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Carrier Synchronization of Offset Quadrature
Phase-Shift Keying

M. K. Simon1

This article contains analyses of the performance of various carrier synchro-
nization loops for offset quadrature phase-shift-keying (OQPSK) modulation, all
motivated in one form or another by the maximum a posteriori (MAP) estimation
of carrier phase. When they are implemented as either high or low signal-to-noise
ratio (SNR) approximations to the generic implementation suggested by the MAP
estimation of carrier phase for an OQPSK signal, it is shown that the loops behave
more like biphase than quadriphase loops in that they only exhibit a 180-deg phase
ambiguity rather than the 90-deg phase ambiguity typical of the latter. This phase
ambiguity advantage coupled with the mean-square tracking-error performance ad-
vantage that results and its ultimate effect on average error probability performance
offer a potentially significant justification for using OQPSK rather than QPSK even
on a linear transmission channel, where it often is reasoned (based on the assump-
tion of an ideal environment) that the two modulation schemes perform identically.

I. Introduction

The problem of suppressed-carrier synchronization in digital coherent communication systems has
received widespread attention over the years from a theoretical as well as a practical point of view. In
reality, these two points of view are not separate from each other in that the carrier synchronization
structures that commonly are employed in the design of coherent receivers are those that are motivated
by the application of the maximum a posteriori (MAP) estimation theory [1]. A common example of this
is the Costas or in-phase–quadrature (I-Q) loop [2,3] for binary phase-shift-keying (BPSK) systems that
is derived by suitably using the derivative of the open-loop MAP estimate of carrier phase as the error
signal in a closed-loop configuration. Closed loops derived in such a fashion often are referred to as MAP
estimation loops [1,4], and this terminology likewise shall be used here in this article. Extension of the
above relationship between open-loop (MAP) carrier estimation and closed-loop synchronization schemes
to M -ary modulation schemes such as multiple phase-shift keying (MPSK) and quadrature amplitude-
shift keying (QASK) also has been considered in the past [2,4,5].

Common to all of the above closed-loop schemes is the fact that the equivalent additive noise that
perturbs the loop error signal can be modeled as a piecewise constant (over the duration of a data sym-
bol, Ts) random process that is independent from symbol to symbol. Hence, the loop update likewise is
independent from symbol to symbol, and the analysis of its performance can be determined by assuming
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a triangular correlation function of width 2Ts for the equivalent additive noise. Also, the signal com-
ponent of the loop error signal, i.e., the so-called S-curve, is a nonlinear (e.g., sinusoidal for low-SNR
implementations) function of Mφc, with φc denoting the loop phase error, and as such the loop exhibits
an M -fold phase ambiguity,

When the modulation is offset, such as for offset quadrature-phase-shift keying (OQPSK), both of the
above observations become modified. First, the noise components in the I and Q channels corresponding
to adjacent symbols overlap each other. Hence, the equivalent additive noise that perturbs the loop
error signal, although still able to be modeled as a piecewise constant process, is no longer independent
from symbol to symbol, i.e., adjacent symbol correlation exists. Second, the loop S-curve now need have
only an 180-deg phase ambiguity (rather than the 90-deg phase ambiguity characteristic of QPSK carrier
synchronization schemes) and as such resembles a BPSK carrier synchronization loop that tracks the
2φ process. This phenomenon was identified previously by Mengali [6, p. 232] for a decision-directed
implementation of the OQPSK loop derived from MAP estimation considerations. Associated with this
observation is the fact that, for OQPSK, the nonlinear loss that degrades the loop SNR will now be a
squaring loss as opposed to the fourth-power loss typical of QPSK carrier synchronization loops.

In this article, we study the carrier synchronization problem for OQPSK in a more general framework
than that considered in [6] in that we do not restrict ourselves to high-SNR (decision-directed) implemen-
tations of the MAP estimation loop. In particular, we explore in detail the noise and S-curve properties
of the MAP estimation loop for OQPSK and their effect on its mean-square phase-error performance.
We also present the behavior and performance of another OQPSK that has been implemented for future
use in the Deep Space Network tracking stations [7]. This loop is an ad hoc but simple modification
of that used for nonoffset QPSK and as such tracks the 4φ process with an accompanying 90-deg phase
ambiguity. The performance of this suboptimal loop is compared with that of the true MAP estimation
loop for OQPSK referred to above and found to be considerably inferior. In all cases, comparisons will
be made on the basis of mean-squared phase jitter for equal loop bandwidths and signal-power-to-noise-
power spectral density ratios. An equivalent comparison is in terms of the squaring loss2 (the reduction
in loop SNR relative to that of a phase-locked loop (PLL) of the same loop bandwidth).

II. Received Signal Model

For OQPSK, the I–Q carrier-modulated signal seen at the input to the receiver can be written in the
form

s(t, θ) =
√
P [mI(t) cos (ωct+ θ) +mQ(t) sin (ωct+ θ)] (1)

where P is the signal power in watts and

mI(t) =
∞∑

n=−∞
akp(t− kTs)

mQ(t) =
∞∑

n=−∞
bkp

(
t−
(
k +

1
2

)
Ts

)


(2)

2 Despite the fact that squaring loss is a term most appropriate to binary Costas loops, it nevertheless is used generically
for loops corresponding to higher-order modulations such as QPSK even though in that instance fourth-power loss would
be the more appropriate term.
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with {ak} and {bk} respectively denoting the streams of independent, identically distributed (i.i.d.) binary
(±1) I and Q data symbols, Ts the symbol time, p(t) a unit power rectangular pulse shape of duration
Ts seconds and symmetric around t = 0, and θ the unknown carrier phase to be estimated. In addition to
the signal in Eq. (1), the additive noise n(t) present at the receiver input is characterized as a band-limited
white Gaussian noise process with single-sided power spectral density N0 W/Hz.

III. The MAP Estimation of Carrier Phase

Based on an observation of the received signal plus noise x(t) = s(t, θ)+n(t) over a time interval KTs,
we wish to estimate the random parameter θ (assumed to be time invariant over the observation interval)
so as to maximize the a posteriori probability p (θ |x(t) ).3 Since the unknown phase θ can be assumed to
be uniformly distributed in the interval (−π, π), equivalently, we can maximize the conditional probability
p (x(t) |θ ). For the assumed additive white Gaussian noise channel model, the solution to this problem
is well-known and can be obtained from the solution to the same problem corresponding to unbalanced
QPSK (UQPSK) modulation [5]. In particular, since OQPSK is a special case of UQPSK corresponding
to equal powers and equal data rates on both the I and Q channels as well as synchronous (but offset)
I and Q data streams, then from [5, Eq. (14)], we immediately obtain an expression for the error signal
e (φ) of the MAP estimation loop for OQPSK, namely,

e(φ) =
K∑
k=1

[
Ic (k, φ) tanh {Is (k, φ)} − Is

(
k − 1

2
, φ

)
tanh

{
Ic

(
k − 1

2
, φ

)}]
(3)

where

Is (k, φ) 4=
2
√
P

N0

∫ kTs

(k−1)Ts

x(t) sin
(
ωct+ θ̂

)
dt

Ic (k, φ) 4=
2
√
P

N0

∫ kTs

(k−1)Ts

x(t) cos
(
ωct+ θ̂

)
dt


(4)

with θ̂ denoting the loop’s estimate of the received carrier phase θ and φ
4= θ − θ̂ the associated loop

phase error. For conventional (nonoffset) QPSK, the corresponding error signal to Eq. (3) would be

e(φ) =
K∑
k=1

[Ic (k, φ) tanh {Is (k, φ)} − Is (k, φ) tanh {Ic (k, φ)}] (5)

An implementation of a closed loop4 based on Eq. (3) is illustrated in Fig. 1, where the K-symbol
accumulator associated with the open-loop MAP estimate is replaced by a digital loop filter whose design
is governed by the desired dynamic behavior of the loop.

3 For convenience, we shall assume that K is integer, i.e., the observation interval corresponds to an integer number of baud
intervals. This is typical of MAP estimation problems of this type.

4 The illustration in Fig. 1 is slightly more generic in that it includes the possibility of a nonrectangular unit power Ts-second
pulse shape, p(t).
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Fig. 1.  Block diagram of the MAP carrier synchronization loop for offset pulse-shaped QPSK.

IV. Implementations for Low and High SNRs

As is customary in problems of this type, the hyperbolic tangent nonlinearity is replaced by its small
and large argument approximations corresponding to small and large SNR applications. In the case
of the latter, the appropriate approximation is tanhx ∼= sgn x, which results in a decision-directed
implementation, e.g., [6, Fig. 5.23]. A tracking-performance analysis of this scheme for Nyquist channels
and the assumption of perfect decisions [6, Eq. (5.25)] is given in [6, Section 5.4.2]. In the case of the
former, the hyperbolic tangent function is approximated by the first or first two terms of its power series.
For QPSK, if we use simply the approximation tanhx ∼= x in Eq. (5), then the error signal e (φ) will
degenerate to zero value for all φ and, hence, be of no use. Thus, for QPSK, we must use the first
two terms of the power series, i.e., tanhx ∼= x − x3/3, in which case the linear term still results in zero
contribution to the error signal, but the cubic term gives [4]

e(φ) =
K∑
k=1

Ic (k, φ) Is (k, φ)
[
(Ic (k, φ))2 − (Is (k, φ))2

]
(6)

which is of the form IQ
(
Q2 − I2

)
and involves fourth-order product terms. Thus, as previously alluded

to, in this instance the loop S-curve would be proportional to sin 4φ, and the squaring loss involves
fourth-order noise product terms.

For OQPSK, using only the linear term of the hyperbolic tangent power series does not result in a
degenerate error signal since applying the approximation tanhx ∼= x to Eq. (3) results in
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e(φ) =
K∑
k=1

[
Ic (k, φ) Is (k, φ)− Is

(
k − 1

2
, φ

)
Ic

(
k − 1

2
, φ

)]
(7)

which has the form of the difference of two binary PSK error signals with a half symbol separation and,
in general, is nonzero for arbitrary φ. Thus, since only second-order products are involved in Eq. (7),
one would anticipate that the loop S-curve might be proportional to sin 2φ, and the squaring loss would
involve only second-order noise product terms, as is the case for I–Q Costas loop tracking of BPSK. That
such is the case is the subject of the tracking performance analysis to be presented in the next section.

A. Tracking-Performance Analysis of the Low SNR Implementation

In this section, we first derive the S-curve and equivalent noise of the I–Q loop of Fig. 1 (with a linear
approximation to the hyperbolic tangent function) and then compute the loop’s mean-square phase jitter.
As previously mentioned, the signal x(t) at the input to the receiver is composed of the sum of the signal
s (t, θ) and a band-limited white Gaussian noise process that can be expressed in the form

n(t) =
√

2 [Nc(t) cos (ωct+ θ)−Ns(t) sin (ωct+ θ)] (8)

where Nc(t) and Ns(t) are independent low-pass white Gaussian noise processes with single-sided
power spectral density N0 W/Hz. Demodulating x(t) with the quadrature reference signals rc(t) =√

2 cos
(
ωct+ θ̂

)
and rs(t) =

√
2 sin

(
ωct+ θ̂

)
produces (ignoring second-order harmonics of the carrier)

the quadrature phase detector outputs

εc(t) =

[√
P

2
mQ(t)−Ns(t)

]
sinφ+

[√
P

2
mI(t) +Nc(t)

]
cosφ

εs(t) =

[√
P

2
mQ(t)−Ns(t)

]
cosφ−

[√
P

2
mI(t) +Nc(t)

]
sinφ


(9)

where φ 4= θ − θ̂ denotes the phase error in the loop. Integrating over the appropriate time intervals
corresponding to the transmitted I and Q symbols5 gives the pairs of signals zc(t), zs(t) and z′c(t), z

′
s(t),

which are used to form the loop-error signal. Assuming a modulation m(t) as in Eq. (1), these signals
take the form6

zc(t) =
∫ Ts/2

−Ts/2
εc(t)dt =

[√
P

2
Ts
b0 + b−1

2
−N1

]
sinφ+

[√
P

2
Tsa0 +N2

]
cosφ

zs(t) =
∫ Ts/2

−Ts/2
εs(t)dt =

[√
P

2
Ts
b0 + b−1

2
−N1

]
cosφ−

[√
P

2
Tsa0 +N2

]
sinφ,

Ts
2
≤ t ≤ 3Ts

2


(10a)

and

5 For convenience, we assume the first (k = 1) baud interval for the I and Q integrate-and-dump (I&D) filters corresponding
to the transmitted symbols a0 and b0.

6 We can ignore the weighting of the integrators by the factor 2
√
P/N0 since, for this implementation, this gain eventually will

be absorbed in the total loop gain. As such, zc(t), zs(t), z′c(t), and z′s(t) are normalized versions of Ic(k, θ), Is(k, θ), I′c(k, θ),
and I′s(k, θ) corresponding to k = 1.
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z′c(t) =
∫ Ts

0

εc(t)dt =

[√
P

2
Tsb0 −N ′1

]
sinφ+

[√
P

2
Ts
a0 + a1

2
+N ′2

]
cosφ

z′s(t) =
∫ Ts

0

εs(t)dt =

[√
P

2
Tsb0 −N ′1

]
cosφ−

[√
P

2
Ts
a0 + a1

2
+N ′2

]
sinφ, Ts ≤ t ≤ 2Ts


(10b)

where N1, N2, N
′
1, and N ′2 are zero-mean Gaussian random variables defined by

N1
4=
∫ Ts/2

−Ts/2
Ns(t)dt

N2
4=
∫ Ts/2

−Ts/2
Nc(t)dt

N ′1
4=
∫ Ts

0

Ns(t)dt

N ′2
4=
∫ Ts

0

Nc(t)dt



(11)

all with variance σ2
N = N0Ts/2. Although N1 and N2 are uncorrelated, and likewise for N ′1 and N ′2,

because of the offset between the I and Q channels, the pairs N1, N
′
1, and N2, N

′
2 are indeed correlated

with

E {N1N
′
1} = E {N2N

′
2} =

N0Ts
4

(12)

However, the pairs N1N
′
2 and N ′1N2 are still uncorrelated.

Multiplying z′c(t) and z′s(t) and subtracting the product of zc(t− Ts/2) and zs(t− Ts/2) produces the
error signal corresponding to the first baud interval in accordance with Eq. (7), namely,

z1(t) = z′c(t)z
′
s(t)− zc

(
t− Ts

2

)
zs

(
t− Ts

2

)

=
1
4
PT 2

s

[
b20 + a2

0 −
(
a0 + a1

2

)2

−
(
b0 + b−1

2

)2
]

sin 2φ

+
1
2
PT 2

s

[
b0

(
a0 + a1

2

)
− a0

(
b0 + b−1

2

)]
cos 2φ− Ne (t, 2φ)

2

=
1
4
PT 2

s

{[
1− a0a1

2
− b0b1

2

]
sin 2φ+ [b0 (a0 + a1)− a0 (b0 + b1)] cos 2φ

}
− Ne (t, 2φ)

2
,

Ts ≤ t ≤ 2Ts (13)
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where the first two (signal) terms account for the signal × signal products and Ne (t, 2φ) is an equivalent
noise (as if it appeared at the loop input) that accounts for the remaining signal × noise and noise × noise
products that, after some simplification, becomes

Ne (t, 2φ) = sin 2φ

×
{
− (N ′1)2 + (N ′2)2 −N2

2 +N2
1 −

√
P

2
Ts [(b0 + b−1)N1 − 2b0N ′1 − (a0 + a1)N ′2 + 2a0N2]

}

+ cos 2φ

{
2N ′1N

′
2 − 2N1N2 −

√
P

2
Ts [2b0N ′2 + 2a0N1 − (b0 + b−1)N2 − (a0 + a1)N ′1]

}
,

Ts ≤ t ≤ 2Ts (14)

and is a piecewise constant (over intervals of Ts seconds) random process.

The statistical mean (over the data symbols) of the signal term represents the loop S-curve. Thus,
averaging the signal terms of Eq. (13) over the data gives

z1(t) 4=
1
2
S (φ) =

1
2

(
1
2
PT 2

s sin 2φ
)
4=

1
2
Kg sin 2φ (15)

as previously anticipated, where Kg = PT 2
s /2 denotes the slope (with respect to the 2φ process) of

the S-curve S (φ) at the origin. The difference between the signal components of z1(t) and their mean
represents self-modulation noise that, at very large symbol SNR Es/N0 = PTs/N0 produces an error
floor in the loop mean-square phase-error performance [6]. For the purpose of the analysis here, we shall
ignore this self-noise since, in the typical region of symbol SNRs of interest (below about 15 dB), it has
negligible influence on the performance. If necessary, evaluation of the self-noise can be carried out in an
analogous fashion to that considered in [2,6].

Linearizing the loop (i.e., replacing sin 2φ by 2φ), as is appropriate in the typical operating region
of large loop SNRs, then following the approach in [2], the mean-square error of the 2φ process can be
computed from

σ2
2φ =

NEBL
K2
g

(16)

where BL denotes the loop bandwidth and NE is the flat single-sided power spectral density of the equiv-
alent noise process7 Ne (t, 0), which can be modeled as a delta-correlated process [2] with autocorrelation
function RNe(τ) = E {Ne (t, 0)Ne (t+ τ, 0)}. Thus,

NE = 2
∫ ∞
−∞

RNe(τ)dτ (17)

7 In the linear region of loop operation, we can, without loss of generality, assume φ = 0 in so far as the noise power
evaluation is concerned.
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The mean-square phase error of Eq. (16) can be rewritten in the form

σ2
2φ =

4
ρSL

ρ
4=

P

N0BL

SL
4= 4

(
K2
g/P

NE/N0

)


(18)

where ρ is the loop SNR of an equivalent linear loop (e.g., the PLL) and SL is the so-called squaring loss,
as previously mentioned. We now proceed to evaluate the equivalent power spectral density NE defined
in Eq. (17).

From Eq. (14), we have that

Ne (t, 0) = 2N ′1 (1)N ′2 (1)− 2N1 (1)N2 (1)

−
√
P

2
Ts [2b0N ′2 (1) + 2a0N1 (1)− (b0 + b−1)N2 (1)− (a0 + a1)N ′1 (1)] ,

Ts ≤ t ≤ 2Ts (19)

where we have introduced the parenthetical notation “(1)” to the integrated noise variables to relate to
the fact that, as per their definition in Eq. (11), they correspond to the first (k = 1) baud interval. For
the following baud interval, the analogous expression to Eq. (19) would be

Ne (t, 0) = 2N ′1 (2)N ′2 (2)− 2N1 (2)N2 (2)

−
√
P

2
Ts [2b1N ′2 (2) + 2a1N1 (2)− (b1 + b0)N2 (2)− (a1 + a2)N ′1 (2)] ,

2Ts ≤ t ≤ 3Ts (20)

where, in accordance with Eq. (11), N1 (2) and N2 (2) are the quadrature noise components integrated
over the interval Ts/2 ≤ t ≤ 3Ts/2 and N ′1 (2) and N ′2 (2) are the analogous components integrated
over the interval Ts ≤ t ≤ 2Ts. Clearly, the equivalent noises in Eqs. (19) and (20) are correlated
because of the overlap of the unprimed and primed noise components brought about by the offset in
the I and Q integration intervals.8 This phenomenon is different from that for nonoffset QPSK, where
the equivalent noise components are uncorrelated from symbol interval to symbol interval. Because of
this adjacent symbol noise correlation, the correlation function of Ne (t, 0) is piecewise linear over a time
interval −2Ts ≤ t ≤ 2Ts, as illustrated in Fig. 2 and, hence, it is sufficient to compute the values of RNe(τ)

8 This correlation extends only into adjacent symbol intervals since beyond that the integration intervals for the unprimed
and primed noise components do not overlap.
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−2Ts τ

R (1)

RNe (τ )
R (0)

Ts−Ts 2Ts

Fig. 2.  The autocorrelation function of the
equivalent noise process.

at integer multiples of Ts, namely, RNe(nTs)
4= R(n), where R(0) = E

{
N2
e (t, 0)

}
= σ2

Ne
. Furthermore,

since RNe(τ) extends only from −2Ts to 2Ts, then in view of Eq. (17), the equivalent noise spectral
density is given by

NE = 2Ts [R(0) + 2R(1)] (21)

Evaluation of R(0) and R(1) can be obtained from the variance of Eq. (19) and the cross-correlation
of Eqs. (19) and (20), respectively. In particular,

R(0) = 4E
{(
N ′1 (1)N ′2 (1)−N1 (1)N2 (1)

)2}

+ 2PT 2
sE

{(
b0N

′
2 (1) + a0N1 (1)−

(
b0 + b−1

2

)
N2 (1)−

(
a0 + a1

2

)
N ′1 (1)

)2
}

(22)

where the expectation is over both the noise components and the data symbols. Making use of the equal
variance of the noise components, i.e., σ2

N = N0Ts/2, and their correlation property of Eq. (12), the
autocorrelation in Eq. (22) becomes, after simplification (see Appendix A),

R(0) =
3
2
N2

0T
2
s

(
1 +

4
3
PTs
N0

)
(23)

Similarly,

R(1) = 4E
{(
N ′1 (1)N ′2 (1)−N1 (1)N2 (1)

)(
N ′1 (2)N ′2 (2)−N1 (2)N2 (2)

)}
+ 2PT 2

sE

{(
b0N

′
2 (1) + a0N1 (1)−

(
b0 + b−1

2

)
N2 (1)−

(
a0 + a1

2

)
N ′1 (1)

)

×
(
b1N

′
2 (2) + a1N1 (2)−

(
b1 + b0

2

)
N2 (2)−

(
a1 + a2

2

)
N ′1 (2)

)}
(24)
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which after simplification becomes

R(1) = −1
4
N2

0T
2
s

(
1 + 2

PTs
N0

)
(25)

Substituting Eqs. (23) and (25) in Eq. (21) gives

NE
N0

= 2N0T
3
s

(
1 +

PTs
N0

)
(26)

Finally, using Eq. (26) and the S-curve slope from Eq. (15) in Eq. (18), we obtain the desired result for
the squaring loss, namely,

SL =
1
2

(
Es/N0

1 + Es/N0

)
(27a)

or, in terms of the bit-energy-to-noise ratio, Eb/N0 = Es/2N0,

SL =
1
2

(
2Eb/N0

1 + 2Eb/N0

)
(27b)

which interestingly enough is one-half the result for a Costas I–Q loop-tracking BPSK modulation of the
same bit rate [2, Eq. (73)]. The analogous result to Eq. (27b) for the low-SNR implementation of the
MAP carrier-synchronization loop for nonoffset QPSK is given by [8, Eq. (3.3-58)]:

SL =
1

1 +
9

4Eb/N0
+

3
2 (Eb/N0)2 +

3
16 (Eb/N0)3

(28)

B. Tracking Performance Analysis of the High-SNR Implementation

In this section, we first derive the S-curve and equivalent noise of the I–Q loop of Fig. 1 (with a hard
limiter approximation to the hyperbolic tangent function) and then compute the loop’s mean-square
phase jitter. Analogous to Eq. (13), the loop-error signal is now

z1(t) = z′c(t) sgn z′s(t)− zs
(
t− Ts

2

)
sgn zc

(
t− Ts

2

)
, Ts ≤ t ≤ 2Ts (29)

where zs(t)zc(t) and z′c(t), z
′
s(t) are as defined in Eqs. (10a) and (10b), respectively. Substituting Eq. (10)

in Eq. (29) and averaging over the noise and data symbols, we obtain after considerable evaluation (see
Appendix B)
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z1(t) 4=
1
2
S (φ) =

1
2

√
P

2
Ts

[
(sinφ− cosφ) erf

(√
Es

2N0
(cosφ+ sinφ)

)

+ (sinφ+ cosφ) erf

(√
Es

2N0
(cosφ− sinφ)

)
+ 2 sinφ erf

(√
Es

2N0
cosφ

)]
(30)

where erf (x) 4= 2/
√
π
∫ x

0
exp

(
−y2/2

)
dy is the error function. Note that S (φ) = S (φ± π) and, thus, once

again the S-curve is periodic with period π, i.e., the loop tracks a 2φ (rather than 4φ) process. Figure 3
is a plot of the normalized S-curve [the quantity in brackets in Eq. (30)] with bit SNR Eb/N0 = Es/2N0

as a parameter. In the limit of infinite SNR, the S-curve behaves as

S (φ) =

√
P

2
Ts [(sinφ− cosφ) sgn (cosφ+ sinφ)+ (sinφ+ cosφ) sgn (cosφ− sinφ) + 2 sinφ sgn (cosφ)]

(31a)

or equivalently
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S (φ) =

√
P

2
Ts



4 sinφ, 0 ≤ φ ≤ π

4

2 (sinφ− cosφ) ,
π

4
≤ φ ≤ π

2

2 (− sinφ− cosφ) ,
π

2
≤ φ ≤ 3π

4

−4 sinφ,
3π
4
≤ φ ≤ π

(31b)

Comparing Fig. 3 with the qualitative version of the S-curve as given in [6, Fig. 5.24], we see that the
latter, which is reasoned on the basis that S (φ) ≈ sinφ in the neighborhood of small φ and S (π/2) = 0
(both of which are true), is indicative of the true behavior only at a small SNR. At a large SNR, which
is the assumption made in [6] (i.e., the data decisions are assumed to be perfect), the S-curve has a
somewhat different behavior, as can be seen in Fig. 3. The slope of the S-curve in Eq. (30) at the origin
is obtained as

Kg
4=
dS (φ)
d (2φ)

=
1
2
dS (φ)
dφ

= 2

√
P

2
Ts

[
erf

(√
Es

2N0

)
−
√

Es
2N0π

exp
(
− Es

2N0

)]
(32)

and will be used shortly in determining the squaring loss.

The equivalent additive noise component at the loop input, which is related to the noise component of
the error signal by Ne (t, 2φ) /2 = −

(
z1(t)− z1(t)

)
, is obtained by subtracting Eq. (30) from Eq. (29).

When evaluated at φ = 0, this equivalent noise becomes

Ne (t, 0) =− 2

[√
P

2
Ts
a0 + a1

2
+N ′2 (1)

]
sgn

[√
P

2
Tsb0 −N ′1 (1)

]

+ 2

[√
P

2
Ts
b0 + b−1

2
−N1 (1)

]
sgn

[√
P

2
Tsa0 +N2 (1)

]
,

Ts ≤ t ≤ 2Ts (33a)

and

Ne (t, 0) =− 2

[√
P

2
Ts
a1 + a2

2
+N ′2 (2)

]
sgn

[√
P

2
Tsb1 −N ′1 (2)

]

+ 2

[√
P

2
Ts
b1 + b0

2
−N1 (2)

]
sgn

[√
P

2
Tsa1 +N2 (2)

]
,

2Ts ≤ t ≤ 3Ts (33b)

where again we have introduced the parenthetical notation “(k)” to correspond to the kth (k = 1, 2) baud
integration interval of the quadrature noise components. Once again we must determine the variance and
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correlation coefficients of Ne (t, 0) in order to determine its equivalent noise power spectral density. The
details of these evaluations are quite lengthy and are presented in Appendix C. The final results are

R(0) = E
{
N2
e (t, 0)

}
= 4N0Ts

1 +
Es

2N0
−
[√

Es
4N0

erf
√

Es
2N0

+
1√
2π

exp
(
− Es

2N0

)]2


R(1) = E {Ne(t, 0)Ne(t+ Ts, 0)} = −2N0Ts

[√
Es

4N0
erf
√

Es
2N0

+
1√
2π

exp
(
− Es

2N0

)]2


(34)

Substituting Eq. (34) into Eq. (21), we obtain the single-sided power spectral density of the equivalent
noise as

NE = 8N0T
2
s

1 +
Es

2N0
−
[√

Es
2N0

erf
√

Es
2N0

+
1√
π

exp
(
− Es

2N0

)]2
 (35)

Finally, substituting Eqs. (32) and (35) in Eq. (18) and substituting Eb/N0 for Es/2N0, the squaring loss
of the high SNR implementation of the MAP carrier synchronization loop for OQPSK becomes

SL =

[
erf
(√

Eb
N0

)
−
√

Eb
N0π

exp
(
−Eb
N0

)]2

1 +
Eb
N0
−
[√

Eb
N0

erf
√
Eb
N0

+
1√
π

exp
(
−Eb
N0

)]2 (36)

The analogous result to Eq. (36) for the high SNR implementation of the MAP carrier synchronization
loop for nonoffset QPSK is given by [9, Eq. (3.3-57)]:

SL =

[
erf
(√

Eb
N0

)
− 2
√

Eb
N0π

exp
(
−Eb
N0

)]2

1 +
2Eb
N0
− 2

[√
Eb
N0

erf
√
Eb
N0

+
1√
π

exp
(
−Eb
N0

)]2 (37)

Figure 4 is a plot of the squaring loss versus Eb/N0 in dB for the various loop implementations considered
above. We observe that at a low bit SNR (where the squaring loss is significant), the OQPSK implemen-
tations have a decided advantage over their QPSK counterparts. Also, the crossover point below which
the low SNR approximation of the OQPSK loop outperforms the high SNR approximation is −2.5 dB.

V. A Suboptimum Implementation Derived From the MAP Implementation for
QPSK

Another (albeit ad hoc) implementation of a carrier synchronization loop for OQPSK was initially
proposed for the design of the Advanced Receiver II (ARX II) [7] and is now included in the Block V
receiver in NASA’s Deep Space Network (DSN) [8]. This scheme, which is illustrated in Fig. 5(a), merely
delays the quadrature arm so as to align it with the in-phase arm and then proceeds to process the
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I and Q signals as one would do in the MAP implementation of nonoffset QPSK.9 Ignoring the MAP
estimation approach, such a scheme could be argued to be intuitively logical in view of the manner in
which the data symbols of OQPSK traditionally are detected. Note that this implementation forms its
I tanhQ and Q tanh I from the same pair of I and Q signals and, thus, a low SNR implementation would
require the first two terms in the power series expansion of the hyperbolic tangent function, i.e., a fourth-
order loop that tracks the 4φ process with an error signal akin to Eq. (5). An illustration of such a low
SNR implementation is shown in Fig. 5(b). It is interesting to investigate how suboptimal (from the
standpoint of squaring loss) this implementation is relative to that obtained by linearizing the hyperbolic
tangent function in Fig. 1 as analyzed in Section IV.

Analogous to Eq. (10a), the I and Q integrate-and-dump outputs in Fig. 5(b) are given by

zc(t) =
∫ Ts/2

−Ts/2
εc(t)dt =

[√
P

2
Ts
b0 + b−1

2
−N1

]
sinφ+

[√
P

2
Tsa0 +N2

]
cosφ

zs(t) =
∫ Ts/2

−Ts/2
εs

(
t− Ts

2

)
dt =

[√
P

2
Tsb−1 −N ′1

]
cosφ−

[√
P

2
Ts
a0 + a−1

2
+N ′2

]
sinφ,

Ts
2
≤ t ≤ 3Ts

2


(38)

where N1, N2, N
′
1, and N ′2 are zero-mean Gaussian random variables that now are defined by

9 In the actual receiver design, the delay and I&D filter in the I arm are actually reversed and, likewise, the range of the
I&D filter in the Q arm extends from 0 to Ts. However, this is of no consequence to the performance analysis that follows.
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N1
4=
∫ Ts/2

−Ts/2
Ns(t)dt

N2
4=
∫ Ts/2

−Ts/2
Nc(t)dt

N ′1
4=
∫ Ts/2

−Ts/2
Ns

(
t− Ts

2

)
dt =

∫ 0

−Ts
Ns(t)dt

N ′2
4=
∫ Ts/2

−Ts/2
Nc

(
t− Ts

2

)
dt =

∫ 0

−Ts
Nc(t)dt



(39)

all with variance σ2
N = N0Ts/2. Once again N1 and N2 are uncorrelated, and likewise for N ′1 and N ′2, but

because of the offset between the I and Q channels, the pairs N1, N
′
1 and N2, N

′
2 are indeed correlated,

with the correlation given by Eq. (12). The pairs N1N
′
2 and N ′1N2 are, however, still uncorrelated.

The error signal analogous to Eq. (13) is obtained from Fig. 5(b) as

z1(t) = zc(t)zs(t)
[
z2
c (t)− z2

s(t)
]

(40)

Substituting Eq. (38) into Eq. (40) and simplifying the algebra and trigonometry, the signal component
of Eq. (40), i.e., the statistical mean with respect to the noise components, is given by

EN {z1(t)} =
1
4
P 2T 4

s

{
1
2

[
b−1

(
b−1 + b0

2

)
− a0

(
a−1 + a0

2

)]
sin 2φ+ a0b−1 cos2 φ

+
(
a−1 + a0

2

)(
b−1 + b0

2

)
sin2 φ

}

×
{[
a0

(
b−1 + b0

2

)
− b−1

(
a−1 + a0

2

)]
sin 2φ+

(
a2

0 − b2−1

)
cos2 φ

+

[(
b−1 + b0

2

)2

−
(
a−1 + a0

2

)2
]

sin2 φ

}
(41)

Statistically averaging Eq. (41) over the data symbols results, after much simplification, in

z1(t) 4=
1
4
S (φ) =

1
4
P 2T 4

s sin 2φ
(

cos2 φ− 1
4

sin2 φ

)

=
1
4
P 2T 4

s

(
3
8

sin 2φ+
5
16

sin 4φ
)

(42)
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As predicted, the S-curve S (φ) in Eq. (42) is periodic with period π/2 and, hence, the loop tracks the
4φ process. The slope of the S-curve at the origin, Kg, is obtained by evaluating the derivative of S (φ)
with respect to 4φ at φ = 0, with the result

Kg =
1
2
P 2T 4

s (43)

The noise component of the error signal evaluated at φ = 0 is obtained from Eqs. (38) and (40) as

−Ne (t, 0)
4

= z1(t) |φ=0

=

(√
P

2
Tsb−1 −N ′1

)(√
P

2
Tsa0 +N2

)(√P

2
Tsa0 +N2

)2

−
(√

P

2
Tsb−1 −N ′1

)2

(44)

Evaluation of the correlation function of Ne (t, 0) for values of τ corresponding to integer multiples of Ts
proceeds as in Appendix A but now involves fourth-order signal × noise and noise × noise moments. The
details are presented in Appendix D, where the following results are obtained:

R(0) = E
{

(Ne (t, 0))2
}

= 8
[
P 3N0T

7
s +

9
2
P 2N2

0T
6
s + 6PN3

0T
5
s +

3
2
N4

0T
4
s

]

= 8P 3N0T
7
s

[
1 +

9
2Es/N0

+
6

(Es/N0)2 +
3

2 (Es/N0)3

]

R(1) = 0


(45)

and, thus, from Eq. (21) the equivalent noise power spectral density normalized by N0 is

NE
N0

= 16P 3T 8
s

[
1 +

9
2Es/N0

+
6

(Es/N0)2 +
3

2 (Es/N0)3

]
(46)

Since the loop now tracks a 4φ process, the mean-square error of this process can be written, analogous
to Eq. (18), as

σ2
4φ =

16
ρSL

ρ
4=

P

N0BL

SL
4= 16

(
K2
g/P

NE/N0

)


(47)
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Finally, substituting Eqs. (43) and (46) in Eq. (47) gives the desired result for the squaring loss, namely,

SL =
1
4

 1

1 +
9

2Es/N0
+

6
(Es/N0)2 +

3
2 (Es/N0)3

 (48)

or, in terms of bit SNR,

SL =
1
4

 1

1 +
9

4Eb/N0
+

3
2 (Eb/N0)2 +

3
16 (Eb/N0)3

 (49)

Comparing Eq. (49) with Eq. (28), we observe that the suboptimum OQPSK loop based on the MAP im-
plementation for QPSK has a squaring loss that is 6-dB worse than the MAP carrier synchronization loop
for QPSK, which itself is significantly inferior at low SNRs to the MAP (optimum) carrier synchronization
loop for OQPSK illustrated in Fig. 1. While the suboptimum OQPSK loop has the advantage that its
implementation relative to that for QPSK requires only the addition of a Ts/2 delay in the quadrature
arm, its largely inferior performance coupled with the additional complication of resolving a 90-deg phase
ambiguity will no doubt far outweigh the implementation advantage.

VI. Impact on Average Error Probability Performance

The conditional (on a given phase error φ) bit-error probability (BEP) of OQPSK is given as the arith-
metic average of the conditional bit-error probabilities for BPSK and QPSK, namely (see Appendix E),

Pb (E;φ) |OQPSK =
1
2
Pb (E;φ) |BPSK +

1
2
Pb (E;φ) |QPSK (50)

where [10]

Pb (E;φ) |BPSK =
1
2

erfc

(√
Eb
N0

cosφ

)

Pb (E;φ) |QPSK =
1
4

erfc

(√
Eb
N0

(cosφ+ sinφ)

)
+

1
4

erfc

(√
Eb
N0

(cosφ− sinφ)

)


(51)

As such, for a given phase error (greater than zero), the BEP of OQPSK would be worse than that of
BPSK but better than that of QPSK.

When a carrier synchronization loop is used to provide the carrier demodulation reference at the
receiver, as considered in this article, then the average bit-error probability (assuming perfect phase
ambiguity resolution) would be obtained by averaging Eq. (50) over the probability density function
(PDF) of the phase-error process, pφ (φ). For the purpose of comparison, pφ (φ) typically is modeled by
a Tikhonov distribution [10,11] with an effective loop SNR, ρeq, equal to the reciprocal of the variance of
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the phase process (2φ or 4φ as appropriate), the latter being determined from Eq. (18) or Eq. (47). For
each of the three modulations, the appropriate relations would be

pφ (φ) |PSK =
2 exp (ρeq cos 2φ)

2πI0 (ρeq)
, ρeq =

ρSL |PSK
4

, −π
2
≤ φ ≤ π

2

pφ (φ) |QPSK =
4 exp (ρeq cos 4φ)

2πI0 (ρeq)
, ρeq =

ρSL |QPSK
16

, −π
4
≤ φ ≤ π

4

pφ (φ) |OQPSK =
2 exp (ρeq cos 2φ)

2πI0 (ρeq)
, ρeq =

ρSL |OQPSK
4

, −π
2
≤ φ ≤ π

2


(52)

and, thus, the average error probabilities are given by

Pb (E) |BPSK =
∫ π/2

−π/2
Pb (E;φ) |BPSK pφ (φ) |BPSK dφ

Pb (E) |QPSK =
∫ π/4

−π/4
Pb (E;φ) |QPSK pφ (φ) |QPSK dφ

Pb (E) |OQPSK =
∫ π/2

−π/2
Pb (E;φ) |OQPSK pφ (φ) |OQPSK dφ



(53)

Note that in the presence of a perfect carrier reference, i.e., pφ (φ) = δ (φ), all three modulations would
have the identical average bit-error probability.

On the basis of the above relations, we observe that OQPSK offers a two-fold average BEP advantage
over QPSK, namely, the conditional BEP is itself smaller and the variance of the phase error that
characterizes the PDF of the phase process is considerably smaller for the former relative to the latter.
In addition, as previously mentioned, OQPSK needs only to resolve a 180-deg phase ambiguity (e.g.,
with binary differential encoding/decoding), whereas QPSK needs to resolve a 90-deg phase ambiguity
(e.g., with four-phase differential encoding/decoding). This phase ambiguity advantage is particularly
significant in error-correction coded communications (e.g., convolutionally coded communications) in that
if the code is transparent10 (reversal of the input bits produces a reversal of the encoder output symbols),
one can resolve the phase ambiguity by including a binary differential encoder before the convolutional
encoder and a binary differential decoder after the convolutional decoder. As such, the overall BEP of
the coded system is approximately increased by merely a factor of two. When a 90-deg phase ambiguity
is present, this simple solution based on the 180-deg transparency of the code is not possible. Instead,
either a redesign of the code to achieve, if possible, 90-, 180-, and 270-deg rotational invariance, which,
in general, will yield a somewhat poorer performing code, or some other method for resolving the phase
ambiguity at the receiver based on the rate of buildup of the convolutional decoder metrics would be
required.

10 In most cases, transparent convolutional codes can be found that have a performance either equal to or nearly equal to
that of the optimum code.
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VII. Conclusion

OQPSK modulation, which limits the phase variation per transition to 90 deg rather than 180 deg as
in QPSK, most often is used on a nonlinear channel to prevent regeneration of the spectral side lobes that
have been reduced by bandpass filtering at the transmitter. On a linear channel, OQPSK is employed
less often since, in an ideal environment, it is well-known to offer no advantage to QPSK. When the
channel is linear but nonideal, i.e., in the presence of a practical carrier synchronizer, we have shown
that OQPSK offers both average bit-error probability and phase ambiguity advantages over QPSK with
little additional implementation complexity. Although not specifically addressed, the conclusions drawn
here also apply to pulse-shaped QPSK and OQPSK since, with matched filters used in the receivers, the
performance is invariant to the specific pulse shape. As an example, precoded minimum shift keying
(MSK) [10, Chapter 10], which has an equivalent representation in the form of OQPSK with a half-
sinusoidal pulse shape, can be carrier synchronized as described in this article.
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Appendix A

Evaluation of the Correlation Function of the Equivalent
Noise Process for the Low SNR Implementation of the

MAP Carrier Synchronization Loop for OQPSK

To allow evaluation of the power spectral density of the equivalent additive noise Ne (t, 0), we compute
here the autocorrelation function RNe(τ) = E {Ne (t, 0)Ne (t+ τ, 0)} for values of τ corresponding to
integer multiples of the baud (symbol) interval Ts. When τ = 0, the variance of Ne (t, 0), namely,
RNe(0) 4= R (0) = E

{
(Ne (t, 0))2

}
is given by Eq. (22) and is evaluated as follows:

R(0) =

4
[
E
{

(N ′1 (1))2
}
E
{

(N ′2 (1))2
}

+ E
{

(N1 (1))2
}
E
{

(N2 (1))2
}
− 2E {N ′1 (1)N1 (1)}E {N ′2 (1)N2 (1)}

]

+ 2PT 2
s

[
E
{

(N ′2 (1))2
}

+ E
{

(N1 (1))2
}

+ E

{(
a0 + a1

2

)2
}
E
{

(N ′1 (1))2
}

+ E

{(
b0 + b−1

2

)2
}
E
{

(N2 (1))2
}
− 2E

{
b0

(
b0 + b−1

2

)}
E {N ′2 (1)N2 (1)}

− 2E
{
a0

(
a0 + a1

2

)}
E {N ′1 (1)N1 (1)}

]
(A-1)

Recalling the correlation properties of the primed and unprimed noise components,
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N1 (m) 4=
∫ (m−1/2)Ts

(m−3/2)Ts

Ns(t)dt

N2 (m) 4=
∫ (m−1/2)Ts

(m−3/2)Ts

Nc(t)dt

N ′1 (m) 4=
∫ mTs

(m−1)Ts

Ns(t)dt

N ′2 (m) 4=
∫ mTs

(m−1)Ts

Nc(t)dt



(A-2)

namely,

E
{

(N ′i(m))2
}

= E
{

(Ni(m))2
}

=
N0Ts

2
, i = 1, 2

E {N ′i(m)Ni(m)} =
N0Ts

4
, i = 1, 2

 (A-3)

where m is any integer; then substituting Eq. (A-3) into Eq. (A-1) and averaging over the i.i.d. data
symbols results in

R(0) = 4
(

3
8
N2

0T
2
s

)
+ 2PT 2

s (N0Ts)

=
3
2
N2

0T
2
s

(
1 +

4
3
PTs
N0

)
(A-4)

which is given as Eq. (23) of the main text.

When τ = Ts, the cross-correlation RNe(Ts)
4= R (1) = E {Ne (t, 0)Ne (t+ Ts, 0)} is given by Eq. (24)

and is evaluated as follows:

R(1) = 4 [−E {N ′1 (1)N1 (2)}E {N ′2 (1)N2 (2)}]

+ 2PT 2
s

[
−E

{
b0

(
b1 + b0

2

)}
E {N ′2 (1)N2 (2)} − E

{
a1

(
a0 + a1

2

)}
E {N ′1 (1)N1 (2)}

]
(A-5)

Making use of the cross-correlation property of the noise components in different baud intervals given by

E {N ′i (m)Ni (m+ 1)} =
N0Ts

4
, i = 1, 2 (A-6)

then the equivalent noise correlation in Eq. (A-4) evaluates to

22



R(1) = 4
(
− 1

16
N2

0T
2
s

)
+ 2PT 2

s

(
−1

4
N0Ts

)

= − 1
4
N2

0T
2
s

(
1 + 2

PTs
N0

)
(A-7)

which is given as Eq. (25) of the main text.

Appendix B

Evaluation of the S-Curve of the High SNR Implementation
of the MAP Carrier Synchronization Loop for OQPSK

The error signal of the high SNR implementation of the MAP carrier synchronization loop for OQPSK
is obtained by substituting Eqs. (10a) and (10b) in Eq. (29), resulting in

z1(t) =

{[√
P

2
Tsb0 −N ′1

]
sinφ+

[√
P

2
Ts
a0 + a1

2
+N ′2

]
cosφ

}

× sgn

{[√
P

2
Tsb0 −N ′1

]
cosφ−

[√
P

2
Ts
a0 + a1

2
+N ′2

]
sinφ

}

−
{[√

P

2
Ts
b0 + b−1

2
−N1

]
cosφ−

[√
P

2
Tsa0 +N2

]
sinφ

}

× sgn

{[√
P

2
Ts
b0 + b−1

2
−N1

]
sinφ+

[√
P

2
Tsa0 +N2

]
cosφ

}
,

Ts ≤ t ≤ 2Ts (B-1)

which is of the form

z1(t) = [X sinφ+ Y cosφ] sgn [X cosφ− Y sinφ]− [X ′ cosφ− Y ′ sinφ] sgn {X ′ sinφ+ Y ′ cosφ}

4= F1 (φ;X,Y )− F2 (φ;X ′, Y ′) (B-2)
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with X,Y,X ′, and Y ′ functions of the data symbols and the noise components. We begin by evaluating
the statistical average over the data and noise of F1 (φ;X,Y ). Similar evaluations then will yield the
same average of F2 (φ;X ′, Y ′).

Since for a Gaussian zero-mean random variable z with variance σ2
z ,

Ez { sgn (C + z)} = erf

(
C√
2σ2

z

)
(B-3)

with C an arbitrary constant, then performing the first average over the noise, we obtain

F1 (φ;X,Y )
N

=

√
P

2
Ts

(
b0 sinφ+

a0 + a1

2
cosφ

)
erf

(√
Es

2N0

[
b0 cosφ− a0 + a1

2
sinφ

])

− sinφ EN ′1

{
N ′1 erf

(√
Es

2N0 sin2 φ

[
b0 cosφ− a0 + a1

2
sinφ−N ′1 cosφ

])}

+ cosφ EN ′2

{
N ′2 erf

(√
Es

2N0 cos2 φ

[
b0 cosφ− a0 + a1

2
sinφ−N ′2 sinφ

])}
(B-4)

The remaining averages of the noise can be performed using the relation

Ez {z erf (A+Bz)} =
2√
π

σ2
zB√

1 + 2B2σ2
z

exp
(
− A2

1 + 2B2σ2
z

)
(B-5)

where again A and B are arbitrary constants. Identifying the Gaussian random variable z as either N ′1
or N ′2, and then averaging over the data symbols, the first term in Eq. (B-4) finally evaluates to

Ea0,a1,b0

{√
P

2
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(
b0 sinφ+

a0 + a1

2
cosφ

)
erf

(√
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2N0

[
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2
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])}
=

1
4

√
P

2
Ts (sinφ− cosφ) erf

(√
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)

+
1
4

√
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2
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(√
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2N0
(cosφ− sinφ)

)

+
1
2

√
P

2
Ts sinφ erf

(√
Es

2N0
cosφ

)
(B-6)

whereas the second and third terms cancel. Thus, F1 (φ;X,Y ) is equal to the expression in Eq. (B-6).

24



Following a similar approach, it is straightforward to show that the first term in F2 (φ;X,Y ) is the
negative of the first term in F1 (φ;X,Y ), whereas the second and third terms of F2 (φ;X,Y ) again cancel.
Hence, F2 (φ;X,Y ) is evaluated as the negative of the expression in Eq. (B-6). Finally then, from
Eq. (B-1), z1(t) = 2F1 (φ;X,Y ), which is twice the result in Eq. (B-6) and thereby agrees with Eq. (30)
of the main text.

Appendix C

Evaluation of the Correlation Function of the Equivalent Noise
Process for the High SNR Implementation of the MAP

Carrier Synchronization Loop for OQPSK

As in Appendix A, to allow evaluation of the power spectral density of the equivalent additive noise
Ne (t, 0), we compute here the autocorrelation function RNe(τ) = E {Ne (t, 0)Ne (t+ τ, 0)} for values of
τ corresponding to integer multiples of the baud (symbol) interval Ts. When τ = 0, the variance of
Ne (t, 0), namely, RNe(0) 4= R (0) = E

{
(Ne (t, 0))2

}
is obtained from Eq. (33a) as follows:

R (0) = 4E
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2
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2
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]
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P

2
Tsa0 +N2 (1)

]}
(C-1)

Expanding the squared terms and averaging over the data symbols and some of the noise components
gives

25



R (0) = 2PT 2
s + 4N0Ts − PT 2
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(C-2)

To evaluate the noise expectations in Eq. (C-2), we partition the noise components into two parts, each
covering half the integration interval as appropriate. Specifically, let

N1(1) 4=
∫ Ts/2
−Ts/2Ns(t)dt = N1A(1) +N1B(1), N1A(1) 4=

∫ 0

−Ts/2Ns(t)dt, N1B(1) 4=
∫ Ts/2

0
Ns(t)dt

N2(1) 4=
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N ′1(1) 4=
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Ns(t)dt
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0
Nc(t)dt = N2B(1) +N2C(1), N2C(1) 4=
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Ts/2

Nc(t)dt (C-3)

where all the new noise components are independent Gaussian and have variance N0Ts/4. Then, for
example, the expectation in the second term of Eq. (C-2) can be written as

E

{
(N1A(1) +N1B(1)) sgn

[√
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2
Tsb0 − (N1B(1) +N1C(1))

]}
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√
P

2
Tsb0 −N1B(1)√
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 (C-4)

which, using Eq. (B-5) of Appendix B, evaluates to

E

{
N1 (1) sgn

[√
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2
Tsb0 −N ′1 (1)

]}
= −

√
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4π
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(C-5)

26



Similarly, the expectation in the third term of Eq. (C-2) evaluates to

E

{
N ′2 (1) sgn

[√
P

2
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]}
=
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(C-6)

Finally, using Eqs. (C-5) and (C-6) in Eq. (C-2), we get the desired result, namely,
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(C-7)

which, upon simplification, results in the first equation in Eq. (34).

Analogous to Eq. (C-1) for τ = Ts, the correlation RNe(Ts)
4= R (1) = E {Ne (t, 0)Ne (t+ Ts, 0)} is

obtained from Eq. (33b) as
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(C-8)
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When performing the required averages over the data symbols and noise components, the first term in
Eq. (C-8) evaluates as
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= 0 (C-9)

To evaluate the second term in Eq. (C-8), we again must partition each of the noise components into two
parts, as in Eq. (C-3), and then perform the necessary averages. When this is done, we obtain
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Because of the independence of the noise components in each factor of the third and fourth terms in
Eq. (C-8), each expectation partitions into a four-fold product of expectations, e.g.,
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Similarly,
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Finally, combining Eqs. (C-9) through (C-12), we obtain the desired result for the cross-correlation R(1),
namely,

R(1) = −2N0Ts
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Es

4N0
erf

(√
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2N0
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+

√
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2π
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(
− Es
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(C-13)

which agrees with the second equation of Eq. (34).
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Appendix D

Evaluation of the Correlation Function of the Equivalent Noise
Process for the Low SNR Implementation of the

Suboptimum Carrier Synchronization Loop
for OQPSK

Expanding the terms in Eq. (44) of the main text and combining like terms, we arrive at the following
expressions for the equivalent additive noise, Ne (t, 0), where we again have introduced the parenthetical
notation to distinguish the noise components in two successive baud intervals:
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The variance of Ne (t, 0), namely, RNe(0) 4= R (0) = E
{

(Ne (t, 0))2
}

is evaluated after some simplification
and combining of terms as
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Using the well-known relation for the even-ordered moments of a zero-mean Gaussian random variable,
z, namely,

E {zn} = (n− 1)!!σnz (D-3)

where (n− 1)!! denotes the factorial made up of only odd integers, then Eq. (D-2) finally evaluates to
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Next, multiplying Eqs. (D-1a) and (D-1b) and first averaging over the signal (i.i.d. data symbols) gives
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Finally, because of the independence of the noise components in adjacent baud intervals, each term in
Eq. (D-5), when averaged over these components, equals zero. Thus, R (1) = 0.
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Appendix E

Evaluation of the Conditional Bit-Error Probability for OQPSK

Consider the optimum (matched -filter) receiver for OQPSK, which makes independent hard decisions
on the I and Q data symbol streams. The output of the I matched filter corresponding to the transmitted
bit a0 [see Eq. (2)] is given by

XI
4=
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where

NI
4=
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Nc(t)dt

NQ
4=
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−Ts/2
Ns(t)dt


(E-2)

which are independent zero-mean Gaussian random variables each with variance σ2
N = N0Ts/2. Making

a binary hard decision on XI results in the decision on a0. Hence, the probability of error associated
with a0 is computed as follows. Assuming a +1 transmitted symbol for a0, the conditional (on the phase
error φ) probability of error is

Pr {â0 = −1 |a0 = 1;φ} = Pr {XI < 0 |a0 = 1} =
1
2

erfc
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sinφ
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(E-3)

where the overbar denotes statistical averaging over the equiprobable quadrature binary symbols that
interfere with the in-phase bit a0. Since
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2
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4

(E-4)

then further noting that PTs/2N0 = PTb/N0
4= Eb/N0, the average probability of error in Eq. (E-3)

becomes
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(E-5)

Because of the symmetry of the problem, the result for Pr {â0 = 1 |a0 = −1;φ} would be identical to that
in Eq. (E-5). Thus, the average probability of error, PI (E), for detecting the I-channel symbols is given
by the right-hand side of Eq. (E-5). Again by the symmetry of the problem, the identical expression to
Eq. (E-5) would be obtained for the average probability of error associated with the Q-channel symbols.
Finally, the average bit-error probability (still conditioned on φ), Pb (E;φ), corresponding to the sequence
obtained by interleaving the I- and Q-channel symbol decisions, also is given by Eq. (E-5), namely,
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1
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(E-6)

which can be put in the form of Eq. (50) combined with Eq. (51).
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