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Acquisition Performance Comparison of the
Generalized Maximum A Posteriori
Symbol Synchronizer Versus the

Data-Transition Tracking Loop
L. V. Lam,1 T.-Y. Yan,1 M. K. Simon,1 and W. L. Martin2

A generalized maximum a posteriori (MAP) symbol synchronizer for arbitrary
nonoverlapping pulse shape and data-transition density is derived, and a simplified
realization is presented. Acquisition performance at low to very low symbol signal-
to-noise ratios (SNRs) is investigated and compared against the conventional data-
transition tracking loop (DTTL). Simulation results show that the MAP symbol
synchronizer can operate at very low symbol SNRs where the DTTL fails. Further-
more, the new symbol synchronizer reduces the initial acquisition time by at least
one order of magnitude as compared with the DTTL. It also has been shown that
the new symbol synchronizer is suitable for minimum-shift-keying (MSK) signaling
waveforms.

I. Introduction

Recent interest in employing powerful codes, such as turbo codes, for deep-space downlink communica-
tions motivates development of receivers operating at low symbol signal-to-noise ratios (SNRs), perhaps
as low as −10 dB. At these values of symbol SNRs, traditional receivers using the data-transition tracking
loop (DTTL) may experience difficulties in terms of symbol acquisition and tracking. The traditional
DTTL is a suboptimal closed-loop implementation derived from the maximum a posteriori (MAP) esti-
mation of the symbol epoch of a rectangular pulse stream in an additive white Gaussian noise (AWGN)
environment.

A closed-loop symbol synchronizer, such as the DTTL, is obtained by using the first derivative of the
log-likelihood function of the symbol epoch to approximate an error signal. When a rectangular pulse
waveform is used, the derivative of the log-likelihood function does not exist; hence, strictly speaking, a
closed-loop estimator does not exist for the rectangular pulse. Since the conventional DTTL approximates
the first derivative of the rectangular pulse shape by a narrow pulse at its edges, it is pulse shape depen-
dent. If a waveform other than the rectangular pulse is used for transmission, the conventional DTTL
suffers a degradation during tracking and acquiring. Furthermore, the conventional DTTL was derived
based on the assumption of a high SNR. Its performance will be degraded for low SNR applications [1].
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The generalized MAP symbol synchronizer described in this article is the optimal estimator for gen-
erating the time epochs. It received little attention in the past, mainly because it had been thought
of as a “one-shot” estimator. The advent of powerful codes and the need to operate the receiver at
low symbol SNRs, together with advances in digital signal-processing electronics, make this estimator
an attractive choice for modern digital receiver implementations. In addition, it can be shown that the
new symbol synchronizer not only can continuously update the estimate every symbol time, as does the
closed-loop scheme, but also is less complex in implementation as compared with the conventional DTTL.
This article quantifies the acquisition time performance of the MAP symbol synchronizer based on com-
puter simulations. Several authors have presented performance bounds for the mean-square performance
[2–6].3 However, exact theoretical evaluation of the acquisition performance of the MAP estimator is
mathematically difficult.

This article is organized into three sections. Section II derives the new symbol synchronizer for an
arbitrary data-transition density. Section III presents computer simulation results for both the new
estimator and the DTTL. Section IV provides the conclusion.

II. Theoretical Derivation

Consider the received baseband signal written in sample (discrete-time) form as

y(n) =
√
ST
∑
k

akp(n− kN − ε) + v(n) (1)

where n, k = 0, 1, . . . ,∞, ε is the unknown symbol epoch, p(n) is the nonoverlapping symbol pulse shape
of duration Ts seconds, ak is the kth binary symbol, N is the number of samples per symbol, ST is the
transmitted power, and v(n) is the AWGN with a two-sided power spectral density level of N0/2 W/Hz.
Letting y

k
denote the N -dimensional observation column vector of the signal in the kth symbol interval

and p
k
(ε), vk the corresponding nonoverlapping pulse shape and noise vectors, then

y
k

=
√
STakpk(ε) + vk (2)

Letting Y K be the observation vector over K + 1 symbols, then

Y K =


y

0
·
·
y
K

 =
√
ST


a0p0

(ε)
·
·

aKpK(ε)

+


v0

·
·
vK

 (3)

Hence, the a posteriori probability density function of the symbol epoch, ε, given the received signal
vector, Y K , is

P (ε|Y K) =
P (ε)
P (Y K)

P (Y K |ε, aK)
aK (4)

where the overline denotes statistical averaging over all possible values of the K-symbol data vector
aK and ε is assumed to be constant over K symbol intervals. Assuming an independent, identically

3 M. K. Simon, “Maximum Likelihood Sliding Window Estimation of Timing for NRZ Data Streams,” JPL Interoffice
Memorandum (internal document), Jet Propulsion Laboratory, Pasadena, California, October 1997.
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distributed (i.i.d.) data stream, vK and aK are uncorrelated, and vK has zero mean and a variance of
N0/2 W/Hz. Then Eq. (3) can be rewritten as

P (ε|Y K) =
P (ε)
P (Y K)

K∏
k=0

∑
ak

P
(
y
k
|ε, ak

)
P (ak) (5)

where P (y
k
|ε, ak) is conditionally Gaussian distributed as

P
(
y
k
|ε, ak

)
=

1(
2π
N0

2

)N/2 exp

−
(
y
k
−
√
STakpk(ε)

)T (
y
k
−
√
STakpk(ε)

)
2
N0

2

 (6)

where T denotes the transpose operation. For binary communication where ak takes on values ±1 and
assuming ε is uniformly distributed over {0, 1, . . . , N − 1}, Eq. (5) can be reduced to

P (ε|Y K) = C
K∏
k=0

(
2α sinh

(
2
√
ST
N0

yT
k
p
k
(ε)
)

+ exp
(
−2
√
ST
N0

yT
k
p
k
(ε)
))

(7)

where all the constant terms have been combined into C and α denotes the probability that ak = +1.
Since P (ε|Y K) is a product of K + 1 terms, it is easier to work with the logarithm of P (ε|Y K). Taking
the natural logarithm of Eq. (7) leads to the log-likelihood function

Λ (ε|Y K) = C1 +
K∑
k=0

ln
(

2α sinh
(

2
√
ST
N0

yT
k
p
k
(ε)
)

+ exp
(
−2
√
ST
N0

yT
k
p
k
(ε)
))

(8)

where C1 ≡ ln(C). Since we are interested in maximizing Λ(ε|Y K) with respect to ε, we can ignore the
constant C1. Letting α = 0.5, Eq. (8) reduces to [1]4

Λ (ε|Y K) =
K∑
k=0

ln
(

cosh
(

2
√
ST
N0

yT
k
p
k
(ε)
))

(9)

The generalized MAP estimate of the epoch is the estimate, ε̂, which maximizes the log-likelihood function
of Eq. (9). That is,

Λ (ε̂|Y K) = max
i=0,1,...,N−1

{Λ (εi|Y K)} (10)

where

εi ∈ {0, 1, . . . , N − 1} (11)

4 Ibid.
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The argument in Eq. (9) can now be rewritten as the discrete convolution

yT
k
p
k
(εi) =

kN+i−1∑
n=(k−1)N+i

y(n)p(n− (k − 1)N) (12)

Hence, Eqs. (9) and (12) specify a realization of the generalized MAP symbol synchronizer. It involves
discretely correlating the symbol pulse waveform with all possible shifted received signals. Equation (9)
can be rewritten in the recursive form:

Λ (ε|Y K) = Λ
(
ε|Y K−1

)
+ ln

(
cosh

(
2
√
ST
N0

yT
K
p
K

(ε)
))

(13)

From Eqs. (12) and (13), a recursive implementation of the MAP symbol synchronizer is realized and
shown in Fig. 1 [1].5

For practical implementation, one can simplify the estimator, as shown in Fig. 2, where the coefficients
of the finite impulse response (FIR) filter correspond to N samples of the digitized symbol pulse waveform.
The look-up table performs the operation shown in Figs. 1(b) or 1(c). Resetting the accumulator can
be accomplished by the preprogram clock with period K or by using the reset signal generator circuitry
shown in Fig. 2(b). Note that it is difficult to determine the appropriate value of period K when the
symbol SNR is not known. The circuit shown in Fig. 2(b) automatically provides the reset timing needed
to reset the accumulator.

y (n )y (n − N −1) ....
SEE

FIGS. 1(b)
AND 1(c)
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Fig. 1.  The recursive MAP symbol synchronizer: (a) implementation, (b) implementation when the probability
of mark (α) ≠ 0.5, and (c) implementation when the probability of mark = 0.5.
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Fig. 2.  The simplified estimator:  (a) the simplified recursive MAP symbol synchronizer and
(b) the reset signal generator.
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III. Computer Simulation

Figure 3 shows the communication simulation system in order to compare the acquisition performance
of the two symbol synchronizers using the Signal Processing Worksystem (SPW) software from Cadence
Design Systems. Table 1 summarizes the simulation parameters.

A. Acquisition Performance of the MAP Symbol Synchronizer

Figure 4(a) shows the probability of acquisition as a function of acquisition time parameterized by the
symbol SNR. Each acquisition curve is obtained from 500 simulation runs. For each run, a random epoch
is chosen for the symbol synchronizer to acquire. The epoch is assumed to be uniformly distributed over
the discrete symbol interval {0, 1, . . . , N−1}. The MAP symbol-synchronizer acquisition time is the time
at which the synchronizer declares lock and the normalized error between the estimate and the actual
epoch is equal to or less than a prescribed value for at least 5 seconds. The normalized error is defined as

λ =
|ε− ε̂k|
Ts

(14)

where ε̂K is the estimate of the symbol epoch made after observing K data symbols. Note that ε̂K is
discrete, with values in the range of (0, 1, . . . , N − 1), while the unknown symbol epoch, ε, is continuous.
Hence, when ε is not an integer multiple of 1/N , the estimate, ε̂K , will have an irreducible error component
of magnitude |∆| < 1/N . The error component is inversely proportional to the sampling frequency: the
higher the sampling frequency (larger N), the smaller the error component, ∆. In this article, ε always
is an integer multiple of ∆.

5



ε

ε

DELAY (ε)
UNIFORM

DISTRIBUTED
(0 to N — 1)

RANDOM
DATA

SOURCE

MAP
SYMBOL

SYNCHRONIZER

DTTL

ACQUISITION
LOCKED

DETECTOR

AWGN

DELAY (ε)

ACQUISITION
TIME

ACQUISITION
LOCKED

DETECTOR

Σ
ACQUISITION

TIME

DELAY (ε)

Fig. 3.  The computer simulation model for evaluating the acquisition performance of the
MAP symbol synchronizer and the DTTL.

Table 1. Simulation parameters.

Parameter Value

Sampling frequency, fs 500 kHz

Symbol rate, Rs 10 kHz

No. samples/symbol, N 50

Figure 4(a) shows the probability of acquisition curves when the prescribed value of the normalized
error, λ, is set to less than ∆. Figure 4(b) shows the probability of acquisition curves with the normalized
error, λ, set to less than ∆ and 2∆. As expected, the acquisition time decreases because larger errors can
be tolerated. Note that λ is a function of the variable N .

It often is practical to have small N to minimize processing power and hardware complexity. Reducing
N means increasing the irreducible error component ∆. However, the estimate could reach the steady
state in a shorter period of time. Figure 4(c) shows the probability of acquisition as a function of
acquisition time for various values of N . Here the normalized error, λ, is set to less than ∆, and ε is an
integer multiple of ∆.

The MAP estimator shown in Fig. 1 can accommodate data unbalance (i.e., a data-transition density
not equal to 0.5). Figure 1(b) shows the implementation for arbitrary α, and Fig. 1(c) shows the case
for α = 0.5. Since α is not known a priori, Fig. 1(c) represents a suboptimal implementation when α is
unequal to 0.5. Figure 5 shows the probability of acquisition versus acquisition time curves for α = 0.7.
The solid curves result from using the nonlinearity in Fig. 1(b), and the dashed curves result from using
the nonlinearity shown in Fig. 1(c). Note that using the correct nonlinearity [i.e., Fig. 1(b)] improves
the acquisition probability, but not significantly. The following simulations will not consider transition
unbalance in the data probabilities.

The generalized MAP symbol synchronizer shown in Fig. 1 is applicable to any symbol pulse shape,
provided that the coefficients of the FIR filter contain the samples of the pulse shape waveform. In this
experiment, the half-sinusoidal waveform of the minimum-shift-keying (MSK) signaling was digitized into
50 samples (N = 50) and chosen as the FIR filter coefficients. Figure 6(a) shows the probability of
acquisition as a function of time for the MSK waveform. Note that λ < 2∆ is used in Fig. 6(a).

Although the generalized MAP symbol synchronizer was designed for nonoverlapping pulse shapes
[i.e., zero intersymbol interference (ISI)], simulation results show that it does work with overlapping
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Fig. 4.  The acquisition performance of the MAP symbol synchronizer parameterized by:  (a) the symbol
SNR, (b) the symbol SNR and normalized estimation error, λ, and (c) the number of samples/symbol, N.

0.0001

0.0001

pulse shapes that produce ISI. Figure 6(b) shows the probability of acquisition versus acquisition time
for a Gaussian-minimum-shift-keying (GMSK) pulse shape with a Gaussian filter bandwidth-to-bit time
product (BTB = 0.25). Note that in order for the generalized MAP symbol synchronizer to work properly
with ISI pulses, one must allow sufficiently large values of λ to discount the effects of ISI.
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Fig. 4 (cont’d).  The acquisition performance of the MAP symbol synchronizer parameterized by:  (a) the
symbol SNR, (b) the symbol SNR and normalized estimation error, λ, and (c) the number of
samples/symbol, N.
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Fig. 6.  The acquisition performance of the MAP symbol synchronizer for (a) an MSK waveform
and (b) a GMSK (BTB = 0.25) waveform.
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B. Acquisition Performance of the DTTL Tracking Loop

The acquisition and tracking performance of the DTTL has been studied extensively6 [1,7–9] at
medium-to-high symbol SNRs. Since the DTTL was developed for this SNR range, one would expect sub-
optimal performance for low symbol SNR applications. Figure 7(a) shows the probability of acquisition
as a function of time for the DTTL at various symbol SNRs.

Similarly to those described in Section II.A, each probability of acquisition curve was generated from
500 simulation runs. Acquisition is declared when the phase error (λDTTL) stays less than or equal to a

6 H. Tsou and S. Hinedi, “SPW Simulation for Clock Stability Effects on Acquisition Performance of the Data Transition
Tracking Loop,” CCSDS Action Item A-E-93-37 (internal document), Jet Propulsion Laboratory, Pasadena, California,
June 1994.

9



Fig. 7. The acquisition performance of the DTTL parameterized by symbol SNR with: (a) loop SNR = 17 dB
and prescribed phase error = 90 deg, (b) loop SNR = 17 dB and prescribed phase error = 45 deg, and
(c) loop SNR = 10 dB and prescribed phase error = 90 deg.
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(a)

prescribed value for at least 10/BL seconds, where BL is the DTTL’s loop filter bandwidth. With the
loop SNR set to 17 dB, the normalized window size = 1 (full window), and the prescribed phase error set
to 90 deg (the pull-in range of the DTTL), Fig. 7(a) shows the probability of acquisition versus acquisition
time. Note that these curves show that the acquisition performance of the DTTL degrades significantly
as symbol SNR becomes smaller. At symbol SNRs below −5 dB, the DTTL sometimes fails to acquire
within the allotted time. For example, at a symbol SNR = −6 dB, the DTTL failed to acquire after
418 seconds in some simulations. The probability of acquisition curves for symbol SNRs below −6 dB are
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Fig. 7 (con’t).  The acquisition performance of the DTTL parameterized by symbol SNR with:  (a) loop
SNR = 17 dB and prescribed phase error = 90 deg, (b) loop SNR = 17 dB and prescribed phase error =
45 deg, and (c) loop SNR = 10 dB and prescribed phase error = 90 deg.

(c)

not available, due mainly to the fact that, in this range of SNRs, either the DTTL often does not lock or
it would take an extremely long time to generate one of these curves even if the DTTL could acquire at
these low SNRs. In Fig. 7(b), the acquisition probability curves were obtained with the prescribed phase
error reduced to 45 deg.

Acquisition time of the DTTL is a function of the bandwidth of the loop filter and the window size.
Aung et al. [9] have discussed the optimization of these parameters. Increasing the loop bandwidth (i.e.,
decreasing the loop SNR) is equivalent to increasing the update rate; hence, the acquisition time could
become smaller. However, increasing the loop bandwidth also means increasing the noise power in the
loop; hence, the loop could become unstable, especially at low symbol SNRs. Figure 7(c) shows the
acquisition probability curves as a result of widening the bandwidth of the loop filter (i.e., decreasing the
loop SNR from 17 dB down to 10 dB). Comparing Fig. 7(a) with Fig. 7(c) shows that the acquisition
performance becomes worse for lower loop SNRs (i.e., for larger bandwidths of the loop filter).

C. A Comparison of the Acquisition Performance of the MAP Symbol Synchronizer and the DTTL

A comparison of Figs. 4(a) and 4(b) with Figs. 7(a) and 7(b) clearly shows the advantages of the new
symbol synchronizer compared with the DTTL in terms of acquisition time. For a given probability of
acquisition, the new symbol synchronizer provides faster acquisition time even under a more stringent cri-
terion, namely smaller phase error. Note that the new symbol synchronizer can acquire, with 100 percent
probability, a signal with an SNR as low as −10 dB, provided that the symbol epoch remains unchanged.
This was not true for the DTTL. Figure 8 summarizes the performance difference between the new sym-
bol synchronizer and the DTTL by showing the acquisition time as a function of symbol SNR for an
acquisition probability of 90 percent. Acquisition time of the new symbol synchronizer (Fig. 8) ranges
from a 10-dB improvement at symbol SNRs less than −5 dB to a 3-dB improvement for a symbol SNR
about 0 dB, when compared with the DTTL. Note that it is not surprising to see that the acquisition
time of the new symbol synchronizer decreases linearly with increasing symbol SNR, as shown in Fig. 8
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(λ < ∆). For the AWGN channel, the noise power decreases linearly as a function of the observation
time. Hence, increasing the symbol SNR linearly is equivalent to decreasing the observation time linearly
(i.e., shortening the acquisition time).

IV. Conclusion

In this article, the generalized MAP symbol synchronizer for arbitrary data-transition density was
derived and, based on computer simulation, shown to provide orders of magnitude improvement over the
conventional DTTL in terms of acquisition time, particularly at low symbol SNRs. In addition, with the
recursive implementation, the MAP symbol synchronizer can continuously update (at the symbol rate)
the estimate, as shown in Fig. 1. For example, as shown in Figs. 4 through 6, at symbol SNR = −10 dB,
one can update the estimate at least once every 4 seconds with a 90 percent probability that the new
estimate has zero tracking phase error. The DTTL will take an order of magnitude longer, provided that
it can acquire at a symbol SNR of −10 dB with reasonable phase error.
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