signals

q1(t) = exp
(
j2πh

∫ t

0

g(u)du
)

q2(t) = exp
(
−j2πh

∫ t

0

g(u)du
)


(6)

corresponding to the two possible data bit values transmitted in the zeroth transmission interval. Arrange
these two signals in a column vector:

q(t) 4=
[
q1(t)
q2(t)

]
(7)

Also, define the a priori probability vector corresponding to these two equiprobable signals, namely,
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w 4=
[
w1

w2

]
=


1
2

1
2

 (8)

Then, it is shown in [3] that Svv(f) will contain a line (discrete) spectrum component when

∣∣wTq(T )
∣∣ = w1q1(T ) + w2q2(T ) = 1 (9)

Conversely, if
∣∣wTq(T )

∣∣ < 1, then a line spectrum component will not exist.

For the binary full-response CPM case under consideration, substituting Eq. (5) (with K = 1) into
Eq. (6) gives

q1(T ) = exp (jπh)

q2(T ) = exp (−jπh)

 (10)

Thus, from Eq. (9), the condition for the existence of a line spectrum is given by

∣∣wTq(T )
∣∣ =

∣∣∣∣12 (exp (jπh) + exp (−jπh))
∣∣∣∣ = |cosπh| = 1 (11)

Clearly, then for h noninteger (e.g., MSK), a line spectrum will not exist. On the other hand, for any
integer h, a line spectrum will exist. The frequencies at which the spectral lines occur are best understood
in terms of an alternate interpretation of the condition for the existence of the spectrum itself, as described
below.

When Eq. (9) is satisfied, it is possible to express the equivalent phase arguments of q1(T ) and q2(T )
defined in Eq. (6) in the form

2πh
∫ T

0

g(t)dt = 2πfl + 2πm1

−2πh
∫ T

0

g(t)dt = 2πfl + 2πm2, −1
2
≤ fl ≤

1
2


(12)

where 2πfl represents the total phase change (modulo 2π) in the carrier produced by both possible signals,
and m1 and m2 are arbitrary integers. Stated another way, if a discrete spectrum is to exist, then both
signals must produce the same total phase change (modulo 2π) in the carrier. Using Eq. (5) (with K = 1)
in Eq. (12) gives

πh = 2πfl + 2πm1

−πh = 2πfl + 2πm2

 (13)
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for the existence of a line spectrum. Clearly, Eq. (13) can be satisfied only for h integer, as concluded
previously. For example, if h = 1, then Eq. (13) is satisfied by the values fl = 1/2, m1 = 0, and m2 = −1.
The significance of determining fl is that when a line spectrum exists, the frequencies at which the
spectral lines of Sxx(f) exist are given by

f = ±
(
fc +

fl + n

T

)
; n = . . . ,−1, 0, 1, . . . (14)

Thus, for example, if h = 1, we have a discrete spectrum at

f = ±
(
fc +

n+ (1/2)
T

)
; n = . . . ,−1, 0, 1, . . . (15)

The actual line spectrum itself can be obtained in an analogous manner to that given in [1,2] for the PSK
wave. In particular, the discrete spectrum component of Svv(f), namely, Svv

l
(f), is given by

Svv
l
(f) =

1
T 2

∣∣wTR(f)
∣∣2 ∞∑
n=−∞

δ

(
f − n+ fl

T

)
=

1
2T 2
|R1(f) +R2(f)|2

∞∑
n=−∞

δ

(
f − n+ fl

T

)
(16)

where

R(f) =
[
R1(f)
R2(f)

]

Ri(f) =F {ri(t)}

ri(t) = exp
(
−j2πflt

T

)
qi(t)


(17)

Equivalently, if Qi(f) denotes the Fourier transform of qi(t), then

Svv
l
(f) =

1
2T 2

∣∣∣∣Q1

(
f +

fl
T

)
+Q2

(
f +

fl
T

)∣∣∣∣2 ∞∑
n=−∞

δ

(
f − n+ fl

T

)

=
1

2T 2

∞∑
n=−∞

∣∣∣∣Q1

(
n+ 2fl
T

)
+Q2

(
n+ 2fl
T

)∣∣∣∣2 δ(f − n+ fl
T

)
(18)

When fl = 0, we have ri(t) = qi(t), and the FSK spectra are identical to the previous PSK results.
However, it is not necessarily true that in this case the wave is a PSK wave. To have a PSK wave, the
stronger condition
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2πh
∫ T

0

g(t)dt =0

−2πh
∫ T

0

g(t)dt =0


(19)

must be met, i.e., m1 and m2 must both be equal to zero. Stated another way, a wave with fl = 0 but
with one or both of the signaling pulses producing a net phase change equal, for example, to ±2π will
have a spectrum given by the PSK formula, but will not be a PSK wave.

In a straightforward manner, the results of Section III can be extended to the partial-response CPM
case where there is signal pulse overlap, i.e., K > 1. These results are well documented in [3].

IV. Conclusions

The criteria for the existence of discrete components in the power spectrum of digital frequency-
modulated carriers are quite different from those for the analogous phase modulation case. For the case
of binary full-response continuous-phase modulation (CPM), special cases of which are continuous-phase
FSK (CPFSK) and minimum shift keying (MSK) (which itself is a special case of CPFSK), the condition
for the existence of a discrete spectrum is independent of the pulse shape and merely dependent on
the frequency modulation index. In particular, a discrete line spectrum will exist when the modulation
index is integer and will not exist when the modulation index is noninteger. The frequencies at which the
spectral lines occur can be obtained directly from the condition for the existence of the discrete spectrum.
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