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The Generalized Autocovariance: A Tool
for Clock Noise Statistics

C. A. Greenhall1

The generalized autocovariance (GACV) function is a natural extension of the
autocovariance function from stationary processes to a class of nonstationary pro-
cesses used as models of clock noise. This article gives a theory of the GACV and
shows how to use it to carry out useful statistical calculations.

I. Introduction

Despite Hamming’s maxim that the purpose of computing is insight, not numbers, the purpose of this
article is to explain how to perform certain calculations on models of noise and instability in frequency
standards and signal-processing equipment. Random processes with stationary nth increments, whose
correlation theory was developed by Yaglom [1], have been recognized as appropriate models for clock
noise [2]. Using these models, the author has been able to exploit a systematic method for computing
means and variances of clock-noise statistics, including estimators of frequency stability and drift [3–8].
The present article is intended to explain this method in sufficient depth and detail that other workers
might be able to use it for similar calculations.

All persons who deal with theoretical aspects of random noise know about stationary processes (see
Section II.C), along with the familiar concepts of spectral density and autocovariance (ACV, also called
autocorrelation). Loosely speaking, we can regard a process x (t) with stationary nth increments as the
nth integral of a stationary process z (t), and derive properties of x (t) in terms of properties of z (t).
Often, though, it is simpler to deal with x (t) standing on its own, as it were; for example, we might
ascribe to x (t) a spectral density of form a |ν|β , say, where ν is frequency and β ≤ −1. Although this
spectrum is non-integrable in a neighborhood of ν = 0, certain variance and covariance calculations based
on this spectrum still can be performed in the frequency domain if they involve filters whose frequency
responses cancel the spectral divergence at low frequencies. For the case of a stationary x (t), whose
spectrum is integrable, we could do equivalent calculations in the time domain using the ACV, which is
the inverse Fourier transform of the spectrum. Faced with a non-integrable spectrum, we must inquire
carefully whether there might be some function of one time variable that plays a similar role. The author
argues that the natural candidate for such a role is the generalized autocovariance (GACV), obtained
by applying a certain form of generalized inverse Fourier transform to the spectrum [see Eqs. (2) and
(21)]; this transform uses a reduced form of the complex exponential that also cancels the low-frequency
divergence. Although this concept really belongs to the theory of tempered Schwarz distributions [9,10],
the necessary results are developed here without calling on that theory.

1 Tracking Systems and Applications Section.
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At this point, a note of caution is appropriate. Without a consistent theory for guidance, one can
be seriously misled by uncritical use of Fourier transform tables in an attempt to produce an ACV that
corresponds to a non-integrable spectrum. One table ([11], citing [12]) gives the transform of |2πν|−1

(a flicker noise spectrum) as
√

2π |t|−1 in the Fourier-transform convention adopted here. According to
the theory given below, the GACV for this noise is actually −(1/π) ln |t| [in a limiting sense because
of high-frequency spectral divergence; see Eq. (46)]. Having been unable to find a derivation of the
tabulated transform, the author concludes that either the entry is simply a mistake or there is more than
one reasonable way to extend the Fourier transform beyond its initial domain of integrable functions.
Although this is the only example of this kind that the author has found, it is especially worthy of note
because its presence in a well-known reference work is a trap for the unwary person interested in “1/f”
noise. For this reason, and because the GACV itself has no obvious physical interpretation as yet, the
author feels justified in subjecting the reader to a mathematical exposition that may seem plodding and
pedantic, the goal being to establish a set of results that one can depend on. Since there are few surprises
here, the reader can skip most of the proofs without sacrificing insight.

Another candidate for replacing the ACV is the nth structure function of Lindsey and Chie [13] [called
increment variance here; see Eq. (47)]. Indeed, the spectrum of a process with stationary first increments
is determined by either the first or the second increment variance. Recently, however, it was shown
that knowledge of the second increment (Allan) variance of a process with stationary second increments
does not determine the spectrum [14], and the situation for higher-order increments must be regarded as
an open problem. In contrast with this situation, the GACV and spectrum determine each other, and
knowledge of either one permits a calculation of all covariances of increments of sufficiently high order.

Following is a summary of the rest of the article. After going through some preliminary definitions
and review material, we reach our true starting point, Yaglom’s frequency-domain structure theorems
(Theorems 2 and 3). From there we develop the time-domain covariance structure theory, derive the
GACVs of power-law processes, and give some applications of the theory to clock statistics. Even though
all the examples are real-valued, the theory is presented for complex-valued processes, mainly because
doing so enforces greater care and consistency. Some of the more pedestrian arguments have been put
in the Appendix. The section on applications assumes that the reader is familiar with clock stability
measures; all applications but the last are treated briefly without motivation and carried out only to
formulas for the answers in terms of the GACV. The last application, estimation of Allan variance with
drift removal, is treated at greater length and carried out to numerical results for power-law clock noises.

II. Preliminaries

A. Notations and Conventions

The conjugate of a complex number z is written z; the adjoint of an operator H is written H∗.

The notation 1 (S), where S is some condition, means 1 if S is true and 0 if S is false.

The expectation operator is denoted by E. Its scope in a formula is as far as it can reach; thus, EX2

means E
(
X2
)
, not (EX)2.

The vector space of polynomials of degree <n with complex coefficients is denoted by Pn. If V is a
vector space, then x ∼= y (mod V ) means x− y ∈ V , and we say that x and y are equivalent modulo V .

Frequency (Hz) is denoted by ν. Often we use ω merely as an abbreviation for 2πν in formulas
containing ν. A two-sided power-law spectral density of a process x (t) is written as Sx (ν) = aβ |2πν|β . In
the time and frequency literature, the corresponding one-sided spectral densities of x (t) and y (t) = dx/dt
are written as S+

x (ν) = gβν
β and S+

y (ν) = hβ+2ν
β+2. Therefore,
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gβ = 2 (2π)β aβ

hβ+2 = 2 (2π)β+2
aβ

 (1)

In Section IV, however, we set aβ = 1 for convenience.

An integral
∫ b
a
f (t)x (t) dt, where f (t) is piecewise continuous and x (t) is a mean-square continuous

random process (see Section II.C), is interpreted as a Riemann quadratic-mean stochastic integral, the
mean-square limit of Riemann sums

∑
f (tj)x (tj) ∆tj . For a discussion of these integrals, see Cramér

and Ledbetter [15, p. 85 ff.]; we shall avoid belaboring this point here.

The following notation will be used later in the generalized Fourier transform that gives the GACV
[see Eq. (21)]. For complex z, define

e0 (z) = ez

en (z) = ez −
n−1∑
k=0

zk

k!
, n ≥ 1

 (2)

Then e′n (z) = en−1 (z), and en (z) = O (|z|n) as z → 0; thus, en (iωt) will serve as a substitute for eiωt

that cancels low-frequency spectral divergence. For proofs we shall require the estimate

|en (z)| ≤ |z|
n

n!
max

(
1, eRe z

)
(3)

which we now prove by induction on n. For n = 0 it is obvious. Assuming it for n− 1, we have

en (z) =
∫ z

0

en−1 (ζ) dζ = z

∫ 1

0

en−1 (zt) dt

|en (z)| ≤ |z|n
∫ 1

0

tn−1

(n− 1)!
max

(
1, etRe z

)
dt ≤ |z|

n

n!
max

(
1, eRe z

)

B. Time-Limited Filters

The following class of linear time-invariant (LTI) filters covers most of our needs here.

Definition 1. A time-limited (TL) filter is an LTI filter whose impulse response is a time-limited
piecewise-continuous function plus a linear combination of a finite number of delta functions.

Thus, the result of applying a TL filter H to a continuous2 function x (t) is the continuous function

Hf (t) =
∫ ∞
−∞

a (u)x (t− u) du+
∑
j

ajx (t− tj) (4)

2 This includes mean-continuous random processes.
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Here the sum is finite, and a (t) is a piecewise-continuous function that vanishes outside some unspec-
ified bounded interval; we write

∫∞
−∞ to avoid having to specify this interval. The impulse response is

h (t) = Hδ (t) = a (t) +
∑
j ajδ (t− tj), actually a bounded complex measure, and

∫∞
−∞ h (u)x (t− u) du

is used as shorthand for the right side of Eq. (4). Thus, we use h (t) dt in integrals instead of a measure-
theoretic notation like dµ (t) or µ (dt). A discrete TL filter is one whose impulse response consists only
of delta functions. A finite-impulse-response (FIR) filter is a discrete TL filter whose delta functions are
concentrated at integer multiples of some sample period τ0.

The transfer function is defined in the shorthand notation by

H (ν) =
∫ ∞
−∞

e−i2πνth (t) dt

The same symbol H is used both for the filter as an operator on functions and for the transfer function
as a function of frequency ν.

Important FIR filters are the shift Bτ , defined by Bτδ (t) = δ (t− τ), and the backward τ -difference
∆τ = B0 −Bτ . Then Bτ (ν) = e−i2πντ and Bτ1Bτ2 = Bτ1+τ2 . The nth τ -difference ∆n

τ satisfies

∆n
τ = (B0 −Bτ )n =

n∑
k=0

(
n
k

)
(−1)k Bkτ

∆n
τ (ν) =

(
1− e−i2πντ

)n
Two TL filters with the same transfer function are the same, because bounded complex measures

with the same Fourier transform are equal. The set of TL filters is closed under the commutative
operations of addition and operator composition, which corresponds to convolution of impulse responses
and multiplication of transfer functions.

If H has impulse response h (t), its adjoint H∗ is defined to be the filter with impulse response
h∗ (t) = h (−t). Thus, H∗ (ν) = H (ν). For example, B∗τ = B−τ , (∆n

τ )∗ = ∆n
−τ . The filter HH∗ is

self-adjoint; for example,

∆n
τ (∆n

τ )∗ = (∆τ∆−τ )n = [(1−Bτ ) (Bτ − 1)B−τ ]n = (−1)n (1−Bτ )2n
B−nτ

= (−1)n ∆2n
τ B−nτ = (−1)n δ2n

τ (5)

where δ2n
τ is the 2nth central τ -difference operator. Expanding (1−Bτ )2n gives

∆n
τ (∆n

τ )∗ = (−1)n
2n∑
k=0

(
2n
k

)
(−1)k B(k−n)τ

=
n∑

j=−n

(
2n
n+ j

)
(−1)j Bjτ (6)
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1. Order. The transfer function of a TL filter H is an entire analytic function of the complex variable
ν. It is convenient to express its Taylor expansion about ν = 0 in the form

H (ν) =
∞∑
k=0

λk (H) (i2πν)k

where

λk (H) =
H(k) (0)

k! (i2π)k
=
∫ ∞
−∞

h (t)
(−t)k

k!
dt

The numbers λk (H) will be called the Taylor coefficients of the filter H. The adjoint H∗ has Taylor
coefficients λk (H∗) = (−1)k λk (H).

Definition 2. A TL filter H has order n (n ≥ 0) if λn (H) is the first nonzero λk (H).

A TL filter of order n annihilates Pn. It also reduces the degree of polynomials of degree ≥ n by n:
for if m ≥ n, then

∫ ∞
−∞

h (u)
(t− u)m

m!
du =

∫ ∞
−∞

h (u)
[

tm−n

(m− n)!
(−u)n

n!
+ · · ·

]
du

= λn (H)
tm−n

(m− n)!
+ lower terms

If the order of H is ≥ k, then

λk (H) = lim
ν→0

H (ν)

(i2πν)k
=
∫ ∞
−∞

h (u)
(t− u)k

k!
du for all t (7)

The filter ∆n
τ has order n, and λn (∆n

τ ) = τn.

If G and H have orders m and n, then GH has order mn, and λmn (GH) = λm (G)λn (H). If H is a
TL filter with all λk (H) = 0, then H (ν) = 0, and so H is the zero filter. (There do exist nonzero LTI
filters, not time-limited, that annihilate all polynomials.)

2. Integration and Moving Average. Define the operator J0 by

J0f (t) =
∫ t

0

f (u) du (8)

The choice of 0 to start the integration is arbitrary. Although J0 is not an LTI filter, it can be manipulated
somewhat as one according to the following rules.
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Lemma 1.

(1) If H is a TL filter of order n ≥ 1 with impulse response h (t), then the operator HJ0

is a TL filter with piecewise-continuous impulse response
∫ t
−∞ h (u) du, transfer function

H (ν) / (i2πν), order n− 1, and adjoint −H∗J0.

(2) Let H be a TL filter, and let f (t) be a continuous function. Then J0Hf (t) = HJ0f (t)−
HJ0f (0). Consequently, if G is a TL filter of order ≥1, then GJ0H = GHJ0.

Proof.

(1) Since
∫∞
−∞ h (t) dt = 0, both h (t) and h1 (t) =

∫ t
−∞ h (u) du are supported in some interval

]−T, T [. Integration by parts gives

HJ0f (t) =
∫ T

−T
h (u) J0f (t− u) du =

∫ T

−T
h1 (u) f (t− u) du

We can also use integration by parts to derive the transfer-function formula, from which
the order reduction can be seen. If −t is a point of continuity of h1, then

h∗1 (t) =
∫ −t
−∞

h (u)du = −
∫ ∞
−t

h (u)du
(

since
∫ ∞
−∞

h (u) du = 0
)

= −
∫ t

−∞
h (−v)dv = −

∫ t

−∞
h∗ (v) dv

which, by the above argument, is the impulse response of −H∗J0.

(2) By Fubini’s theorem for the product measure du× h (v) dv,

J0Hf (t) =
∫ t

0

du

∫ T

−T
dv h (v) f (u− v) =

∫ T

−T
dv h (v)

∫ t

0

du f (u− v)

=
∫ T

−T
dv h (v) [J0f (t− v)− J0f (−v)]

❐

For example, the continuous moving-average filter Aτ defined by

Aτx (t) =
1
τ

∫ t

t−τ
x (u) du (9)

satisfies

Aτ =
1
τ

∆τJ0 (10)
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Aτδ (t) =
1
τ

1 (0 < t < τ) (11)

Aτ (ν) =
∆τ (ν)
i2πντ

= e−iπντ
sin (πντ)
πντ

(12)

A∗τ = B−τAτ (13)

C. Stationary Processes

We review some elementary facts about covariance-stationary processes [15,16]. A complex-valued
random process x (t) is called mean-square continuous if, for all t, E |x (t)|2 <∞ and E |x (s)− x (t)|2 → 0
as s→ t. Such a process is called covariance-stationary if there is a constant c and function Rx (t) such
that Ex (s) = c and Ex (s+ t)x (s) = Rx (t) for all s and t. Even though the means are not subtracted
off in this product, it is customary to call Rx (t) the autocovariance (ACV) function of x (t). There is a
positive measure (distribution of power) Sx (dν) on the two-sided frequency axis, the spectrum of x (t),
such that

∫∞
−∞ Sx (dν) <∞ and

Rx (t) =
∫ ∞
−∞

ei2πνtSx (dν)

For applications, we assume that the spectrum is the sum of a non-negative integrable function w (ν),
the spectral density, and a linear combination

∑∞
j=1 wjδ (ν − νj) of delta functions (bright lines), where

wj > 0,
∑
j wj < ∞. From here on we write Sx (ν) dν instead of Sx (dν), just as we write h (t) dt in

integrals involving an impulse response that might contain delta functions.

It is also convenient to make a harmless ergodic assumption. It can be shown that (1/T )
∫ T

0
x (t) dt

tends in mean square as T →∞ to a random variable Z such that EZ = c and E |Z|2 is the power of the
spectral bright line at ν = 0 (DC). Because no observer of one instance of the process over all t can tell
the difference between the infinite-time average Z and the ensemble average c, we might as well assume
that Z is the deterministic constant c. Then the spectral bright line at DC is |c|2 δ (ν). The process
x0 (t) = x (t)− c, which has mean zero and ACV Rx (t)−|c|2, has the same spectrum as x (t) except with
no DC bright line.

If x (t) is real-valued, then Rx (t) = Rx (−t), Sx (ν) = Sx (−ν), and 2Sx (ν), ν > 0, is called the
one-sided spectrum; the bright line at DC (if any) is not doubled.

From here on, “stationary” means “covariance-stationary.”

The following theorem shows how to compute means and covariances of random variables that are
linear functionals of x (t) via TL filters.

Theorem 1. Let x (t) be a complex-valued stationary process with mean c, spectrum Sx (ν), and
ACV Rx (t). If H is a TL filter, then Hx (t) is stationary and EHx (s) = cH (0). For any TL filters G
and H,

EGx (s+ t)Hx (s) =
∫ ∞
−∞

ei2πνtG (ν)H (ν)Sx (ν) dν (14)

= GH∗Rx (t) (15)
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When written out, the right side of Eq. (15) becomes

∫ ∞
−∞

∫ ∞
−∞

g (u)h (v)Rx (t− u+ v) dudv

Except for some argument about interchanging the E operator with quadratic-mean integrals, the
proof of Theorem 1 consists of routine manipulations. The purpose here is to extend this theorem,
especially Eq. (15), to a class of processes used for models of phase noise.

III. Processes With Stationary n th Increments

The definition that follows is a simplification of the definition given by A. M. Yaglom [1], who developed
the correlation theory of these processes as a generalization of Kolmogorov’s theory of processes with
stationary first increments.

Definition 3. A complex-valued mean-square continuous random process x (t) has stationary nth
increments if for each real τ the process ∆n

τ x (t) is stationary.

It is convenient to regard a stationary process as having stationary 0th increments.

Yaglom’s first main result is a structure theorem for the expectations and correlations of the nth
increments in terms of a spectrum that can have infinite power at low frequencies. The notation used
here differs somewhat from his.

Theorem 2. Let x (t) have stationary nth increments. There are unique numbers cn, w and a unique
positive locally bounded measure Sx (dν) on the punctured real axis ν 6= 0 such that |cn|2 ≤ w,

E∆n
τ x (t) = cnτ

n (16)

∫ 1

−1

ν2nSx (dν) +
∫
|ν|>1

Sx (dν) <∞ (17)

E∆n
τ1x (s+ t) ∆n

τ2x (s) = wτn1 τ
n
2 +

∫ ∞
−∞

ei2πνt∆n
τ1 (ν) ∆n

τ2 (ν)Sx (dν) (18)

Conversely, if |cn|2 ≤ w, and the positive measure Sx (dν) satisfies Eq. (17), then there exists a process
x (t) with stationary nth increments such that Eqs. (16) and (18) hold.

The cutoff ν = 1 for the integrals in Eq. (17) is arbitrary: the reader can think of it as 1 Hz or
replace it by any positive frequency. The requirement in Eq. (17) of finite power at high frequencies is
the condition that restricts us to ordinary processes instead of generalized processes.

The measure Sx (dν) is called the spectrum of x (t). As with stationary processes, we write Sx (ν) dν
in place of Sx (dν) and assume for convenience that Sx (ν) is the sum of a locally integrable function and
a linear combination of delta functions. Likewise, since it can be shown that (1/T )

∫ T
0

∆n
1x (t) dt tends in

mean-square to a random variable Z such that EZ = cn, E |Z|2 = w, we assume that Z is deterministic,
so that Z = E∆n

1x (t) = cn and w = |cn|2. This will be called the “deterministic drift assumption.” We
call cn = cn (x) the drift rate of degree n. Then the drift rate of the process x (t) − cntn/n! vanishes.
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Note, however, that “deterministic” is not the same as “known”: often we can only estimate cn from the
values of x (t) on some interval (see Sections V.C and V.D). If x (t) is real-valued, then Sx (ν) is even,
and the one-sided spectrum is given by S+

x (ν) = 2Sx (ν) for ν > 0.

Yaglom gives an analog of the first part of Theorem 1; with our present restrictions, assumptions, and
notation, it reads as follows.

Theorem 3. Let x (t) have stationary nth increments with drift rate cn and spectrum Sx (ν). If H is
a TL filter of order ≥n, then Hx (t) is stationary and EHx (t) = cnλn (H). For any TL filters G and H
of orders ≥n,

EGx (s+ t)Hx (s) = λn (G)λn (H) |cn|2 +
∫ ∞
−∞

ei2πνtG (ν)H (ν)Sx (ν) dν (19)

In particular, the spectrum of the stationary process Hx (t) is |λn (H) cn|2 δ (ν) + |H (ν)|2 Sx (ν).

A. Structure Theorem, Time Domain

Theorem 3 is the point of departure of this study. Missing from it is an analog of Eq. (15) for stationary
processes. The following theorem says that there is always a function that plays the role of the ACV, but
only for filters of order ≥ n.

Theorem 4. Let x (t) have stationary nth increments (n ≥ 1) with drift rate cn and spectrum Sx (ν).
There exists a (non-unique) continuous function Rx (t) such that

EGx (s+ t)Hx (s) = GH∗Rx (t) (20)

for all TL filters G and H of orders ≥n. Such a function is given by

Rx (t) = |cn|2 (−1)n
t2n

(2n)!
+
∫ 1

−1

e2n (i2πνt)Sx (ν) dν +
∫
|ν|>1

ei2πνtSx (ν) dν (21)

(See Eq. (2) for the definition of e2n (z).) In particular, the ordinary ACV of the stationary process
Hx (t) is HH∗Rx (t); in this connection, see the remark after Theorem 3.

Before proving this theorem, we establish some terminology and make some remarks.

Definition 4. Let x (t) have stationary nth increments. A continuous function Rx (t) that satisfies

E∆n
τ1x (s+ t) ∆n

τ2x (s) = ∆n
τ1∆n

−τ2Rx (t) (22)

for all s, t, τ1, and τ2 is called a generalized autocovariance (GACV) function for x (t).

According to Theorem 4, the function Rx (t) given by Eq. (21) is a GACV because it satisfies Eq. (20),
a generalization of Eq. (22). To what extent is the GACV unique? If we add a polynomial of degree
<2n to a GACV, then Eq. (20) still holds for all G and H with orders ≥n because GH∗ has order ≥2n.
Conversely, any function f (t) that is the difference of two GACVs is a continuous function that satisfies
∆n
τ∆n
−τf (t) = 0 for all t and τ , which is the same as saying ∆2n

τ f (t) = 0 for all t and τ . By Lemma A-1
in Section I of the Appendix, f (t) ∈ P2n. Consequently, any two GACVs are equivalent modulo P2n. In
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particular, changing the cutoff in the integrals in Eq. (21) from 1 to some other frequency only adds a
member of P2n to Rx (t).

If n = 1 and Sx (−ν) = Sx (ν), then

− |c1|2
t2

2
+
∫ ∞
−∞

[cos (2πνt)− 1]Sx (ν) dν (23)

is a GACV because it differs by only a constant from Eq. (21).

An additional ambiguity occurs because a process with stationary nth increments also has stationary
increments of any order m > n. If such an m is gratuitously substituted for n in Eq. (21), then a
polynomial p (t) ∈ P2m is added to Rx (t). In this situation, however, it is understood that we are only
to apply filters G,H of order ≥m to x (t); thus, GH∗ annihilates the offending polynomial p (t), along
with the original drift portion of Rx (t).

Proof of Theorem 4.

(1) We assert that Rx (t) as given by Eq. (21) is continuous. Let R1 (t) and R2 (t) be the
two integrals in Eq. (21). If |t| ≤ 1, then |e2n (iωt)| ≤ ω2n/ (2n)! by Eq. (3). Let tj → t.
By Eq. (17) and Lebesgue’s theorem on dominated convergence, R1 (tj) → R1 (t) and
R2 (tj)→ R2 (t).

(2) According to Theorem 3, we want to prove that GH∗Rx (t) equals the right side of
Eq. (19). Because GH∗

(
t2n/ (2n)!

)
= λn (G)λn (H∗) = (−1)n λn (G)λn (H), we can

assume that cn = 0. Let F = GH∗, a TL filter with impulse response f (t) and transfer
function F (ν) = G (ν)H (ν). Then,

FR1 (t) =
∫ ∞
−∞

du f (u)
∫ 1

−1

dν Sx (ν) e2n (iω (t− u)) (24)

By Eq. (3), |e2n (iω (t− u))| ≤ (ω (t− u))2n
/ (2n)!. Since

∫
du |f (u)| (t− u)2n

∫ 1

−1

dν Sx (ν) ν2n <∞

we may interchange orders of integration in Eq. (24). For fixed ω, the filter F , because
it has order ≥2n, annihilates the polynomial part of e2n (iωt), so that

FR1 (t) =
∫ 1

−1

dν Sx (ν)
∫ ∞
−∞

du f (u) eiω(t−u) =
∫ 1

−1

eiωtF (ν)Sx (ν) dν

Similarly, FR2 (t) =
∫
|ν|>1

eiωtF (ν)Sx (ν) dν. Thus,

FRx (t) = FR1 (t) + FR2 (t) =
∫ ∞
−∞

eiωtF (ν)Sx (ν) dν

❐
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If we know |cn|2 and Sx (ν), then we know Rx (ν) from Eq. (21). Conversely, if we know a GACV
Rx (t), then we know the left side of Eq. (22) for all s, t, τ1, and τ2. By Theorem 2 and the ergodic drift
assumption, |cn|2 and Sx (ν) are uniquely determined. We record this situation as a theorem.

Theorem 5. Let x (t) have stationary nth increments. Knowledge of the spectrum Sx (ν) and squared
drift rate |cn|2 is equivalent to knowledge of the GACV, modulo P2n.

From here on, Rx (t) denotes any GACV of x (t). There is always a GACV, namely, the version given
by Eq. (21), that satisfies Rx (−t) = Rx (t) and is real if x (t) is real. Unless n = 0, we can subtract a
constant to make Rx (0) = 0.

Equation (21) for a GACV, although useful for theory, is somewhat artificial and might not be the
easiest way to derive a closed formula for Rx (t) in particular situations. A version that is often more
useful, especially for power-law spectra, is given in the following theorem, which obtains a GACV by
means of partial Fourier transforms in the complex time domain.

Theorem 6. Let x (t) have stationary nth increments (n ≥ 1) with zero drift rate and spectrum Sx (ν).
Fix a positive integer m ≤ 2n such that

∫ 1

−1
|ν|m Sx (ν) dν <∞. Let

B+ (z) =
∫ ∞

0

ei2πνz (i2πν)m Sx (ν) dν, Im z > 0 (25)

B− (z) = −
∫ 0

−∞
ei2πνz (i2πν)m Sx (ν) dν, Im z < 0 (26)

and let R+ (z) and R− (z) be any mth indefinite integrals of B+ (z) and B− (z) on these half-planes, i.e.,
any functions whose mth derivatives are B+ (z) and B− (z), respectively. Then R+ (z) and R− (z) extend
continuously to the real line, and R+ (t+ i0)−R− (t− i0) is a GACV for x (t).

If x (t) is real-valued, then both R+ (t+ i0) +R+ (−t+ i0) and 2 Re R+ (t+ i0) are GACVs for x (t).

By Theorem 2, we can always take m = 2n; often a smaller m is possible and desirable.

Before proving this theorem, we give an important and familiar example. Let Sx (ν) = (2πν)−2,
the spectrum of one-dimensional unit Brownian motion, a real-valued process x (t) with stationary first
increments that satisfies E [∆τx (t)]2 = |τ |. Setting m = 2, we have

B+ (z) =
−1
2π

∫ ∞
0

eiωzdω =
1

(i2πz)
, Im z > 0

Integrating twice gives R+ (z) = (z ln z − z) / (i2π), and we can throw out the z term since its second
derivative is zero. We shall use the form Rx (t) = R+ (t+ i0) +R+ (−t+ i0), which is an even function.
Let t > 0. Choosing arbitrarily the branch of ln z that is real on the positive real axis and cut on the
negative real axis, we have

Rx (t) =
1
i2π

[t ln t+ (−t) (ln t+ iπ)] = − t
2
, t > 0

Thus, the GACV of unit Brownian motion is given by

11



Rx (t) = −1
2
|t| (27)

for all t.

The form 2 Re R+ (t+ i0) leads to another solution, namely, Rx (t) = 0 for t ≥ 0 and Rx (t) = t if
t < 0, which is equivalent to Eq. (27) modulo P2. Although the minus sign in −(1/2) |t| might seem
strange, it is correct, as we see from the computation

E [∆τx (t)]2 = ∆τ∆−τRx (0) = 2Rx (0)−Rx (τ)−Rx (−τ) = |τ |

We can also understand how the negative GACV comes about by approximating the nonstationary
process x (t) (in a sense to be explained) by stationary processes with greater and greater power at
low frequencies. To avoid messy algebra, we venture outside the class of time-limited filters without
proving that it is all right to do so. For a > 0, let Ha be the order-1 filter with impulse response
δ (t)− ae−at1 (t > 0). Then Ha (ν) = iω/ (a+ iω). The process x (t; a) = Hax (t) is a stationary process
with Lorentzian spectrum Sx (ν; a) = |Ha (ν)|2 Sx (ν) =

(
a2 + ω2

)−1 and ACV Rx (t; a) = (1/2a)e−a|t|,
which has a cusp at t = 0. As a → 0, Sx (ν; a) converges to ω−2 = Sx (ν) and Rx (t; a) diverges, but
Rx (t; a)−Rx (0; a) = (1/2a)

(
e−a|t| − 1

)
does converge to −(1/2) |t| = Rx (t). When |t| ¿ 1/a, Rx (t; a)

looks like −(1/2) |t| relative to its value at t = 0.

In a similar way, as a → 0, the random variable x (t; a), whose variance is (2a)−1, does not converge
to anything, but, with the help of Theorem 3 or Theorem 4, one can show that the “calibrated” process
x (t; a)− x (0; a) does converge in the mean-square sense to x (t)− x (0).

Proof of Theorem 6. We prove that R+ (t+ i0) − R− (t− i0) is equivalent to Rx (t) of Eq. (21)
modulo P2n and is, therefore, a GACV for x (t). Let

R+
1 (z) =

∫ 1

0

em (iωz)Sx (ν) dν

R−1 (z) = −
∫ 0

−1

em (iωz)Sx (ν) dν

R+
2 (z) =

∫ ∞
1

eiωzSx (ν) dν, Im z ≥ 0

R−2 (z) = −
∫ −1

−∞
eiωzSx (ν) dν, Im z ≤ 0

Since m ≤ 2n,

Rx (t) ∼= R+
1 (t)−R−1 (t) +R+

2 (t)−R−2 (t) (modP2n)

Assume the following statements, the proofs of which are routine exercises (Section II of the Appendix).
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(1) R+
1 (z) and R−1 (z) are entire.

(2) R+
2 (z) and R−2 (z) are continuous on Im z ≥ 0 and Im z ≤ 0, respectively.

(3) dm

dzm
[
R+

1 (z) +R+
2 (z)

]
= B+ (z) , Im z > 0

dm

dzm
[
R−1 (z) +R−2 (z)

]
= B− (z) , Im z < 0

By Statement (3) and the assumptions of the theorem, R+ (z) and R− (z) have the same mth deriva-
tives as R+

1 (z) + R+
2 (z) and R−1 (z) + R−2 (z) do on their respective half-planes. Therefore, they are

equivalent modulo Pm, i.e., there are polynomials p+, p− ∈ Pm such that

R+ (z) = R+
1 (z) +R+

2 (z) + p+ (z) , Im z > 0

R− (z) = R−1 (z) +R−2 (z) + p− (z) , Im z < 0

By Statements (1) and (2), the right sides of these equations extend to the real line by continuity;
therefore, so do the left sides, and

R+ (t+ i0)−R− (t− i0) = R+
1 (t) +R+

2 (t)−R−1 (t)−R−2 (t) + p+ (t)− p− (t)

∼= Rx (t) (mod P2n)

To reduce R+ (t+ i0)−R− (t− i0) to the GACV forms for real x (t), observe that for even Sx (ν) we
have

−B− (z) = (−1)mB+ (−z) = B+ (z), Im z < 0

(Only the first of these equations requires Sx (ν) to be even.) These three expressions are the mth
derivatives of −R− (z), R+ (−z), and R+ (z); accordingly, the latter functions are equivalent modulo Pm,
and so are their limits −R− (t− i0), R+ (−t+ i0), and R+ (t+ i0). ❐

B. Operations on Processes

The operations in question are integration, summation, filtering, and change of time scale, applied to
processes with stationary nth increments. The following theorems give properties of the new processes
from those of the old.

Theorem 7. Let x (t) have stationary nth increments, and w (t) =
∫
x (t) dt. Then w (t) has stationary

increments of order n+ 1. The drift rates, spectra, and GACVs are related by

cn+1 (w) = cn (x) (28)

Sw (ν) =
Sx (ν)
(2πν)2 (29)
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Rw (t) = −
(∫

dt

)2

Rx (t) (30)

i.e., Rw (t) is any function such that −R′′w (t) = Rx (t).

Proof. We can assume w (t) = J0x (t) [see Eq. (8)]. By Lemma 1, the operator Hτ = ∆n+1
τ J0 is a TL

filter of order n and λn (Hτ ) = τn+1. Then E∆n+1
τ w (t) = EHτx (t) = cn (x) τn+1 by Theorem 3, and

Eq. (28) follows from Theorem 2.

By Theorem 3 and Lemma 1,

E∆n+1
τ1 w (s+ t) ∆n+1

τ2 w (s) = EHτ1x (s+ t)Hτ2x (s) (31)

= (τ1τ2)n+1 |cn (x)|2 +
∫ ∞
−∞

eiωtHτ1 (ν)Hτ2 (ν)Sx (ν) dν

= (τ1τ2)n+1 |cn+1 (w)|2 +
∫ ∞
−∞

eiωt∆n+1
τ1 (ν) ∆n+1

τ2 (ν)
Sx (ν)
ω2

dν

By Theorem 2, this proves Eq. (29) (and also shows that the w-drift is deterministic).

By Theorem 4, the right side of Eq. (31) equals Hτ1H
∗
τ2Rx (t). But by Statement (2) of Lemma 1,

Hτ1H
∗
τ2Rx (t) = −∆n+1

τ1 J0∆n+1
−τ2 J0Rx (t) = −∆n+1

τ1 ∆n+1
−τ2 J

2
0Rx (t)

This shows that −J2
0Rx (t) is a GACV for w (t). ❐

Another version of Eq. (30) is given by

Rw (t) = −
∫ t

0

(t− u)Rx (u) du (32)

For some applications, we need properties of discrete-time summations of x (t). Given a fixed sample
period τ0, let

wn =
n∑
j=1

x (jτ0) , n ≥ 1

w0 = 0

wn = −
0∑

j=n+1

x (jτ0) , n ≤ −1


(33)

where x (t) has stationary pth increments. Then ∆1wn = x (nτ0). This discrete-time process has station-
ary increments of order p + 1. Without going through the theory here, we assert simply that wn has a
discrete-time GACV sequence
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Rw,n = −|n|
2
Rx (0)−

|n|−1∑
j=1

(|n| − j)Rx (τ0j sgn n) (34)

which is τ−2
0 times a trapezoidal approximation to Eq. (32) with t = nτ0. Just as we had −R′′w (t) = Rx (t)

for w (t) =
∫
x (t) dt, here we have −δ2

1Rw,n = Rx (nτ0), where δ2
1 is the second central difference operator

with step 1. This discrete-time GACV behaves like a continuous-time GACV, allowing us to calculate
covariances of the outputs of FIR filters of order ≥ p + 1 acting on wn; see the discussion of modified
Allan variance (Section V.A.4).

Theorem 8. Let x (t) have stationary nth increments, and let H be a TL filter of order m ≤ n. The
process y (t) = Hx (t) has stationary (n−m)th increments, and

cn−m (y) = λm (H) cn (x) (35)

Sy (ν) = |H (ν)|2 Sx (ν) (36)

Ry (t) = HH∗Rx (t) (37)

Proof. The proof is like that of Theorem 7, but simpler. Let r = n−m; then ∆r
τH is a TL filter of

order n. We show the equations without further comment.

E∆r
τy (t) = E∆r

τHx (t) = τ rλm (H) cn (x)

E∆r
τ1y (s+ t) ∆r

τ2y (s) = E∆r
τ1Hx (s+ t) ∆r

τ2Hx (t)

= (τ1τ2)r |λm (H) cn (x)|2 +
∫ ∞
−∞

eiωt∆r
τ1 (ν) ∆r

τ2 (ν) |H (ν)|2 Sx (ν) dν

= ∆r
τ1H

(
∆r
τ2H

)∗
Rx (t) = ∆r

τ1∆r
−τ2HH

∗Rx (t)

❐

Theorem 9. Let xρ (t) = x (ρt), where x (t) has stationary nth increments, and ρ is a nonzero real
number. Then cn (xρ) = ρncn (x) , Sxρ (ν) = |ρ|−1

Sx (ν/ρ) , and Rxρ (t) = Rx (ρt).

The proof is left to the reader. We also remark that the spectrum of the sum x1 (t) + x2 (t) of two
processes with stationary nth increments is the sum of the spectra, provided that the nth increments of
x1 (t) are uncorrelated with those of x2 (t); it is likewise for the GACV of the sum, modulo P2n.

IV. GACVs for Power-Law Spectra

A. Pure Power Laws

For the function |2πν|β to be the spectrum of an ordinary process x (t), it is necessary that β < −1;
otherwise, there is infinite power at high frequencies. A more complete and elegant theory that included
generalized processes would not need this restriction. (The case β ≥ −1 is treated in the next section
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with the help of high-frequency roll-offs.) Consider, then, the two-sided spectrum Sx (ν) = |2πν|β , ν 6= 0,
where β < −1. According to Theorem 2, this is the spectrum of a process with stationary increments of
order b(1/2) (1− β)c. The corresponding GACV is denoted by R (t;β).

1. Even Powers. We treated the case β = −2, finding that R (t;−2) = −(1/2) |t|. Then R (t;β) for
β = −4,−6,−8, . . . can be derived from Theorem 7 by applying the operator −J2

0 repeatedly to −(1/2) |t|.
We find that

R (t;−2n) =
(−1)n

2
|t|2n−1

(2n− 1)!
, n = 1, 2, . . . (38)

where n is also the order of the stationary increments.

2. Odd Powers. If we do β = −3, the others will follow from Theorem 7. Setting m = 3 in Theorem 6
gives

B+ (z) =
1
i2π

∫ ∞
0

eiωzdω =
1

2πz

Integrating three times and dropping the irrelevant quadratic polynomial gives

R+ (z) =
1

4π
z2 ln z

R (t;−3) = 2 Re R+ (t+ i0) =
1

2π
t2 ln |t| (39)

with the understanding that R (0;−3) = 0.

It is all right that the argument of the logarithm is not dimensionless: replacing |t| by |t/τ |, say,
changes R (t;−3) only by a quadratic, which is irrelevant to the GACV of a process with stationary
second increments. In contrast to the case of stationary first increments, the author cannot interpret the
shape of this GACV, which is negative for small t, positive for large t.

Applying −J2
0 repeatedly to Eq. (39) and dropping irrelevant polynomials gives the GACV for odd

powers, namely

R (t;−2n+ 1) =
(−1)n

π

t2n−2

(2n− 2)!
ln |t| , n = 2, 3, . . . (40)

where n is again the order of the stationary increments.

3. Non-Integral Powers. The case −3 < β < −1 corresponds to the fractional Brownian motions
introduced by Mandelbrot and Van Ness [17], with β = −1 − 2H in their notation. Let us compute
their GACVs. Setting m = 2 in Theorem 6 and using a standard gamma-function integral formula [20,
Eq. 6.1.1], we have
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B+ (z) =
−1
2π

∫ ∞
0

eiωzω2+βdω =
−Γ (3 + β)

2π
(−iz)−3−β

=
Γ (3 + β)

2π
ei(π/2)(1+β)z−3−β , Im z > 0

in which we define aµ = |a|µ eiµ arg a for −π < arg a < π. For β 6= −2, two integrations give

R+ (z) =
Γ (1 + β)

2π
ei(π/2)(1+β)z−1−β

If t > 0, then (t+ i0)−1−β = |t|−1−β ; if t < 0, then (t+ i0)−1−β =
(
|t| eiπ

)−1−β = |t|−1−β
eiπ(−1−β).

Thus, for all t,

R (t;β) = 2 Re R+ (t+ i0) =
Γ (1 + β)

π
|t|−1−β cos

(π
2

(1 + β)
)

=
−Γ (1 + β)

π
sin
(π

2
β
)
|t|−1−β

The formula Γ (−β) Γ (1 + β) = −π csc (πβ) transforms this equation to

R (t;β) =
1

2 cos
(π

2
β
) |t|−1−β

Γ (−β)
(41)

which is valid even for β = −2. Applying −J2
0 to this formula gives the same formula with β replaced by

β − 2. It follows that Eq. (41) holds whenever β < −1 and is not an odd integer, that case being covered
by Eq. (40).

Exercise 1. Derive Eq. (40) from Eq. (41) by an appropriate limiting procedure.

Exercise 2. (Self-similarity of power-law processes.) Let β < −1 and H = (1/2) (−1− β). If x (t)
has zero drift rate and spectrum proportional to |ν|β, then ρ−Hx (ρt) has the same spectrum and GACV
as x (t) does.

B. Filtered Power Laws

If −1 ≤ β ≤ 0, then the spectrum |2πν|β has to be rolled off at high frequencies if it is to be the
spectrum of an ordinary process. One choice of roll-off method is a sharp cutoff at some frequency
νh; the corresponding GACV (if β = −1) or ACV (if β > −1) can be obtained by cutting off the
integration in Eq. (23) at νh. Then Rx (t) will come out in terms of non-elementary special functions.
Unless given a reason to believe that a sharp cutoff is a close approximation to reality, the author
prefers another roll-off method, moving averages, because it is easy to use. This method uses the filter
Aε = ε−1∆εJ0 (see Section II.B.2) as a lowpass filter with nominal roll-off frequency νh = (2ε)−1. We
want to have xε (t) = Aεx (t), where x (t) is a generalized process with a pure |2πν|β spectrum for
0 < |ν| <∞, the derivative of an ordinary process w (t) with a pure |2πν|β−2 spectrum. Then we would
have w (t) = J0x (t) + const and Aεx (t) = ε−1∆εJ0x (t) = ε−1∆εw (t). Thus, the rolled-off |2πν|β process
is actually defined as the difference quotient
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xε (t) =
1
ε

∆εw (t) =
1
ε

[w (t)− w (t− ε)]

where w (t) has stationary second increments, and Sw (ν) = |2πν|β−2. By Theorem 8,

Sxε (ν) =
1
ε2
|∆ε (ν)|2 Sw (ν) =

sin2 (πνε)
(πνε)2 |2πν|β (42)

Rxε (t) =
1
ε2

∆ε∆−εRw (t) = − 1
ε2
δ2
εR (t;β − 2)

=
1
ε2

[−R (t− ε;β − 2) + 2R (t;β − 2)−R (t+ ε;β − 2)] (43)

where R (t;β − 2) is obtained from Eq. (40) or Eq. (41).

For β < −1, we could do the same thing in case we wished to calculate the effect of high-frequency
roll-offs on functions of |ν|β noise; usually, however, we just use pure |ν|β noise without bandwidth
restrictions.

The choice of unweighted moving averages as a high-frequency roll-off method is not entirely for
mathematical convenience: the author designed and programmed the signal-processing routines for a
real-time stability analyzer [19] that produces a sequence of adjacent unweighted ε-averages of amplitude
and phase residuals of a sine-wave signal, with ε selectable by the user.

Although Eq. (43) can easily be used as is, it is interesting to examine it further for different cases of
β. By expanding R (u;β − 2) in a Taylor series about u = t, we find approximations, valid for ε¿ |t|, in
which the second central difference in Eq. (43) is replaced by the second derivative.

Case 1: β = 0. The corresponding xε (t) is ε-averaged white noise. No approximations are needed.
Substituting R (t;−2) = −(1/2) |t| into Eq. (43), we obtain the familiar hat-shaped ACV

Rxε (t) =
1
ε

(
1− |t|

ε

)
, |t| ≤ ε

= 0, |t| ≥ ε (44)

Case 2: −1 < β < 0. The corresponding xε (t) is a stationary long-memory process, called fractional
noise by Mandelbrot and Van Ness [17]. If the notation of Eq. (41) is extended to this range of β, then
R (t;β) = −R′′ (t;β − 2) as before. The Taylor expansion then gives Rxε (t) = R (t;β)

[
1 +O

(
ε2/t2

)]
for

the ACV of this process. Explicitly, we have

Rxε (0) =
ε−1−β

cos
(π

2
β
)

Γ (2− β)

Rxε (t) =
|t|−1−β

2 cos
(π

2
β
)

Γ (−β)

[
1 +O

(
ε2

t2

)]


(45)
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Case 3: β = −1. The corresponding xε (t), which has stationary first increments, is an example of
flicker or “1/f” noise that has been rolled off at high frequencies. After calculating the GACV, we are
allowed to add any constant to it; in this way, we obtain

Rxε (0) =
1
π

(
3
2
− ln ε

)

Rxε (t) = − 1
π

ln |t|+O

(
ε2

t2

)


(46)

This GACV can be compared to the GACV for flicker noise with a sharp cutoff at ν = νh by equating νh
to (2ε)−1. The sharp-cutoff asymptotic result is like Eq. (46) except that the 3/2 in Rxε (0) is replaced by
γ + lnπ ≈ 1.722, where γ is Euler’s constant, and the error term is O (ε/t) instead of O

(
ε2/t2

)
—another

reason for preferring the moving-average filter to the sharp cutoff.

These approximations are useful when the continuous-time process xε (t) is undersampled—that is,
when we have samples xε (jτ0) whose Nyquist frequency (2τ0)−1 is much less than the process bandwidth
νh = (2ε)−1, so that τ0 À ε. In this case, when doing covariance computations related to the sampled
data, we have to evaluate Rxε (t) only at integer multiples of τ0; thus, t = 0 or |t| À ε, as Eqs. (45) and
(46) require. As Eq. (44) confirms, the τ0 samples of ε-averaged white noise are uncorrelated if τ0 ≥ ε.

V. Applications to Clock Statistics

Suppose that the readings of two clocks, C1 and C2, at time t are represented by t1 (t) and t2 (t),
where t is the time as given by a time-base clock (perhaps even C1, in which case t1 (t) = t). Then
x (t) = t2 (t)−t1 (t) is called the time deviation. Actually, the time-base clock has only to be good enough
to supply time tags for measurements of x (t): we might be measuring x (t) to the nearest nanosecond
by means of a time interval counter, while recording t to the nearest second or even the nearest day,
depending on the scale of the experiment. The derivative y (t) = dx (t) /dt is called the normalized or
fractional frequency deviation. In the following discussions, however, y (t) is simply called “frequency”
even though it is dimensionless.

A. Increment Variances

The nth increment variance of x (t) is defined as the mean-square nth increment

Dn (τ) = E [∆n
τ x (t)]2 (47)

provided that this quantity exists and is independent of t. If x (t) has stationary nth increments, then
Dn (τ) can be computed from Rx (t) by

Dn (τ) = ∆n
τ∆n
−τRx (0) = (−1)n δ2n

τ Rx (0)

=
n∑

j=−n

(
2n
n+ j

)
(−1)j Rx (jτ) (48)

[see Eqs. (5) and (6)]. Several measures of clock stability are just scaled versions of Dn (τ), either for x (t)
or for related processes. The results given below can be shortened by assuming that Rx (−τ) = Rx (τ),
as we always can for real-valued x (t).
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1. Mean-Square Average Frequency. Define

y (t, τ) = Aτy (t) =
1
τ

∫ t

t−τ
y (u) du =

1
τ

∆τx (t) (49)

If x (t) has stationary first increments, in particular, if Sx (ν) ∼ |ν|β with β > −3, then

Ey2 (t, τ) =
1
τ2
D1 (τ) = − 1

τ2
δ2
τRx (0)

=
1
τ2

[−Rx (−τ) + 2Rx (0)−Rx (τ)] (50)

2. Allan Variance. If x (t) has stationary second increments (Sx (ν) ∼ |ν|β with β > −5), Allan
variance is defined by

σ2
yA (τ) =

1
2
E [y (t, τ)− y (t− τ, τ)]2 =

1
2
E [∆τy (t, τ)]2 =

1
2τ2

E
[
∆2
τx (t)

]2
Then

σ2
yA (τ) =

1
2τ2

D2 (τ) =
1

2τ2
δ4
τRx (0)

=
1

2τ2
[Rx (−2τ)− 4Rx (−τ) + 6Rx (0)− 4Rx (τ) +Rx (2τ)] (51)

3. Hadamard Variance. For x (t) with stationary third increments (Sx (ν) ∼ |ν|β with β > −7),

σ2
yH (τ) =

1
6τ2

D3 (τ) = − 1
6τ2

δ6
τRx (0)

=
1

6τ2
[−Rx (−3τ) + 6Rx (−2τ)− 15Rx (−τ) + 20Rx (0)− 15Rx (τ) + 6Rx (2τ)−Rx (3τ)]

(52)

4. Modified Allan Variance. Like Allan variance, the modified version σ2
yM is applicable to x (t)

with stationary second increments. Although this stability measure can be applied only to sampled data
x (nτ0), we first treat a theoretical continuous-time analog σ2

yMc (τ) studied by Bernier [18]. Consider
the moving averages x (t, τ) = Aτx (t) = τ−1∆τw (t), where w (t) = J0x (t) =

∫ t
0
x (u) du. If x (t) has

stationary second increments, then w (t) has stationary third increments. By definition,

σ2
yMc (τ) =

1
2τ2

E
[
∆2
τx (t, τ)

]2
Then
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σ2
yMc (τ) =

1
2τ4

E
[
∆3
τw (t)

]2
= − 1

2τ4
δ6
τRw (0)

=
1

2τ4
[−Rw (−3τ) + 6Rw (−2τ)− 15Rw (−τ) + 20Rw (0)− 15Rw (τ) + 6Rw (2τ)−Rw (3τ)]

(53)

[6]. By Theorem 7, we can obtain Rw (τ) from two successive integrations of Rx (t) or from Eq. (32). If
x (t) is a power-law process, then so is w (t), and we can obtain its GACV directly from Section IV. More
to the point, we might wish to ignore bandwidth limitations on x (t), even when β ≥ −1, by treating
w (t) as a pure power-law process with exponent β− 2, whose GACV is exactly R (t;β − 2). When we do
this, we find that σ2

yMc (τ) ∝ τ−3−β for −5 < β < 1 [18].

The actual modified Allan variance is denoted here by σ2
yM (m, τ0), where τ0 is the data sample period

and m is a positive integer. To define it in terms of the sampled process x (nτ0), we first define the
discrete-time moving average:

xn (m) =
1
m

n∑
j=n−m+1

x (jτ0) =
1
m

∆mwn

where wn is given by Eq. (33). By definition,

σ2
yM (m, τ0) =

1
2 (mτ0)2E

[
∆2
mxn (m)

]2
Then

σ2
yM (m, τ0) =

1
2m4τ2

0

E
[
∆3
mwn

]2
= − 1

2m4τ2
0

δ6
mRw,0

=
1

2m4τ2
0

(−Rw,−3m + 6Rw,−2m − 15Rw,−m + 20Rw,0 − 15Rw,m + 6Rw,2m −Rw,3m) (54)

where Rw,n is given in terms of Rx (jτ0) by Eq. (34). In turn, if x (t) is modeled by ε-averaged νβ noise,
then Rx (jτ0) is given by Eq. (43).

B. Frequency Transfer Variance

In this section and those to follow, we assume that Rx (−t) = Rx (t).

Given four times t1, t2, t3, t4, let τA = t2− t1, tD = t3− t2, and τB = t4− t3. Assume only that τA > 0
and τB > 0. The frequency transfer variance of Boulanger and Douglas [22] is defined by

u2
y (τA, tD, τB) = E

[
x (t4)− x (t3)

τB
− x (t2)− x (t1)

τA

]2

(55)

which is the mean-square error of estimating the average frequency in an interval B = [t3, t4] from the
average frequency in an interval A = [t1, t2]. These intervals can be located arbitrarily with respect to
each other. A special case is Allan variance σ2

yA (τ) = (1/2)u2
y (τ, 0, τ).

21



Assuming that x (t) has stationary second increments, we can regard the function u2
y as a complete

structure function for x (t) in that knowledge of Eq. (55) for all τA, tD, and τB gives all the second-
increment covariances and, hence, determines the GACV or spectrum. If the quadratic drift rate of x (t)
is zero, then u2

y is a variance.

To evaluate u2
y from the GACV of x (t), we observe that the expression inside the brackets in Eq. (55)

equals Hx (0), where H is the filter with impulse response

h (t) =
δ (t+ t4)− δ (t+ t3)

τB
− δ (t+ t2)− δ (t+ t1)

τA
=
∑
i

hiδ (t+ ti) (56)

Since this filter has order 2, it follows that u2
y = HH∗Rx (0). The impulse response of F = HH∗ is given

by

f (t) =
∫ ∞
−∞

h (t+ u)h (u) du =
∑
i,j

hihjδ (t+ ti − tj) (57)

Then FRx (0) =
∑
i,j hihjRx (tj − ti). Working in a computer algebra system that knows how to handle

Dirac δ-functions, such as Maple,3 we can assign h (t) by Eq. (56), evaluate the integral in Eq. (57), and
evaluate

∫
f (t)Rx (t) dt. We arrive at the pleasantly symmetrical result of Boulanger and Douglas:

u2
y (τA, tD, τB) = 2

[
Ix (τA)
τ2
A

+
Ix (τB)
τ2
B

]

+
2

τAτB
[−Ix (tD) + Ix (tD + τA) + Ix (tD + τB)− Ix (tD + τA + τB)] (58)

where Ix (t) = Rx (0)−Rx (t).

For νβ processes, β = 0,−1,−2,−3,−4, Boulanger and Douglas give a convenient means (A-B struc-
ture factors) for scaling the result, Eq. (58), to the corresponding Allan variance, σ2

yA (τA). In their
formulas, one can see the GACVs that are derived here in Section IV. Their derivation of Eq. (58) uses
the integral in Eq. (23) with Sx (ν) truncated below a frequency ν1 to make the integral converge. After
calculating u2

y as a linear combination of such integrals, they find that the result converges to a finite
limit as ν1 → 0; this happens because H has order 2. The advantage of the method given here is that the
analytic problem, divergence of integrals over frequency, has already been taken care of by the GACV
theory. To calculate the variance of the output of a discrete filter acting on x (t), it remains only to
substitute a specific form of Rx (t) into sums

∑
k akRx (uk) in which ak and uk depend only on the filter,

not on the noise type.

1. Mean-Square Time Interval Error. Suppose that we observe the time difference x (t) of a pair
of clocks at times t1 and t2 = t1 + τA, and extrapolate these two observations linearly to a later time,
t2 + τB . What is the mean-square error of the extrapolated time difference? As Boulanger and Douglas
[22] point out, this is just a special case of the frequency transfer variance, u2

y, discussed above. In fact,
the mean-square extrapolation error is given by

3 Trademark of Waterloo Maple Inc.
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MSTIE (τA, τB) = E

{
x (t2 + τB)− x (t2)− τB

τA
[x (t2)− x (t1)]

}2

= τ2
Bu

2
y (τA, 0, τB) (59)

[see Eq. (58)]. An interesting special case is flicker FM noise, Sx (ν) = a−3 |2πν|−3, which dominates
many quartz oscillators over a considerable range of frequencies. Using Eq. (39) for Rx (t) in Eq. (58)
and setting r = τB/τA, we find

MSTIE (τA, τB) = a−3
τ2
B

π

[(
1 +

1
r

)
ln r +

(
1 +

1
r

)2

r ln
(

1 +
1
r

)]

= a−3
τ2
B

π
(1 + ln r)

(
1 +O

(
1
r

))
as r →∞

The factor of order ln (τB/τA) is a subtle long-memory property of this model of flicker FM, not shared
by certain other models of flicker FM that do not have stationary second increments [23,24].

C. Drift Estimators

Assume that x (t) has stationary second increments. Another special case of the frequency transfer
variance u2

y is the variance of “4-point x” estimators of frequency drift rate c = c2 (x). Observing x (t)
for 0 ≤ t ≤ T , we define

ĉ (τ) =
y (T, τ)− y (τ, τ)

T − τ =
x (T )− x (T − τ)− x (τ) + x (0)

τ (T − τ)
=

1
τ (T − τ)

∆τ∆T−τx (T ) (60)

[see Eq. (49)], where 0 < τ ≤ T/2. In other words, ĉ (τ) is the divided difference of the first and last
available τ -average frequencies. We have Eĉ (τ) = c, and because ĉ (τ)−c is invariant to c, we can assume
that c = 0. Then

var ĉ (τ) = Eĉ2 (τ) =
1

(T − τ)2u
2
y (τ, T − 2τ, τ)

When τ = T/2, we have the “3-point x” drift estimator ĉ (T/2) = 4T−2∆2
T/2x (T ), whose variance is

8T−2σ2
yA (T/2) = 4T−2u2

y (T/2, 0, T/2) [25].

An example of a different kind of unbiased frequency drift estimator is the “least-squares y” estimator
defined by

ĉLSy =
6
T 3

∫ T

0

(2t− T ) y (t) dt (61)

This is the continuous-time analog of the slope of the least-squares linear fit to sampled data y1, · · · , yN .
Since y (t) might be a generalized process, we integrate Eq. (61) by parts to obtain
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ĉLSy =
6
T 2

[
x (0) + x (T )− 2

T

∫ T

0

x (t) dt

]

= Hx (T )

where

H =
6
T 2

(B0 +BT − 2AT )

a real TL filter of order 2 whose impulse response is supported on [0, T ] and is even about T/2. (See
Section II.B for the definitions of the shift Bτ and moving average Aτ .) Using Eq. (13), we find that
H∗ = B−TH and HH∗ = B−TH2. A straightforward calculation gives

HH∗δ (t) =
36
T 4

[
δ (t+ T ) + 2δ (t) + δ (t− T )− 4 |t|

T 2
1 (|t| < T )

]

var ĉLSy = HH∗Rx (0) =
72
T 4

[
Rx (0) +Rx (T )− 4

T 2

∫ T

0

Rx (t) tdt

]

where it is assumed that Rx (−t) = Rx (t).

Formulas for the variance of several drift estimators in the presence of power-law noises, computed by
this method, can be found in [7].

D. Allan Variance With Drift Removal

We conclude this set of applications with a moderately complex calculation, similar to others that
the author has carried out [4,7]. Some motivation and numerical results are given. The problem is to
find out how drift removal affects the mean and variance of an estimator of Allan variance. Let N + 1
time-deviation data x (nτ0), 0 ≤ n ≤ N , be given. Write T = Nτ0, τ = mτ0, where 1 ≤ m ≤ N/2. Let
z (t) = ∆2

τx (t). The available second τ -increments of x (t) are zn = z (nτ0), 2m ≤ n ≤ N . The fully
overlapped estimator of σ2

yA (τ) is given by

V =
1

2τ2M

N∑
n=2m

z2
n (62)

where M = N − 2m + 1. This estimator is distinguished from the τ -overlap estimator, which uses the
average of the subsequence z2

2m, z
2
3m, . . .. Both estimators are unbiased, but the fully overlapped estimator

usually has the lesser variance [26,3,27].

If x (t) includes a long-term drift component (1/2)ct2, then, for large τ , the drift contribution (1/2)c2τ2

to the Allan variance masks the part of σ2
yA (τ) that helps to characterize the random fluctuations. If we

knew c, we could remove it; usually we have to make do with an estimate ĉ derived from the current data.
The estimator V applied to x (t)− (1/2)ĉt2 gives a different result than V applied to x (t)− (1/2)ct2 does;
here we show how to calculate the mean and variance for both situations.
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Define a “drift-estimator τ” by τc = mcτ0, where 1 ≤ mc ≤ N/2, and let ĉ be the 4-point (or possibly
3-point) drift estimator,

ĉ = ĉ (τc) = Hcx (T ) =
1

τc (T − τc)
∆τc∆T−τcx (T )

[see Eq. (60)]. The second τ -increments of x (t)− (1/2)ĉt2 being zn − ĉτ2, we define the estimated-drift-
removed estimate of Allan variance to be

V0 =
1

2τ2M

N∑
n=2m

(
zn − ĉτ2

)2

Expanding the square and letting ẑ = (1/M)
∑N
n=2m zn, we have

V0 = V − ĉẑ +
τ2

2
ĉ2 (63)

Because V0 is invariant to the true drift rate c, we can assume that c = 0; in this case, V becomes an
unbiased estimator of Allan variance with the true drift removed. Now our job is to compare the mean
and variance of V and V0 under the condition that x (t) is a process with stationary zero-mean second
increments. To compute variances of V and V0, we also assume that the second increments are a Gaussian
process, so that Isserlis’s theorem (Section III of the Appendix) applies.

1. Means. Under the given assumptions, z (t) is a stationary zero-mean process with ACV

Rz (t) = δ4
τRx (t)

and we have

Eĉzn = EHcx (T ) ∆2
τx (nτ0) = Hc∆2

−τRx ((N − n) τ0)

= f ((N − n) τ0)

where f (t) = Hc∆2
−τRx (t), the result of another fourth-order filter acting on Rx (t). Then

EV =
1

2τ2
Ez2 (t) =

1
2τ2

Rz (0)

EV0 = EV − Eĉẑ +
τ2

2
Eĉ2

Eĉẑ =
1
M

N∑
n=2m

Eĉzn =
1
M

M−1∑
k=0

f (kτ0)

Eĉ2 = E [Hcx (T )]2 = HcH
∗
cRx (0)
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These formulas give EV and EV0 as finite linear combinations of Rx (nτ0).

2. Variances.

(1) From Eq. (62) and Isserlis’s theorem, we have

varV =
1

4τ4M2

N−1∑
i,j=2m

cov
(
z2
i , z

2
j

)
=

1
2τ4M2

∑
i,j

(Ezizj)
2

=
1

2τ4M2

∑
i,j

R2
z ((i− j) τ0)

=
1

2τ4M2

[
MR2

z (0) + 2
M−1∑
k=1

(M − k)R2
z (kτ0)

]

where it is assumed that Rz (−t) = Rz (t). This part of the calculation was carried out by Yoshimura
[27].

From Eq. (63), the variance of V0 is a sum of six terms:

varV0 = varV + var (ĉẑ) +
τ4

4
var
(
ĉ2
)
− 2 cov (V, ĉẑ) + τ2cov

(
V, ĉ2

)
− τ2cov

(
ĉẑ, ĉ2

)

Let us take up the last five in turn, using Isserlis’s theorem to evaluate the covariances.

(2)

var (ĉẑ) = cov (ĉẑ, ĉẑ) =
(
Eĉ2

) (
Eẑ2

)
+ (Eĉẑ)2

Eẑ2 =
1
M2

∑
i,j

Ezizj

=
1
M2

[
MRz (0) + 2

M−1∑
k=1

(M − k)Rz (kτ0)

]

(3)

var
(
ĉ2
)

= cov (ĉĉ, ĉĉ) = 2
(
Eĉ2

)2
26



(4)

cov (V, ĉẑ) =
1

2τ2M2

N∑
i,j=2m

cov
(
z2
i , ĉzj

)
=

1
τ2M2

N∑
i,j=2m

(Eĉzi) (Ezizj)

=
1

τ2M2

N∑
i,j=2m

f ((N − i) τ0)Rz ((i− j) τ0)

=
1

τ2M2

M−1∑
k=0

f (kτ0)
M−1−k∑
i=−k

Rz (iτ0) (64)

For each new m, we can precompute the array sn =
∑n
i=−M Rz (iτ0); then the inner sum in Eq. (64) is

sM−1−k − s−1−k.

(5)

cov
(
V, ĉ2

)
=

1
2τ2M

N∑
n=2m

cov
(
z2
n, ĉ

2
)

=
1

τ2M

N∑
n=2m

(Eĉzn)2

=
1

τ2M

M−1∑
k=0

f2 (kτ0)

(6)

cov
(
ĉẑ, ĉ2

)
= 2

(
Eĉ2

)
(Eĉẑ)

3. Numerical Results. The author programmed these calculations in Maple and carried them out
numerically for τ0 = 1, N = 100, τc = 15, and m = τ/τ0 = 1, 2, 4, 8, 16, 32, 50, using the GACVs for
power-law spectra |2πν|β , β = 0,−1,−2,−3, and −4 (white PM, flicker PM, white FM, flicker FM, and
random-walk FM), as given in Section IV. For β = 0 and −1, the author used Eq. (43) with ε = τ0;
this choice gives discrete-time white noise for the white-PM case and realizes flicker-PM noise as the first
τ0-increment of flicker-FM noise. Figure 1 shows the ratios EV0/EV and

√
varV0/varV as functions of m

and β. Also shown are results of simulation with 10,000 trials, carried out with Matlab;4 the theoretical
and simulated values confirm each other’s correctness.

For the “redder” noises, β = −4,−3, drift removal causes a negative bias in the Allan variance estimate,
as expected, and a decrease of its standard deviation. For white FM, β = −2, drift removal has only a
small effect. For the PM noises, β = −1, 0, drift removal causes a positive bias and an increase of the
standard deviation for the largest values of m. The author was surprised by this result. One might say
that it does not matter since clock data dominated by the PM noises rarely show drift; nevertheless, the
act of drift removal produces these effects whether or not any drift is present.

4 Copyright of The MathWorks, Inc.
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Fig. 1.  The effect of drift removal on the fully over-
lapped Allan variance estimator.  Shown are ratios
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VI. Conclusion

This article does not pretend to disclose new results in clock statistics; in fact, many of the results
given here were previously derived for power-law processes by taking limits of frequency-domain integrals
involving low-frequency cutoffs, or by expressing the desired quantities as functions of known quantities
such as Allan variance with dead time. These ad hoc methods can be replaced by manipulations of the
generalized autocovariance, a function of one time variable that extends the autocovariance (autocor-
relation) function in a natural way from stationary noise models to noise models whose first or higher
increments are stationary. Once the GACV for a particular noise model is obtained, results for a variety
of statistics problems can be calculated from it by turning a crank. The GACV method, being based on
sound mathematics, can be depended upon to give correct results for these noise models.

We close with a suggestion for future work. The extension from ACV to GACV was carried out
only by generalizing the Fourier transform relationship between ACV and spectrum. On the other hand,
since the ACV of a stationary process x (t) is defined in the time domain as a mean lagged product,
Ex (t+ τ)x (t), it would make sense to seek a time-domain expression of the GACV for an x (t) with
stationary nth increments. Having such, one might be able to estimate the GACV directly from a time
series without going through an estimate of the spectrum. Perhaps the practice of computing mean lagged
products to estimate an “ACV” for data that do not look stationary will turn out to have meaning after
all.
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Appendix

Miscellaneous Arguments

I. Functions With Vanishing n th Increments

We want to prove that a continuous function whose nth increments are all zero must be a polynomial
of degree <n. Here we prove the result in an unnecessarily general setting, both to purify the argument
and to establish the result for vector-valued functions such as a mean-continuous random process, viewed
as a mapping t→ x (t) from the real line to a space of random variables with finite second moment. A real
topological vector space is a vector space V over the reals R such that addition and scalar multiplication
are continuous functions from V ×V and R×V , respectively, to V . In particular, a V -valued polynomial
p (t) =

∑m
i=0 t

iai, where ai ∈ V , is a continuous function from R to V .

Lemma A-1. Let n be a positive integer and f (t) a continuous function from the real line to a real
topological vector space V . If ∆n

τ f (t) = 0 for all rational τ and t, then f (t) is a polynomial of degree <n
with coefficients in V .

Proof. Let k be a positive integer. By means of the Lagrange interpolation formula, we can construct
a polynomial pk (t) of degree <n, with coefficients in V , such that pk (t) = f (t) for t = 1/k, 2/k, · · · , n/k.
Then rj = f (j/k)− pk (j/k) satisfies the difference equation ∆nrj = 0 for all integers j, with the initial
conditions r1 = · · · = rn = 0. Solving this difference equation in both directions, we find that rj = 0
for all integers j. This says that f (t) = pk (t) for all t of form j/k, in particular, for all integral t.
Therefore, pk = p1 on the integers. We assert that pk = p1 everywhere; for if that is not so, then
q (t) = pk (t) − p1 (t) is a nonzero polynomial

∑m
i=0 t

iai, where m < n and am 6= 0. Since q = 0 on the
integers, we have ∆m

1 q (0) = m!am = 0, a contradiction.

We now see that f and p1 agree on the rationals. Since both functions are continuous, they agree
everywhere. ❐

II. Details of the Proof of Theorem 6

The purpose of this appendix is to prove statements (1) through (3) of the proof.

(1) Fix z and a sequence zj → z (zj 6= z), and let M ≥ |z| , |zj |. Set

φj (ν) =
em (iωzj)− em (iωz)

zj − z
=

iω

zj − z

∫ zj

z

em−1 (iωζ) dζ

Then φj (ν)→ iωem−1 (iωz). By Eq. (3), the continuous function φj (ν) and its limit are
majorized in absolute value by |ω|mMm−1e|ωM |/ (m− 1)!, which by the assumptions of
the theorem is integrable with respect to Sx (ν) for |ν| ≤ 1. By Lebesgue’s theorem on
dominated convergence,

R+
1 (zj)−R+

1 (z)
zj − z

=
∫ 1

0

φj (ν)Sx (ν) dν →
∫ 1

0

iωem−1 (iωz)Sx (ν) dν

and similarly for R−1 . Thus, both are differentiable.
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(2) Let Im z, Im zj ≥ 0, zj → z. Then
∣∣eiωz∣∣ , ∣∣eiωzj ∣∣ ≤ 1 for ν ≥ 0, and

∫∞
1
Sx (ν) dν < ∞.

By dominated convergence, R+
2 (zj)→ R+

2 (z), and similarly for R−2 .

(3) The exchange of differentiation with respect to z and the integration with respect to ν
carried out in the proof of Item (1) can be performed m times, giving

dm

dzm
R±1 (z) =

∫ ±1

0

eiωz (iω)m Sx (ν) dν

To deal with R±2 , let Im z > 0, Im zj > 0, zj → z, and zj 6= z. Then there is a b > 0 such
that Im z and Im zj ≥ b. Set

ψj (ν) =
eiωzj − eiωz
zj − z

=
iω

zj − z

∫ zj

z

eiωζdζ

If ν > 0, then ψj (ν) and its limit, iωeiωz, are majorized in absolute value by ωe−bω, which
is integrable with respect to Sx (ν) for ν ≥ 1. Thus, dR+

2 (z) /dz =
∫∞

1
eiωziωSx (ν) dν.

Since ωke−bω is Sx-integrable on ν ≥ 1 for any k, these derivatives can be repeated
indefinitely under the integral sign, giving

dm

dzm
R+

2 (z) =
∫ ∞

1

eiωz (iω)m Sx (ν) dν, Im z > 0

and similarly for R−2 .

III. Isserlis’s Theorem

This is a general theorem about fourth moments of jointly Gaussian random variables with zero means.
A set of N complex-valued random variables is said to be jointly Gaussian if the 2N real and imaginary
parts have a joint Gaussian distribution.

Theorem A-1. Let X1, X2, X3, and X4 be complex-valued jointly Gaussian random variables with
expectations equal to zero. Then

cov (X1X2, X3X4) =
(
EX1X3

) (
EX2X4

)
+
(
EX1X4

) (
EX2X3

)
(A-1)

See [21] for a reference. Here is a sketch of a proof. We can replace X3 and X4 by their conjugates;
then Eq. (A-1) is equivalent to

EX1X2X3X4 = (EX1X2) (EX3X4) + (EX1X3) (EX2X4) + (EX1X4) (EX2X3) (A-2)

To prove Eq. (A-2), we use the theorem that N real jointly Gaussian random variables can be expressed
as linear combinations of at most N independent standard (mean 0, variance 1) Gaussians Ui. Applying
this theorem to the 8 real and imaginary parts of the Xk, we see that the Xk are linear combinations,
with complex coefficients, of a set of independent standard Gaussians Ui. Since both sides of Eq. (A-2)
are linear in each Xk separately, it follows that Eq. (A-2) reduces to evaluation of EUiUjUkUl, of which
the only nonzero cases are EU2

i U
2
j = EU2

i EU
2
j (i 6= j) and EU4

i = 3EU2
i .
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