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Performance Evaluation and Interpretation of
Unfiltered Feher-Patented Quadrature-

Phase-Shift Keying (FQPSK)
M. K. Simon1 and T.-Y. Yan1

A new interpretation of unfiltered Feher-patented quadrature-phase-shift key-
ing (FQPSK) is presented that readily identifies a means for spectral enhancement
of the transmitted waveform as well as an improved method of reception. The
key to these successes is the replacement of the half-symbol-by-half-symbol map-
ping originally used to describe FQPSK by a symbol-by-symbol mapping operation
combined with memory. The advantages of such an interpretation are twofold. In
particular, the original FQPSK scheme can be modified such that the potential of
a waveform slope discontinuity at the boundary between half symbols is avoided
without sacrificing the “constant” envelope property of the transmitted waveform,
and, furthermore, a memory receiver can be employed to improve error-probability
performance relative to previously proposed symbol-by-symbol detection methods.
The analysis presented in this article does not include other versions of FQPSK
such as FQPSK-B, which currently is being considered for military application.

I. Introduction

JPL has been conducting evaluations of efficient modulation technologies for space agencies under
the auspices of the Consultative Committee for Space Data Systems (CCSDS) subpanel 1E, RF and
Modulation. One of the technologies pursued is the proprietary Feher-patented quadrature-phase-shift
keying (FQPSK) modulation format provided to JPL under the Technology Cooperation Agreement
between JPL and Digcom Inc. In its generic form, FQPSK as patented [1] and reported in the recent
literature [2,3] is conceptually the same as the cross-correlated phase-shift-keying (XPSK) modulation
technique introduced in 1983 by Kato and Feher [4].2 This technique was in turn a modification of the
previously introduced (by Feher et al. [6]) interference- and jitter-free QPSK (IJF-QPSK) with the express
purpose of reducing the 3-dB envelope fluctuation characteristic of IJF-QPSK to 0 dB, thus making it
appear constant envelope,3 which is beneficial in nonlinear radio systems. (It is further noted that, using
a constant waveshape for the even pulse and a sinusoidal waveshape for the odd pulse, IJF-QPSK becomes

1 Communications Systems and Research Section.

2 Other versions of FQPSK referred to as FQPSK-B [5] include proprietary designed filtering for additional spectrum
containment. Such filtering is not germane to our discussions in this article and will not be considered.

3 The reduction of the envelope from 3 dB to 0 dB occurs only at the uniform sampling instants on the in-phase (I) and
quadrature-phase (Q) channels. It is for this reason that XPSK is referred to as being “pseudo”—or “quasi”—constant
envelope, i.e., its envelope has a small amount of fluctuation between the uniform sampling instants.
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identical to the staggered quadrature overlapped raised-cosine (SQORC) scheme introduced by Austin
and Chang [7]). The means by which Kato and Feher achieved their 3-dB envelope reduction was the
introduction of an intentional but controlled amount of cross-correlation between the in-phase (I) and
quadrature-phase (Q) channels. This cross-correlation operation was applied to the IJF-QPSK (SQORC)
baseband signal prior to its modulation onto the I and Q carriers (see Fig. 1). Specifically, this operation
was described by mapping in each half symbol the 16 possible combinations of I- and Q-channel waveforms
present in the SQORC signal into a new4 set of 16 waveform combinations chosen in such a way that the
cross-correlator output is time continuous and has unit (normalized) envelope5 at all I and Q uniform
sampling instants. By virtue of the fact that the cross-correlation mapping is based on a half-symbol
characterization of the SQORC signal, there is no guarantee that the slope of the cross-correlator output
waveform is continuous at the half-symbol transition points. In fact, we shall show that for a random
data input sequence such a discontinuity in slope occurs one quarter of the time.
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Fig.  1.  The conceptual block diagram of FQPSK (XPSK).
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It is well-known that the rate at which the side lobes of a modulation’s power spectral density (PSD)
roll off with frequency is related to the smoothness of the underlying waveforms that generate it. That
is, the more derivatives of a waveform that are continuous, the faster its Fourier transform decays with
frequency. Thus, since the first derivative of the FQPSK waveform is discontinuous (at half-symbol
transition instants) on the average of one-quarter of the time, one can anticipate that an improvement
in PSD roll-off could be had if the FQPSK cross-correlation mapping could be modified so that the first
derivative is always continuous. By restructuring the cross-correlation mapping into a symbol-by-symbol
representation, the slope discontinuity referred to above will be placed in evidence and will be particularly
helpful in suggesting a means to eliminate it. This representation also has the advantage that it can be
described directly in terms of the data transitions on the I and Q channels and, thus, the combination
of IJF encoder and cross-correlator can be replaced simply by a single modified cross-correlator. The
replacement of the conventional FQPSK cross-correlator by this modified cross-correlator that eliminates
the slope discontinuity leads to what we shall refer to as enchanced FQPSK. We shall show that not only
does enhanced FQPSK have a better PSD (in the sense of reduced out-of-band energy) than conventional
FQPSK has but, from a modulation symmetry standpoint, it is a more logical choice.

4 Of the 16 possible cross-correlator output combinations, only 12 of them are in fact new, i.e., for 4 of the input I and
Q combinations, the cross-correlator outputs the identical combination.

5 Actually, in the operation’s generic form, Kato and Feher allow (through the introduction of a transition parameter,
k = 1−A) for a controlled amount of envelope fluctuation. For quasi-constant envelope, one should choose A = 1/

√
2.
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A further and more important advantage of the reformulation as a symbol-by-symbol mapping is the
ability to design a receiver of FQPSK or enhanced FQPSK (EFQPSK) that specifically exploits the
correlation introduced into the modulation scheme to significantly improve power efficiency or, equiva-
lently, error-probability performance. Such a receiver, which takes a form analogous to those used for
trellis-coded modulations, will be shown to yield significant performance improvement over receivers that
employ symbol-by-symbol detection, thus ignoring the inherent memory of the modulation.

II. Review of IJF-QPSK and SQORC

The IJF-QPSK scheme (alternatively called FQPSK-1) is based on defining waveforms so(t) and se(t),
which are respectively odd and even functions of time over the symbol interval −Ts/2 ≤ t ≤ Ts/2,
and then using these and their negatives, −so(t) and −se(t), as a 4-ary signal set for transmission in
accordance with the values of successive pairs of data symbols in each of the I and Q arms. Specifically,
if dIn denotes the I-channel data symbols in the interval (n− [1/2])Ts ≤ t ≤ (n+ [1/2])Ts, then the
transmitted waveform xI (t) in this same interval would be determined as follows:

xI(t) = se (t− nTs) 4= s0 (t− nTs) if dI,n−1 = 1, dI,n = 1

xI (t) = − se (t− nTs) 4= s1 (t− nTs) if dI,n−1 = −1, dI,n = −1

xI (t) = s0 (t− nTs) 4= s2 (t− nTs) if dI,n−1 = −1, dI,n = 1

xI (t) = − so (t− nTs) 4= s3 (t− nTs) if dI,n−1 = 1, dI,n = −1


(1)

The Q-channel waveform, xQ (t), would be generated by the same mapping as in Eq. (1), using instead
the Q-channel data symbols, {dQn}, and then delaying the resulting waveform by one-half of a symbol.
If the odd and even waveforms so(t) and se(t) are defined by

se (t) = 1, −Ts
2
≤ t ≤ Ts

2

so (t) = sin
πt

Ts
, −Ts

2
≤ t ≤ Ts

2

 (2)

then typical waveforms for the I and Q IJF encoder outputs are as illustrated in Fig. 2.

A modulation identical to xI (t) [and likewise for xQ (t)] generated from the combination of Eqs. (1)
and (2) can be obtained directly from the binary data sequence {dIn} itself without the need for defining
a 4-ary mapping based on the transition properties of the sequence. In particular, if we define the
two-symbol-wide raised-cosine pulse shape

p (t) = sin2

π
(
t+

Ts
2

)
2Ts

 , −Ts
2
≤ t ≤ 3Ts

2
(3)
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Fig. 2.  IJF encoder output:  (a) in-phase and (b) quadrature-phase.

{dQn }

{dIn }

then the I modulation

xI(t)
∞∑

n=−∞
dInp(t− nTs) (4)

will be identical to that generated by the above IJF scheme. Similarly,
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xQ (t) =
∞∑

n=−∞
dQnp

(
t−
(
n+

1
2

)
Ts

)
(5)

also would be identical to that generated by the above IJF scheme. A quadrature modulation scheme
formed from xI (t) of Eq. (4) and xQ (t) of Eq. (5) is precisely what Austin and Chang [7] referred to as
SQORC modulation, namely, independent I and Q modulations with overlapping raised-cosine pulses on
each channel. The resulting carrier modulated waveform is described by

x (t) = xI (t) cosωct+ xQ (t) sinωct (6)

III. A Symbol-by-Symbol Cross-Correlator Mapping for FQPSK

Before revealing the modification of FQPSK that results in a transmitted signal having a continuous
first derivative, we first recast the original characterization of FQPSK in terms of a cross-correlation
operation performed on the pair of IJF encoder outputs every half-symbol interval into a mapping per-
formed directly on the input I and Q data sequences every full-symbol interval. To do this, we define
16 waveforms, si (t) ; i = 0, 1, 2, · · · , 15, over the interval −Ts/2 ≤ t ≤ Ts/2, which collectively form a
transmitted signaling set for the I and Q channels. The particular I and Q waveforms chosen for any
particular Ts-s signaling interval on each channel depends on the most recent data transition on that
channel as well as the two most recent successive transitions on the other channel. The specifics are as
follows. Define (see Fig. 3)

s0 (t) = A, −Ts
2
≤ t ≤ Ts

2
, s8 (t) = −s0 (t)

s1 (t) =


A, −Ts

2
≤ t ≤ 0

s9 (t) = −s1 (t)

1− (1−A) cos2 πt

Ts
, 0 ≤ t ≤ Ts

2

s2 (t) =


1− (1−A) cos2 πt

Ts
, −Ts

2
≤ t ≤ 0

s10 (t) = −s2 (t)

A, 0 ≤ t ≤ Ts
2

s3 (t) = 1− (1−A) cos2 πt

Ts
, −Ts

2
≤ t ≤ Ts

2
, s11 (t) = −s3 (t)



(7a)

and
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Fig. 3.  FQPSK full-symbol waveforms:  (a) s 0(t ) = -s 8(t ) vs t, (b) s1(t ) = -s 9(t ) vs t, (c) s 2(t ) = -s10(t ) vs t,
(d) s 3(t ) = -s 11(t ) vs t, (e) s 4 (t ) = -s 12 (t ) vs t, (f) s 5 (t ) = -s 13 (t ) vs t, (g) s 6(t ) = -s 14(t ) vs t, and (h) s 7 (t ) =
-s 15(t ) vs t.
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s4 (t) = A sin
πt

Ts
, −Ts

2
≤ t ≤ Ts

2
, s12 (t) = −s4 (t)

s5 (t) =


A sin

πt

Ts
, −Ts

2
≤ t ≤ 0

s13 (t) = −s5 (t)

sin
πt

Ts
, 0 ≤ t ≤ Ts

2

s6 (t) =


sin

πt

Ts
, −Ts

2
≤ t ≤ 0

s14 (t) = −s6 (t)

A sin
πt

Ts
, 0 ≤ t ≤ Ts

2

s7 (t) = sin
πt

Ts
, −Ts

2
≤ t ≤ Ts

2
, s15 (t) = −s7 (t)



(7b)

Note that for any value of A other then unity, s6 (t) and s7 (t) as well as their negatives, s13 (t)
and s14 (t), will have a discontinuous slope at their midpoints (i.e., at t = 0), whereas the remaining
12 waveforms all have a continuous slope throughout their defining intervals. Also, all 16 waveforms have
zero slope at their end points and, thus, concatenation of any pair of these will not result in a slope
discontinuity.

Next, define the following mapping function for the baseband I-channel transmitted waveform yI (t) =
sI (t) in the nth signaling interval (n− [1/2])Ts ≤ t ≤ (n+ [1/2])Ts in terms of the transition properties
of the I and Q data symbol sequences {dIn} and {dQn}, respectively.

(1) If dI,n−1 = 1, dI,n = 1 (no transition on the I sequence, both data bits positive), then

(a) yI (t) = s0 (t− nTs) if dQ,n−2, dQ,n−1 results in no transition and dQ,n−1, dQ,n results
in no transition.

(b) yI (t) = s1 (t− nTs) if dQ,n−2, dQ,n−1 results in no transition and dQ,n−1, dQ,n results
in a transition (positive or negative).

(c) yI (t) = s2 (t− nTs) if dQ,n−2, dQ,n−1 results in a transition (positive or negative) and
dQ,n−1, dQ,n results in no transition.

(d) yI (t) = s3 (t− nTs) if dQ,n−2, dQ,n−1 results in a transition (positive or negative) and
dQ,n−1, dQ,n results in a transition (positive or negative).

(2) If dI,n−1 = −1, dI,n = 1 (a positive going transition on the I sequence), then

(a) yI (t) = s4 (t− nTs) if dQ,n−2, dQ,n−1 results in no transition and dQ,n−1, dQ,n results
in no transition.

(b) yI (t) = s5 (t− nTs) if dQ,n−2, dQ,n−1 results in no transition and dQ,n−1, dQ,n results
in a transition (positive or negative).

(c) yI (t) = s6 (t− nTs) if dQ,n−2, dQ,n−1 results in a transition (positive or negative) and
dQ,n−1, dQ,n results in no transition.
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(d) yI (t) = s7 (t− nTs) if dQ,n−2, dQ,n−1 results in a transition (positive or negative) and
dQ,n−1, dQ,n results in a transition (positive or negative).

(3) If dI,n−1 = −1, dI,n = −1 (no transition on the I sequence, both data bits negative), then

(a) yI (t) = s8 (t− nTs) if dQ,n−2, dQ,n−1 results in no transition and dQ,n−1, dQ,n results
in no transition.

(b) yI (t) = s9 (t− nTs) if dQ,n−2, dQ,n−1 results in no transition and dQ,n−1, dQ,n results
in a transition (positive or negative).

(c) yI (t) = s10 (t− nTs) if dQ,n−2, dQ,n−1 results in a transition (positive or negative) and
dQ,n−1, dQ,n results in no transition.

(d) yI (t) = s11 (t− nTs) if dQ,n−2, dQ,n−1 results in a transition (positive or negative) and
dQ,n−1, dQ,n results in a transition (positive or negative).

(4) If dI,n−1 = 1, dI,n = −1 (a negative going transition on the I sequence), then

(a) yI (t) = s12 (t− nTs) if dQ,n−2, dQ,n−1 results in no transition and dQ,n−1, dQ,n results
in no transition.

(b) yI (t) = s13 (t− nTs) if dQ,n−2, dQ,n−1 results in no transition and dQ,n−1, dQ,n results
in a transition (positive or negative).

(c) yI (t) = s14 (t− nTs) if dQ,n−2, dQ,n−1 results in a transition (positive or negative) and
dQ,n−1, dQ,n results in no transition.

(d) yI (t) = s15 (t− nTs) if dQ,n−2, dQ,n−1 results in a transition (positive or negative) and
dQ,n−1, dQ,n results in a transition (positive or negative).

Making use of the signal properties in Eqs. (7a) and (7b), the mapping conditions in (1) through
(4) for the I-channel baseband output can be summarized in a concise form described by Table 1. A
similar construction for the baseband Q-channel transmitted waveform yQ (t) = sQ (t− Ts/2) in the nth
signaling interval nTs ≤ t ≤ (n+ 1)Ts in terms of the transition properties of the I and Q data symbol
sequences, {dIn} and {dQn}, respectively, can be obtained analogously to (1) through (4) above. The
results can once again be summarized in the form of a table, as in Table 2.

Table 1. Mapping for I-channel baseband signal yI (t ) in the interval
(n – [1/2]) Ts <– t <– (n + [1/2]) Ts .

∣∣∣ dIn−dI,n−1
2

∣∣∣ ∣∣∣ dQ,n−1−dQ,n−2
2

∣∣∣ ∣∣∣ dQ,n−dQ,n−1
2

∣∣∣ sI(t)

0 0 0 dIns0(t− nTs)
0 0 1 dIns1(t− nTs)
0 1 0 dIns2(t− nTs)
0 1 1 dIns3(t− nTs)
1 0 0 dIns4(t− nTs)
1 0 1 dIns5(t− nTs)
1 1 0 dIns6(t− nTs)
1 1 1 dIns7(t− nTs)
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Table 2. Mapping for Q-channel baseband signal yQ (t ) in the interval
nTs <– t <– (n + 1) Ts .a

∣∣∣ dQn−dQ,n−1
2

∣∣∣ ∣∣∣ dI,n−dI,n−1
2

∣∣∣ ∣∣∣ dI,n+1−dI,n
2

∣∣∣ sI(t)

0 0 0 dQns0(t− nTs)
0 0 1 dQns1(t− nTs)
0 1 0 dQns2(t− nTs)
0 1 1 dQns3(t− nTs)
1 0 0 dQns4(t− nTs)
1 0 1 dQns5(t− nTs)
1 1 0 dQns6(t− nTs)
1 1 1 dQns7(t− nTs)

a Note that the subscript i of the transmitted signal si (t− nTs) or
si (t− (n+ [1/2])Ts) as appropriate is the binary coded decimal
(BCD) equivalent of the three transitions!

Applying the mappings in Tables 1 and 2 to the I and Q data sequences of Fig. 2 produces the identical
I and Q baseband transmitted signals to those that would be produced by passing the I and Q IJF encoder
outputs of this figure through the cross-correlator (half-symbol mapping) of the FQPSK (XPSK) scheme
as described in [4] (see Fig. 4). Thus, we conclude that for arbitrary I and Q input sequences, FQPSK
can alternatively be generated by the symbol-by-symbol mappings of Tables 1 and 2 as applied to these
sequences.

IV. A New and Improved FQPSK

As discussed above, the symbol-by-symbol mapping representation of FQPSK identifies the fact that
4 out of the 16 possible transmitted waveforms, namely, s5 (t) , s6 (t) , s13 (t) , and s14 (t), have a slope
discontinuity at their midpoints. Thus, for random I and Q data symbol sequences, the transmitted
FQPSK waveform on the average likewise will have a slope discontinuity at one-quarter of the uniform-
sampling time instants. To prevent this from occurring, we now redefine these four transmitted signals
in a manner analogous to s1 (t) , s2 (t) , s9 (t) , and s10 (t), namely,

s5 (t) =


sin

πt

Ts
+ (1−A) sin2 πt

Ts
, −Ts

2
≤ t ≤ 0

s13 (t) = −s5 (t)

sin
πt

Ts
, 0 ≤ t ≤ Ts

2

s6 (t) =


sin

πt

Ts
, −Ts

2
≤ t ≤ 0

s14 (t) = −s6 (t)

sin
πt

Ts
− (1−A) sin2 πt

Ts
, 0 ≤ t ≤ Ts

2



(8)
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Fig. 4.  FQPSK (XPSK) output:  (a) in-phase and (b) quadrature-phase.
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Note that the signals s5 (t) , s6 (t) , s13 (t) , and s14 (t), as defined in Eq. (8), do not have a slope
discontinuity at their midpoints nor for that matter anywhere else in the defining intervals. Also, the
zero slopes at their end points have been preserved. Thus, using Eq. (8) in place of the corresponding
signals of Eq. (7b) will result in a modified FQPSK signal that has no slope discontinuity anywhere in
time regardless of the value of A. Figure 5 illustrates a comparison of the signal s6 (t) of Eq. (8) with
that of Eq. (7b) for a value of A = 1/

√
2. Figure 6 illustrates the power spectral density of conventional

FQPSK and its enhancement, EFQPSK, obtained by using the waveforms of Eq. (8) as replacements for
those in Eq. (7b). The significant improvement in spectral roll-off rate is clear from a comparison of the
two.
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As it currently stands, the signal set chosen for EFQPSK has a symmetry property for s0 (t) , s1 (t) ,
s2 (t) , and s3 (t) that is not present for s4 (t) , s5 (t) , s6 (t) , and s7 (t). In particular, s1 (t) and s2 (t) are
each composed of one-half of s0 (t) and one-half of s3 (t), i.e., the portion of s1 (t) from t = −Ts/2 to
t = 0 is the same as that of s0 (t), whereas the portion of s1 (t) from t = 0 to t = Ts/2 is the same as that
of s3 (t) and vice versa for s2 (t). To achieve the same symmetry property for s4 (t) − s7 (t), one would
have to reassign s4 (t) as

s4 (t) =


sin

πt

Ts
+ (1−A) sin2 πt

Ts
, −Ts

2
≤ t ≤ 0

s12 (t) = −s4 (t)

sin
πt

Ts
− (1−A) sin2 πt

Ts
, 0 ≤ t ≤ Ts

2

(9)
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This minor change, which produces a complete symmetry in the waveform set, has an advantage from
the standpoint of hardware implementation and produces a negligible change in spectral properties of
the transmitted waveform. Nevertheless, for the remainder of the discussion, we shall ignore this minor
change and assume the version of enhanced FQPSK first introduced in this section.

V. Interpretation of FQPSK as a Trellis-Coded Modulation

The I and Q mappings given in Tables 1 and 2 can alternatively be described in terms of the (0,1)
representation of the I and Q data symbols and their transitions. Specifically, define

DIn
4=

1− dIn
2

DQn
4=

1− dQn
2

 (10)

which both range over the set (0,1). Then, defining the binary-coded decimal (BCD) representation of
the indices i and j by

i = I3 × 23 + I2 × 22 + I1 × 21 + I0 × 20

j = Q3 × 23 +Q2 × 22 +Q1 × 21 +Q0 × 20

 (11)

with

I0 = DQn ⊕DQ,n−1, Q0 = DI,n+1 ⊕DIn

I1 = DQ,n−1 ⊕DQ,n−2, Q1 = DIn ⊕DI,n−1 = I2

I2 = DIn ⊕DI,n−1, Q2 = DQn ⊕DQ,n−1 = I0

I3 = DIn, Q3 = DQn


(12)

we have yI (t) = si (t− nTs) and yQ (t) = sj (t− (n+ [1/2])Ts). That is, in each symbol interval
[(n− [1/2])Ts ≤ t ≤ (n+ [1/2])Ts for yI (t) and nTs ≤ t ≤ (n+ 1)Ts for yQ (t)], the I- and Q-channel
baseband signals are each chosen from a set of 16 signals, si (t) , i = 0, 1, · · · , 15, in accordance with
the 4-bit BCD representations of their indices defined by Eq. (11) together with Eq. (12). A graphical
illustration of the implementation of this mapping is given in Fig. 7.

Another interpretation of the mapping in Fig. 7 is as a 16-state trellis code with two binary (0,1)
inputs, DI,n+1 and DQn, and two waveform outputs, si (t) and sj (t), where the state is defined by the
4-bit sequenceDIn, DI,n−1, DQ,n−1, DQ,n−2. The trellis is illustrated in Fig. 8, and the transition mapping
is given in Table 3. In this table, the entries in the column labeled “input” correspond to the values of
the two input bits DI,n+1 and DQn that result in the transition, while the entries in the “output” column
correspond to the subscripts i and j of the pair of symbol waveforms si (t) and sj (t) that are output.

To compute the performance of this trellis-coded modulation (TCM), we need to determine the min-
imum Euclidean distance between pairs of error-event paths that leave a given state and first return to

12



DI,n+1 DIn DI,n-1

SIGNAL
MAPPING

i = I3 x 23 + I2 x 22 + I1 x 21 + I0 x 20

j = Q3 x 23 + Q2 x 22 + Q1 x 21 + Q0 x 20

I3

I2 = Q1

Q0

Q3

I1

I0 = Q2

DQn DQ,n-1

sQ (t ) = sj (t )

sI (t ) = si (t )

DQ,n-2

Fig. 7.  Alternate implementation of FQPSK baseband signals.

Table 3. Trellis state transitions.

Current Next
Input Output

state state

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 12 0 0 1 0

0 0 0 0 1 0 0 1 1 0 0 0

0 0 0 0 1 1 1 13 1 0 1 0

0 0 1 0 0 0 3 4 0 0 0 1

0 0 1 0 0 1 2 8 0 0 1 1

0 0 1 0 1 0 3 5 1 0 0 1

0 0 1 0 1 1 2 9 1 0 1 1

1 0 0 0 0 0 12 3 0 1 0 0

1 0 0 0 0 1 13 15 0 1 1 0

1 0 0 0 1 0 12 2 1 1 0 0

1 0 0 0 1 1 13 14 1 1 1 0

1 0 1 0 0 0 15 7 0 1 0 1

1 0 1 0 0 1 14 11 0 1 1 1

1 0 1 0 1 0 15 6 1 1 0 1

1 0 1 0 1 1 14 10 1 1 1 1

0 0 0 1 0 0 2 0 0 0 0 0

0 0 0 1 0 1 3 12 0 0 1 0

0 0 0 1 1 0 2 1 1 0 0 0

0 0 0 1 1 1 3 13 1 0 1 0

13



Table 3 (contd). Trellis state transitions.

Current Next
Input Output

state state

0 0 1 1 0 0 1 4 0 0 0 1

0 0 1 1 0 1 0 8 0 0 1 1

0 0 1 1 1 0 1 5 1 0 0 1

0 0 1 1 1 1 0 9 1 0 1 1

1 0 0 1 0 0 14 3 0 1 0 0

1 0 0 1 0 1 15 15 0 1 1 0

1 0 0 1 1 0 14 2 1 1 0 0

1 0 0 1 1 1 15 14 1 1 1 0

1 0 1 1 0 0 13 7 0 1 0 1

1 0 1 1 0 1 12 11 0 1 1 1

1 0 1 1 1 0 13 6 1 1 0 1

1 0 1 1 1 1 12 10 1 1 1 1

0 1 0 0 0 0 4 2 0 0 0 0

0 1 0 0 0 1 5 14 0 0 1 0

0 1 0 0 1 0 4 3 1 0 0 0

0 1 0 0 1 1 5 15 1 0 1 0

0 1 1 0 0 0 7 6 0 0 0 1

0 1 1 0 0 1 6 10 0 0 1 1

0 1 1 0 1 0 7 7 1 0 0 1

0 1 1 0 1 1 6 11 1 0 1 1

1 1 0 0 0 0 8 1 0 1 0 0

1 1 0 0 0 1 9 13 0 1 1 0

1 1 0 0 1 0 8 0 1 1 0 0

1 1 0 0 1 1 9 12 1 1 1 0

1 1 1 0 0 0 11 5 0 1 0 1

1 1 1 0 0 1 10 9 0 1 1 1

1 1 1 0 1 0 11 4 1 1 0 1

1 1 1 0 1 1 10 8 1 1 1 1

0 1 0 1 0 0 6 2 0 0 0 0

0 1 0 1 0 1 7 14 0 0 1 0

0 1 0 1 1 0 6 3 1 0 0 0

0 1 0 1 1 1 7 15 1 0 1 0

0 1 1 1 0 0 5 6 0 0 0 1

0 1 1 1 0 1 4 10 0 0 1 1

0 1 1 1 1 0 5 7 1 0 0 1

0 1 1 1 1 1 4 11 1 0 1 1

1 1 0 1 0 0 10 1 0 1 0 0

1 1 0 1 0 1 11 13 0 1 1 0

1 1 0 1 1 0 10 0 1 1 0 0

1 1 0 1 1 1 11 12 1 1 1 0

1 1 1 1 0 0 9 5 0 1 0 1

1 1 1 1 0 1 8 9 0 1 1 1

1 1 1 1 1 0 9 4 1 1 0 1

1 1 1 1 1 1 8 8 1 1 1 1
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Fig. 8.  The 16-state trellis diagram for FQPSK.

that or another state a number of branches later. The smallest-length error event for which there are
at least two paths that start in one state and remerge in the same or another state is 3 branches. For
each of the 16 starting states, there are exactly 4 such error-event paths that remerge in each of the
16 end states. Figures 9(a) and 9(b) are examples of these error-event paths corresponding to the first
two states, respectively, for the case when the start and end states are the same. The remaining length-3
error-event paths for states 9 through 16 are the mirror images of the ones for states 1 through 8 [see,
for example, Fig. 9(c), which should be compared with Fig. 9(a)]. Also, the paths for states 9 through 16
will have Euclidean distance properties identical to those for states 1 through 8 since the output symbols
along their branches will be the negatives of those along their mirror images. Figures 10(a) and 10(b) are
examples of the groups of 4 error-event paths that start in a given state and remerge in another state.
A similar mirror-image symmetry exists for these groups of paths and, thus, once again it is sufficient to
consider only the first 8 starting states.

It is important to note that the trellis code defined by the mapping in Table 3 is not uniform, e.g., it
is not sufficient to consider only the all-zeros path as the transmitted path in computing the minimum
Euclidean distance. Rather, one must consider all possible pairs of error-event paths starting from each
of the 16 states (8 states is sufficient in view of the above-mentioned distance symmetry properties) and
ending in each of the 16 states and determine the pair having the minimum Euclidean distance. The
following example illustrates the procedure for the groups of paths that start and end in the same state.
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(0,0)s0,s0 (0,0)s0,s0

(0,1)s1,s12

(0,0)s3,s4

(0,0)s2,s0(1,0)s0,s1

(0,0)s12,s3

(0,0)s4,s2

(0,0)s6,s2(0,0)s15,s 7

(1,1)s1,s13

Fig. 9.  Paths of length-3 branches starting and ending in (a) state 1,
(b) state 2, and (c) state 16.

(a)

Upon examination of the squared Euclidean distance between all pairs of paths in the above-mentioned
figures, it can be shown that the minimum of this distance, i.e., d2

min, occurs between the first and third
paths of Fig. 9(b).6 Thus, based on the output symbols that occur along this pair of paths, we have

d2
min =

∫ Ts/2

−Ts/2

[
(s3(t)− s3(t))2 + (s4(t)− s5(t))2 + (s2(t)− s14(t))2 + (s0(t)− s3(t))2

+ (s1(t)− s5(t))2 + (s12(t)− s14(t))2
]
dt (13)

Evaluation of the squared Euclidean distances between the pairs of waveforms required in Eq. (13) using
Eqs. (7a) and (7b) for their definitions results, after much algebra, in

6 It also occurs between several other pairs of paths starting and ending in the same state.
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Fig. 9 (contd).  Paths of length-3 branches starting and ending in (a)
state 1, (b) state 2, and (c) state 16.

(b)

(0,0)s3,s4

(0,0)s2,s0

(0,1)s2,s8

(0,0)s1,s4

(0,1)s3,s12

(1,0)s3,s5

(0,0)s14,s3

(0,1)s5,s14
(1,1)s2,s9

(0,1)s 7,s14

(0,1)s1,s12

(0,0)s13,s 7

d2
min =

[
7
4
− 8

3π
−A

(
3
2

+
4

3π

)
+A2

(
11
4

+
4
π

)]
Ts = 1.552Ts (14)

The average signal (I +Q) energy is obtained from

Eav =
1

256

15∑
i=0

15∑
j=0

∫ Ts/2

−Ts/2

[
s2
i (t) + s2

j (t)
]
dt = 2

[
1
16

15∑
i=0

∫ Ts/2

−Ts/2
s2
i (t) dt

]
=

1
4

7∑
i=0

∫ Ts/2

−Ts/2
s2
i (t) dt (15)

which, again using Eqs. (7a) and (b), evaluates to

Eav =
(

7 + 2A+ 15A2

16

)
Ts = 0.9946Ts (16)
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Fig. 9 (contd).  Paths of length-3 branches starting and ending in (a)
state 1, (b) state 2, and (c) state 16.

(c)

(1,0)s9,s4

(0,1)s8,s9

(1,1)s 7,s15

(0,0)s9,s5

(1,1)s8,s8

(1,1)s12,s10

(1,1)s11,s12

(1,1)s4,s11

(1,1)s14,s10

(1,1)s10,s8

(1,1)s8,s8(1,1)s8,s8

Since the average signal (symbol) energy is twice the average energy per bit, Ēb, then the normalized
minimum squared Euclidean distance for the paths corresponding to starting and ending in the same
state is

d2
min

2Ēb
=

16
[

7
4
− 8

3π
−A

(
3
2

+
4

3π

)
+A2

(
11
4

+
4
π

)]
(7 + 2A+ 15A2)

= 1.56 (17)

Upon examination of all length-3 error-event paths that begin in one state and end in another, e.g.,
Figs. 10(a) and 10(b), no pair of paths with smaller normalized minimum squared Euclidean distance
was found. Furthermore, by exhaustive search, it can be shown that the minimum squared Euclidean
distance of Eq. (17) is the smallest over all pairs of paths that start in any state and end in any state
regardless of the length of the path. Thus, the normalized minimum squared Euclidean distance for the
FQPSK scheme is given by Eq. (17).
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Fig. 10.  Paths of length-3 branches starting in state 1 and ending in
(a) state 13 and (b) state 2.

(a)

(0,0)s9,s5

(0,1)s1,s12

(1,1)s14,s10

(1,1)s13,s14

(1,1)s2,s9

(0,0)s11,s5

(0,0)s13,s 7

(1,1)s1,s13

(0,0)s15,s 7

(1,0)s0,s1

(0,0)s0,s0

(1,1)s1,s13

For the spectrally enhanced FQPSK using the waveforms of Eq. (8) as replacements for their equivalents
in Eq. (7b), the minimum squared Euclidean distance over all length-3 trellis paths occurs, for example,
between the first and second paths, starting and ending in state “0000” and is given by [see Fig. 9(a)]

d2
min =

∫ Ts/2

−Ts/2

[
(s0 (t)− s1 (t))2 + (s0 (t)− s12 (t))2 + (s0 (t)− s3 (t))2 + (s0 (t)− s4 (t))2

+ (s0 (t)− s2 (t))2 + (s0 (t)− s0 (t))2
]
dt (18)

Once again, evaluation of the squared Euclidean distances between the pairs of waveforms required in
Eq. (18), using Eqs. (7a) and (7b) together now with Eq. (8) for their definitions, results, after much
algebra, in

d2
min =

[
3− 6A+ 15A2

4

]
Ts = 1.564Ts (19)
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Fig. 10 (contd).  Paths of length-3 branches starting in state 1 and
ending in (a) state 13 and (b) state 2.

(b)

(1,0)s0,s1

(0,1)s5,s14

(0,1)s 7,s14

(0,1)s1,s12

(1,1)s1,s13

(0,0)s12,s3

(0,1)s3,s12

(0,0)s15,s 7

(0,1)s1,s12

(0,0)s0,s0

(0,0)s3,s4

(0,0)s0,s0

Likewise, the average signal energy is now

Eav =


21
8
− 8

3π
−A

(
1
4
− 8

3π

)
+

29
8
A2

4

Ts = 1.003Ts (20)

Thus, the normalized minimum squared Euclidean distance is

d2
min

2Ēb
=

(
3− 6A+ 15A2

)
21
8
− 8

3π
−A

(
1
4
− 8

3π

)
+

29
8
A2

= 1.56 (21)

which coincidentally is identical to that for FQPSK. Again there is no other pair of paths starting in any
state and ending in any other that produces a smaller normalized minimum squared Euclidean distance.
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Thus, we conclude that the enhancement of FQPSK provided by using the waveforms of Eq. (8) as
replacements for their equivalents in Eq. (7b) is significantly beneficial from a spectral standpoint with no
penalty in receiver performance.

In accordance with the foregoing representation of FQPSK as a trellis-coded modulation with 16 states,
the optimum receiver (employing a Viterbi algorithm) for FQPSK is illustrated in Fig. 11. Later on, in
Section VII, we shall illustrate average bit-error probability (BEP) results obtained from a simulation
of this receiver. For the moment, we shall just compare its asymptotic (limit of infinite energy-to-noise
ratio) performance with that of the optimum receiver for conventional uncoded offset QPSK (OQPSK).
Since for the latter d2

min/2Ēb = 2, which is the same as that for BPSK [8], then we see that as a trade
against the significantly improved power spectrum afforded by FQPSK and its enhanced version relative
to that of OQPSK, an asymptotic loss of only 10 log (1/1.56) = 1.07 dB is experienced.7

VI. Symbol-by-Symbol Detection of FQPSK

In this section, we examine the performance of FQPSK when the detector makes decisions on a symbol-
by-symbol basis, i.e., the inherent memory introduced by the trellis coding is ignored at the receiver. In
order to understand how this can be accomplished, we first will establish the fact that, in any typical
transmission interval, there exists a fixed number (in particular, eight) of possible waveforms (pulse
shapes) that represent the FQPSK signal and each of these occurs with equal probability. As such, from
symbol to symbol, the FQPSK signal appears as an equiprobable M -ary signaling set (with M = 8) and
thus can be detected accordingly. With this in mind, we shall investigate two possible simple structures,
both of which are suboptimum relative to the trellis-coded receiver previously discussed, that exploit the
memory inherent in the modulation. The first structure is a standard offset QPSK receiver that employs
simple integrate and dumps (I&Ds) as detectors and as such ignores the pulse shaping associated with the
above-mentioned M -ary symbol-by-symbol representation. The second structure, which shall be referred
to as an average matched-filter receiver, improves on the first one by replacing the I&Ds with matched
filters, where the match is made to the average of the waveshapes in the M -ary signal set representation.
Without loss in generality, the following description shall consider the case n = 0 corresponding to
the I-channel interval −Ts/2 ≤ t ≤ Ts/2 and the Q-channel interval 0 ≤ t ≤ Ts. We shall focus our
attention on only the I channel and, as such, our initial goal will be to determine the eight equally likely
waveforms that typify an FQPSK waveform in the interval 0 ≤ t ≤ Ts. To avoid confusion with the
previously defined signals, such as those defined, for example, in Eqs. (7a) and (7b), we shall use upper
case notation, i.e., Si (t) , i = 0, 1, · · · , 7 to describe these new waveforms. As we shall see, each of these
new waveforms shall be composed of the latter half (i.e., that which occurs in the interval 0 ≤ t ≤ Ts/2)
of the I-channel waveform transmitted in the interval −Ts/2 ≤ t ≤ Ts/2 followed by the first half (i.e.,
that which occurs in the interval Ts/2 ≤ t ≤ Ts) of the I-channel waveform transmitted in the interval
Ts/2 ≤ t ≤ 3Ts/2. As stated above, it will be shown that only eight such possible combinations can exist,
and all are equiprobable.

A. Signal Representation

Let dI0 = 1, or equivalently from Eq. (10), DI0 = 0. Then, from Table 1, corresponding to dI,−1 = 1
(which results in |(dI0 − dI,−1) /2| = 0), there are four possible waveforms, (s0 (t) , s1 (t) , s2 (t) , and
s3 (t)) that can be transmitted. Likewise corresponding to dI,−1 = −1 (which results in |(dI0 − dI,−1) /2|
= 1), there are four possible waveforms, (s4 (t) , s5 (t) , s6 (t) , and s7 (t)), that can be transmitted. In
each case, which of the four possible waveforms is transmitted depends on the difference values associ-
ated with dQ,−2, dQ,−1, and dQ0 in accordance with the second and third columns of Table 1. While,
in principle, for each possible waveform si (t) transmitted in −Ts/2 ≤ t ≤ Ts/2 there are eight possible
waveforms that can be transmitted in Ts/2 ≤ t ≤ 3Ts/2, it is straightforward to show that only four

7 Needless to say, at smaller (finite) signal-to-noise ratios (SNRs), the loss between uncoded OQPSK and trellis-decoded
FQPSK will be even less.
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of these eight are unique. For example, if s0 (t) is transmitted in −Ts/2 ≤ t ≤ Ts/2 (corresponding,
as above, to dI,−1 = 1), then the four possible waveforms that can occur in Ts/2 ≤ t ≤ 3Ts/2 are
s0 (t) , s1 (t) , s12 (t) , and s13 (t). Thus, corresponding to the I-channel signal sI(t) = s0 (t) in the interval
−Ts/2 ≤ t ≤ Ts/2, the transmitted signal Si (t) for the interval 0 ≤ t ≤ Ts is composed of the latter half
of s0 (t) followed by the first half of either s0 (t) , s1 (t) , s12 (t), or s13 (t). Looking at the definitions of
s0 (t) , s1 (t) , s12 (t) , and s13 (t) in Eqs. (7a) and (7b), we see that this yields only two distinct possibilities
for Si (t), namely,

S0 (t) = A, 0 ≤ t ≤ Ts

S1 (t) =


A, 0 ≤ t ≤ Ts

2

sin
πt

2Ts
,

Ts
2
≤ t ≤ Ts


(22a)

both of which are equally likely. Thus, in summary, for dI0 = 1 and sI(t) = s0 (t) in the interval
−Ts/2 ≤ t ≤ Ts/2, there are only two waveforms that can occur in 0 ≤ t ≤ Ts, namely, S0 (t) and S1 (t)
of Eq. (22a).

Following a similar procedure (still for dI0 = 1), it can be shown that, for each of the other possible
waveforms in −Ts/2 ≤ t ≤ Ts/2, i.e., s1 (t) , s2 (t) , s3 (t) , s4 (t) , s5 (t) , s6 (t), and s7 (t), there are four
waveforms that can occur in the succeeding interval Ts/2 ≤ t ≤ 3Ts/2 but only two possible distinct
waveforms in 0 ≤ t ≤ Ts. These possibilities are summarized in Table 4.

The signals S2 (t) , S3 (t) , S4 (t) , S5 (t) , S6 (t) , and S7 (t) are defined as

S2 (t) = 1− (1−A) cos2 πt

Ts
, 0 ≤ t ≤ Ts

S3 (t) =


1− (1−A) cos2 πt

Ts
, 0 ≤ t ≤ Ts

2

sin
πt

2Ts
,

Ts
2
≤ t ≤ Ts

S4 (t) =


A sin

πt

2Ts
, 0 ≤ t ≤ Ts

2

A,
Ts
2
≤ t ≤ Ts

S5 (t) = A sin
πt

2Ts
, 0 ≤ t ≤ Ts

S6 (t) =


sin

πt

2Ts
, 0 ≤ t ≤ Ts

2

1− (1−A) cos2 πt

Ts
,

Ts
2
≤ t ≤ Ts

S7 (t) = sin
πt

2Ts
, 0 ≤ t ≤ Ts



(22b)
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Table 4. Possible Si (t )’s for successive
combinations of si (t ).

Signal in Signal in Signal in
−Ts/2 ≤ t ≤ Ts/2 Ts/2 ≤ t ≤ 3Ts/2 0 ≤ t ≤ Ts

s1(t) s2(t), s3(t), s14(t), s15(t) S2(t), S3(t)

s2(t) s0(t), s1(t), s12(t), s13(t) S0(t), S1(t)

s3(t) s2(t), s3(t), s14(t), s15(t) S2(t), S3(t)

s4(t) s0(t), s1(t), s12(t), s13(t) S4(t), S5(t)

s5(t) s2(t), s3(t), s14(t), s15(t) S6(t), S7(t)

s6(t) s0(t), s1(t), s12(t), s13(t) S4(t), S5(t)

s7(t) s2(t), s3(t), s14(t), s15(t) S6(t), S7(t)

In comparing the performances of the suboptimum receivers of FQPSK with that of uncoded OQPSK,
we shall reference them all to the same average transmitted power, P̄ , or, equivalently, the same average
energy-per-bit-to-noise spectral density ratio, Ēb/N0 = P̄ Tb/N0. In order to do this, we first must
compute the energy Ei =

∫ Ts
0
S2
i (t) dt of each of the waveforms in Eqs. (22a) and (22b) and take their

average. The results are summarized below:

E0 = A2Ts

E1 =
3
4
A2Ts

E2 =
(

3
8

+
1
4
A+

3
8
A2

)
Ts

E3 =
(

7
16

+
1
8
A+

3
16
A2

)
Ts

E4 =
3
4
A2Ts

E5 =
1
2
A2Ts

E6 =
(

7
16

+
1
8
A+

3
16
A2

)
Ts

E7 =
1
2
Ts



(23)

and

Ē =
1
8

7∑
i=0

Ei =
(

7 + 2A+ 15A2

32

)
Ts (24)
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Since the average power transmitted in the I channel is one-half the total (I + Q) average transmitted
power, P̄ , then we have

P̄

2
=
Ē

Ts
=

7 + 2A+ 15A2

32
(25)

or, equivalently, the average energy per symbol is given by

P̄ Ts
4= Ēs = 2Ēb =

7 + 2A+ 15A2

16
Ts (26)

Comparing Eq. (26) with Eq. (16), we see that the evaluation of average energy per symbol based on the
symbol-by-symbol M -ary representation of FQPSK is identical to that obtained from the representation
as a trellis-coded modulation. Also note that for A = 1, which corresponds to SQORC modulation, we
have Ēs = (4/3)Ts, which is consistent with the original discussions of this modulation in [7].

B. Suboptimum Receivers

In accordance with our discussion at the beginning of Section VI, we shall consider two suboptimum
receivers for symbol-by-symbol detection of FQPSK, the difference being the manner in which the detector
is matched to the received signal. For the average matched-filter case, the detector is implemented as a
multiplication of the received signal by S̄ (t) 4= (1/8)

∑7
i=0 Si (t), followed by an I&D filter and binary

hard-decision device (see Fig. 11). For the OQPSK receiver, the detector is purely I&D (i.e., matched
to a rectangular pulse), which is tantamount to assuming S̄ (t) = 1. Thus, we can cover both cases
at the same time, leaving S̄ (t) as an arbitrary premultiplication pulse shape, and later substitute the
appropriate waveform.

Assuming the M -ary symbol-by-symbol representation of FQPSK just described, then the decision
variable Z in Fig. 12 is given by

Z =
∫ Ts

0

S (t) S̄ (t) dt+
∫ Ts

0

n (t) S̄ (t) dt 4= Z̄ +N (27)

where S (t) is the transmitted waveform in 0 ≤ t ≤ Ts and ranges over the set of eight waveforms
in Eqs. (22a) and (22b) with equal probability. The random variable N is zero-mean Gaussian with
variance σ2

N = N0ES̄/2, where ES̄
4=
∫ Ts

0
S̄2 (t) dt. Thus, the I-channel symbol-error probability (same as

the Q-channel symbol-error probability) conditioned on the particular S (t) = Si (t) corresponding to the
transmitted symbol dI0 = 1 is easily shown to be

Psi (E) =
1
2

erfc


√√√√ 1
N0

(∫ Ts
0
Si (t) S̄ (t) dt

)2

ES̄

 (28)

and, hence, the average symbol-error probability is given by

Ps (E) 4=
1
8

7∑
i=0

Psi (E) (29)
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Fig. 12.  The suboptimum receiver for FQPSK based on symbol-by-symbol detection.

1. Conventional OQPSK Receiver. For the conventional OQPSK receiver, we set S̄ (t) = 1, or,
equivalently, ES̄ = Ts in Eq. (28), resulting in

Psi (E) =
1
2

erfc


√√√√ Ts
N0

(
1
Ts

∫ Ts

0

Si (t) dt

)2
 =

1
2

erfc

√( 32
7 + 2A+ 15A2

)
Ēb
N0

(
Ei
Ts

)2
 (30)

Substituting the average energies from Eq. (23) in Eq. (30) for each signal and then performing the
average as in Eq. (29) gives the final desired result for average symbol-error probability, namely,

Psi (E) =
1
16

erfc

(√(
32A4

7 + 2A+ 15A2

)
Ēb
N0

)
+

1
8

erfc

(√(
18A4

7 + 2A+ 15A2

)
Ēb
N0

)

+
1
16

erfc


√√√√( (3 + 2A+ 3A2)2

2 (7 + 2A+ 15A2)

)
Ēb
N0

+
1
8

erfc


√√√√( (7 + 2A+ 3A2)2

8 (7 + 2A+ 15A2)

)
Ēb
N0



+
1
16

erfc

(√(
8A4

7 + 2A+ 15A2

)
Ēb
N0

)
+

1
16

erfc

(√(
8

7 + 2A+ 15A2

)
Ēb
N0

)
(31)

2. Average Matched-Filter Receiver. For the average matched filter, we need to compute the
correlations of each of the pulse shapes in Eqs. (22a) and (22b) with the average pulse shape S̄ (t) and also
the energy ES̄ of the average pulse shape. Rewriting Eq. (28) in a form analogous to Eq. (30), namely,

Psi (E) =
1
2

erfc



√√√√√√√√( 32
7 + 2A+ 15A2

)
Ēb
N0

(
1
Ts

∫ Ts

0

Si (t) S̄ (t) dt

)2

1
Ts
ES̄

 (32)

then the results necessary to evaluate Eq. (32) are tabulated below:
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1
Ts

∫ Ts

0

S0 (t) S̄ (t) dt =
A

4

[
1
2

+
2
π

+A

(
3
2

+
2
π

)]

1
Ts

∫ Ts

0

S1 (t) S̄ (t) dt =
1
Ts

∫ Ts

0

S4 (t) S̄ (t) dt =
A

4

[
1
2

+
5

3π
+A

(
1 +

7
3π

)]

1
Ts

∫ Ts

0

S2 (t) S̄ (t) dt =
1
4

[
3
8

+
4

3π
+A

(
3
4

+
2
π

)
+A2

(
7
8

+
2

3π

)]

1
Ts

∫ Ts

0

S3 (t) S̄ (t) dt =
1
Ts

∫ Ts

0

S6 (t) S̄ (t) dt =
1
4

[
7
16

+
4

3π
+A

(
5
8

+
7

3π

)
+A2

(
7
16

+
1

3π

)]

1
Ts

∫ Ts

0

S5 (t) S̄ (t) dt =
A

2

[
1
4

+
2

3π
+A

(
1
4

+
4

3π

)]

1
Ts

∫ Ts

0

S7 (t) S̄ (t) dt =
1
2

[
1
4

+
2

3π
+A

(
1
4

+
4

3π

)]



(33)

and

1
Ts
ES̄ =

1
16

[
(1 +A)2

(
3
2

+
4
π

)
+

3
8

(1−A)2 − 2
(
1−A2

)(1
2

+
2

3π

)]
(34)

Finally, substituting Eqs. (33) and (34) into Eq. (32) and averaging as in Eq. (29) gives the desired result,
which we shall not explicitly write in closed form.

VII. Average Bit-Error Probability Performance

The average BEP of the two suboptimum receivers discussed in Section VI is illustrated in Fig. 13
for the case A = 1/

√
2, which is the usual value chosen for implementation of FQPSK. These results are

obtained directly from Eq. (31) for the OQPSK receiver and from Eq. (29) in combination with Eqs. (32)
through (34) for the average matched-filter receiver. Also included in this figure is the performance
corresponding to the optimum uncoded OQPSK receiver (same performance as for uncoded BPSK), i.e.,
Pb (E) = 1/2 erfc

√
Eb/N0, as well as simulation results obtained for the optimum trellis-coded receiver

of Fig. 11. We observe, as one might expect, that the average matched-filter receiver outperforms the
OQPSK receiver, since an attempt to match the transmitted pulse shape (even on an average basis) is
better than no attempt at all. We also observe that the trellis-coded receiver at Pb (E) = 10−4 is more
than 1-dB better than the average matched-filter receiver, granted that the latter is considerably simpler
in implementation. Finally, for the same average BEP, the trellis-coded receiver of FQPSK is only about
0.6-dB inferior to uncoded OQPSK performance, which is a relatively small penalty paid for the vast
improvement in PSD afforded by the former relative to the latter.

VIII. Conclusion

By offering a new interpretation of unfiltered FQPSK in terms of a full (as opposed to a half) symbol
mapping of an I and Q error-correction coded modulation, we have been able to provide methods for
enhancing its spectral properties as well as its error-probability performance. Similar methods can be
applied to filtered versions of FQPSK.
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Fig. 13.  Bit-error performance of various receivers of FQPSK mod-
ulation (the reference curve is the bit-error rate of OQPSK).
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