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Voltage Signal-to-Noise Ratio (SNR)
Nonlinearity Resulting From

Incoherent Summations
S. T. Lowe1

Simple scaling rules often are used to estimate signal-to-noise ratios (SNRs).
For example, one commonly hears that voltage SNR varies as the square root of
the number of data samples and linearly as the signal strength. For a variety of
reasons, signals often are detected or measured by cross-correlating a small interval
of sampled voltage data with a phase model and coherently integrating, followed
by incoherently summing the resulting amplitudes over a number of such intervals.
When this is done, the usual scaling rules do not always apply and can lead to
decidedly incorrect conclusions (an example is given in Section V). This article
derives analytic formulas for voltage SNR and some resulting scaling laws when
incoherent amplitude sums are performed. In a common low-SNR situation, the
correct rule states that voltage SNR varies as the square of the signal strength.

I. Background

Detecting a weak sinusoidal signal in a white noise environment usually involves cross-correlating
sampled voltage data, D(t), with a complex phase model, φm(t), and integrating over time:

~ρ =
∫ T

0

D(t) e−iφm(t) dt (1)

The resulting complex phasor, ~ρ, will obtain its maximum amplitude when the phase model is accurate
enough to approximately stop the cross-correlated signal’s phase variations over the integration interval,
T . The phase model usually is parameterized, and finding parameter values that produce a significantly
large signal-to-noise ratio (SNR) implies the existence of a signal and approximately determines its phase
characteristics.

The simplest and most common phase model is linear, corresponding to a monochromatic tone:

φm(t) = φ0 + νt (2)

1 Tracking Systems and Applications Section.
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Here, there are two model parameters, ν and φ0, which represent the frequency and initial phase; however,
the integrated phasor’s amplitude is insensitive to φ0, making this effectively a one-parameter model when
the goal is signal detection.

II. Incoherent Sums

The phase model given by Eq. (2) seldom is accurate enough to apply over long integration intervals
because ν is often time dependent. The model can be improved by creating additional parameters,
but this requires handling higher dimensional parameter spaces, resulting in a much greater number of
trial models. This both raises the threshold for false signal detections and increases the computational
requirements. When large data sets and weak signals are involved, this option may not be feasible. A
common approach is to apply Eq. (2) over short enough time intervals to ensure its accuracy and to sum
the resulting integrated amplitudes over all intervals. This incoherent sum results in a lower overall SNR
than does applying an accurate model over the entire interval and summing coherently, and it is this
effect on the overall SNR that now is examined in detail.

Assume a sinusoidal signal is added to complex white Gaussian noise, where the real and imaginary
components correspond to the in-phase and quadrature-phase noise components, respectively, and each
has zero mean and variance σ2. If the phase model exactly stops the signal’s phase variations, so that the
signal voltage is a constant, v, the resulting integrated complex voltage has amplitude V . The probability
density function (PDF) of V is Ricean2 [1], where the PDF, mean, and variance are given by

PDF (V ) =
V

σ2
e−(V 2+v2)/2σ2

I0

(
v V

σ2

)
, 0 ≤ V <∞ (3a)
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(3b)

σ2
V ≡ 〈V 2〉 − 〈V 〉2 = v2 + 2σ2 − 〈V 〉2 (3c)

and I0 and I1 are modified Bessel functions of the first kind. Assume a data set having t samples divided
into k pieces, each having n samples (so k n = t), a sinusoidal signal with peak voltage R, and single-
sample variance σ2

1 . The quantities 〈V 〉 and σ2
V for each n-sample piece are calculated using Eq. (3) with

v = nR and σ =
√
nσ1. This assumes the n-sample sum is completely coherent. Assuming errors on

each n-sample piece are uncorrelated, these quantities are multiplied by k for the incoherent sum over all
k pieces, leading to the overall amplitude, A, and amplitude variance, σ2

A, for the entire t-sample data
set:
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(4a)

σ2
A = k (n2 S2 + 2n− 〈A〉2k=1) (4b)

where S ≡ R/σ1 can be thought of as the single-sample SNR. Removing the no-signal bias 〈A〉S=0 and
normalizing by σA|S=0 so that the noise has zero mean and unit variance defines the voltage SNR:

2 If you are not familiar with the Ricean distribution, it is easy to conceptualize. Imagine a two-dimensional Gaussian
distribution centered v units from the origin and having both x and y variances equal to σ2. Equation (3a) gives the
resulting distribution of distances V from the origin.
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SNRV ≡
〈A〉 − 〈A〉S=0

σA|S=0

(5a)
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(5b)

where ε ≡ √nS can be thought of as the n-sample SNR. Figure 1 shows SNRV as a function of ε along
with polynomial expansions for small and large ε. Combining these expansions at the crossover point,
ε = 1.6755, leads to an approximate expression for SNRV that is good to better than 1 percent for all ε:
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III. Scaling Laws

First, note that the definition of SNRV includes an arbitrary scale factor. Above, S was defined as
the peak voltage of a sinusoidal signal, but another definition for S, for example the signal rms, would
change the constant near the front of Eq. (5b). Thus, only relative scaling behavior is meaningful. The
scaling laws for SNRV , as defined above, fall into two regimes: ε <∼ 1 and ε >∼ 4, where, again, ε is the
SNRV from a single n-sample piece of data.

The regime ε <∼ 1 is relevant for signal detection: The signal is too weak to detect in any one n-sample
piece, but one hopes to detect it by incoherently summing k such pieces. Looking at the lowest order
term in Eq. (6a),

SNRV '
1
4

√
π

4− π
√
k ε2 ε¿ 1 (7a)

=
1
4

√
π

4− π
t S2

√
k

(7b)

This shows that the overall SNRV scales as S2 in this regime, and not as S, which indicates that efforts
to increase S are much more effective in increasing SNRV here than in the strong-signal regime, where
SNRV scales linearly with S. Also, for a fixed number of pieces, k, SNRV scales linearly with the amount
of data, t, and not by the usual

√
t. Finally, for a given data set (fixed t and S), the observed SNRV in

this regime scales as
√
n. In other words, n should be maximized for signal detection.

When ε >∼ 4, the signal is detectable in a single n-sample piece, so the problems inherent in weak
signals are not found here. The SNR is given approximately by

SNRV '
√

2
4− π

√
t S εÀ 1 (8)
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The SNRV loss, L, associated with breaking the data into k pieces is defined by the relation

SNRV ≡ SNRV

∣∣∣
k=1

(1− L) (9a)

Equation (6b) is used to determine L:

L '
√
π

2

√
k − 1√
t S

εÀ 1 (9b)

This shows the strong-signal SNRV loss associated with splitting a given data set into k coherent pieces
scales as

√
k − 1 and inversely as the unsplit SNR.

IV. Numerical Verification

Equations (5) and (6) were verified by numerical simulation. A signal with S = 0.05 was added
to 220 = 1, 048, 576 samples of normalized white noise, coherently integrated over all n-sample data
pieces, and incoherently summed over all 220/n pieces, where n was all possible powers of 2. This was
repeated 1000 times and the results averaged. Table 1 shows the resulting SNRV along with the analytic
values. Notice the big drop in SNRV around ε = 4, showing its two scaling regimes, ε <∼ 1 and ε >∼ 4.
Figure 2 shows the SNRV simulation values, the analytic prediction from Eq. (5b), and the asymptotic
approximations as a function of k. Figure 3 shows these same quantities as a function of ε.

Table 1. Simulation results.

n k ε SNRV Eq. (4b)

1,048,576 1 51.20 75.528 76.254

524,288 2 36.20 73.891 75.476

262,144 4 25.60 75.213 74.385

131,072 8 18.10 72.753 72.860

65,536 16 12.80 68.685 70.738

32,768 32 9.05 65.877 67.808

16,384 64 6.40 63.157 63.807

8,192 128 4.53 57.921 58.441

4,096 256 3.20 50.850 51.474

2,048 512 2.26 42.629 43.033

1,024 1,024 1.60 34.400 34.022

512 2,048 1.13 26.347 25.702

256 4,096 0.80 18.691 18.846

128 8,192 0.57 13.433 13.582

64 16,384 0.40 9.851 9.698

32 32,768 0.28 7.070 6.892

16 65,536 0.20 4.799 4.885

8 131,072 0.14 3.418 3.459

4 262,144 0.10 2.409 2.447

2 524,288 0.07 1.682 1.731

1 1,048,576 0.05 1.250 1.224
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Finally, to see SNRV as a function of S, a second simulation was performed with n = 2048, k = 16, 384,
and S varying between 0.001 and 1. The results are plotted in Fig. 4 and clearly show the two scaling
regimes. The long-dashed line shows the “usual” SNRV scaling rule.
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Fig. 1.  The plot of SNRv 
, given by Eq. (5b),

as a function of e, for k = 1.  Also shown are
the SNRv’s polynomial expansions, Eqs.
(6a) and (6b), also for k = 1.
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Fig. 2.  The plot of SNRv as a function of k
for the simulation, along with the analytic
prediction given by Eq. (5b). Also shown
are the asymptotic expressions, Eqs. (6a)
and (6b).
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Fig. 3.  The plot of SNRv as a function of e
for the simulation, along with the analytic
prediction given by Eq. (5b). Note that e =
..nS and S is fixed at 0.05, showing SNRv
as a function of 0.05   n. Also shown are the
asymptotic expressions, Eqs.  (6a) and (6b).
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Fig. 4.  The plot of SNRv as a function of S
for the simulation, along with the analytic
prediction given by Eq. (5b).  Also shown
are the lowest-order asymptotic expres-
sions, Eqs. (6a) and (6b) (first terms). The
Eq. (6b) line corresponds to the usual SNRv
scaling rule.
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V. Conclusions

It has been shown that SNRV derived from incoherent voltage sums cannot always be scaled using
the “usual” scaling rules. An example makes this clear. Assume a time series of 33.554 × 106 sampled
voltages is analyzed by continuously dividing the data into 2048-sample subsets and performing a fast
Fourier transform (FFT) of each subset. Also assume the coherence time of any signal is approximately
equal to the time interval of a 2048-sample subset. The amplitudes of the resulting 16,384 FFTs are
summed, and a signal having an SNRV of 750 is seen. A second signal, known to have a voltage 50 times
smaller than the observed signal could be present. Can this second signal be detected? The usual SNR
scaling would indicate the second signal will have SNRV ≈ 750/50 ≈ 15 and can be observed. However,
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the correct answer is that it cannot be observed in this manner. Figure 4 shows the curve for n = 2048
and k = 16, 384, indicating this signal has S = 0.1. Moving down by a factor of 50 to S = 0.002 shows the
expected SNRV is about 0.5, making the signal unobservable. This example shows that Eq. (5) should
be used when scaling SNRV s that are derived from incoherent summations. Note that the signal could
be detected if longer subsets were used and the signal were coherent over this interval.
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