
TMO Progress Report 42-139 November 15, 1999

Quantization Considerations for Distortion-Controlled
Data Compression

M. Klimesh1

Distortion-controlled data compression is lossy signal compression in which the
amount of distortion introduced into any small portion of a signal is strictly limited.
This article gives results on various practical aspects of quantization and distortion-
controlled compression. The primary focus is near-lossless compression, as accom-
plished by predictive techniques. For compression of noisy signals, the effect of
quantization step size q on rate, distortion, and the effective noise characteristics
is considered. It is demonstrated that surprisingly large values of q often may be
employed without significantly affecting the scientific analysis of the compressed
data. For low-noise signals, the use of subtractive dither to reduce or eliminate
compression artifacts is analyzed. This analysis includes determination of a class
of optimal dither signals based on certain reasonable assumptions. The effect on
compression of the step size used in analog-to-digital conversion also is discussed.

I. Introduction

Most of the data gathered by spacecraft consists of digitized samples of signals. These signals may
have multiple dimensions; for example, gray-scale image data are obtained from a two-dimensional signal.
In the absence of other considerations, scientists would prefer to retrieve the data unaltered. Usually,
however, if only lossless compression is used, then a spacecraft is capable of gathering much more data
than can be transmitted, due to downlink rate constraints. If lossy compression is used, the amount of
data that can be sent is increased, but one must consider the effect of the added distortion on the value
of the data. We address this concern by considering compression in which the amount of distortion that
may be introduced into any local region of the data is guaranteed to be less than a specified limit. We
refer to this type of compression as distortion-controlled compression.

Distortion-controlled compression protects small details of a signal to a well-defined (and selectable)
degree, so one can have complete assurance that the scientific value of the signal is adequately preserved.
On the other hand, typical lossy compression techniques are well suited for minimizing a quantitative
distortion measure such as root-mean-squared error (RMSE) or an equivalent metric such as mean-
squared error (MSE) or peak-signal-to-noise ratio (PSNR). Unfortunately, one cannot infer protection of
individual details of a signal from an RMSE value, and in practice algorithms have a tendency to cause
more distortion in areas of interesting details than in other areas.

It should be noted that, in general, the scientific usefulness of a compressed signal is not well measured
by a maximum local distortion metric. For a wide variety of compression methods and distortion levels,
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the RMSE provides a reasonable (though far from perfect) metric for comparing the value of reconstructed
versions of a signal. The same is not true for metrics that measure local distortion. For example, suppose
two identical copies of a signal are compressed, one by a predictive compression algorithm that limits the
total distortion, the other by a transform-based algorithm. If the RMSE values of both reconstructed
signals are similar, then the overall subjective appraisals will likely also be somewhat similar, although
the two reconstructed signals may have very different good and bad aspects. However, the reconstructed
signal from the predictive algorithm generally will have a somewhat lower maximum local distortion, and,
unless operating at high fidelities, the transform algorithm typically will yield a lower rate.2

At small RMSE values, however, distortion-controlled compression methods tend to provide lower rates
than do more general methods. Thus, when operating at high fidelities, distortion-controlled compression
methods give a maximum local-distortion guarantee essentially for free.

Ideally, it would be possible to use distortion-controlled compression that is competitive in RMSE
performance over a wide range of distortion levels. Rate-distortion theory suggests that, to accomplish
this at moderate and higher distortion levels with a minimal penalty in RMSE performance, it is important
that the local constraint be fairly loose. That is, a conventionally compressed signal would not violate
the local constraint very often. Thus, it appears that distortion-controlled compression is inherently less
useful (but by no means useless) at moderate and higher distortion levels.

In fact, we do not know of any compression techniques that produce competitive rate-distortion per-
formance in terms of RMSE at high distortion levels along with a reasonable maximum local distortion.
If one attempts to artificially construct such a technique by taking a good RMSE method and adding
an extra step to reduce the large local residuals, it is found to be difficult to reduce the local distortion
significantly without increasing the rate substantially.

Thus, although the definition of distortion-controlled compression encompasses a wide range of degrees
of lossiness, we confine ourselves to the cases when the maximum local distortion is restricted to be quite
low, resulting in high-fidelity compression.

In this article, a “local region” of the data always will be a single sample. That is, we will consider
compression in which the absolute difference between the value of a sample in the original data and
the corresponding value in the reconstructed data is less than a specified value. Compression with this
constraint has been called “L∞-constrained compression” [17] and “near-lossless compression.”

The primary purpose of this article is to exhibit basic results related to near-lossless compression,
thereby laying the groundwork for the design of distortion-controlled compression algorithms. This article
also will provide support for compression recommendations; this includes serving as a convenient reference
on the trade-offs available. Throughout this article, we give categorizations of types of signal data and
discuss the effect of these categorizations on compression.

It also is hoped that this article will prove useful to users of signal compression. They can determine
from our results if distortion-controlled compression is likely to be appropriate for their needs.3 This
article also will help increase the understanding of the trade-offs associated with compression, instrument
design, quantity and fidelity of signal data returned, and downlink rate.

The remainder of this article is organized as follows. Section II discusses the connections between
quantization and analog-to-digital conversion. Section III gives a basic description of predictive compres-
sion and gives some quantitative results on the distortions introduced and on the amount of compression

2 The amount of compression often is given as a rate, in bits/sample. A lower rate indicates more compression. The
rate-distortion performance refers to the trade-off between rate and average distortion.

3 Of course, there is no substitute for consulting compression specialists, but such interaction can be facilitated by an
awareness of the issues.
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obtained. Section IV provides basic calculations of the distortion from quantization, and Section V com-
pares the amount of compression of near-lossless compression with that of lossless compression. Section VI
contains a detailed analysis of near-lossless compression of noisy signals. Section VII contains a discussion
of the use of subtractive dither to reduce or eliminate quantization artifacts, including characterization
of optimal dither distributions. Section VIII discusses the effect of the fineness of the original analog-to-
digital conversion of signals on rate and distortion in near-lossless compression. Finally, in Section IX, we
conclude with a summary of the major points and a brief discussion of the possibility of onboard analysis.

II. Quantization and Analog-to-Digital Conversion

An important purpose of this article is to analyze several aspects of quantization, including the effect
of quantization step size on rate, distortion, and specific artifacts in the reconstructed samples. Thus, we
begin with a general discussion of quantization.

At one or more points in the process of collecting, processing, compressing, and transmitting sampled
signal data, quantization must occur. Analog-to-digital conversion is one form of quantization (see Sec-
tion 1.1 of [3]). Near-lossless compression methods generally include a quantization step that is applied to
samples already in digital form. Thus, it is common for a fine quantization step (such as analog-to-digital
conversion) to be followed by at least one coarser quantization step.

Transform-based compression methods generally involve a quantization step applied to functions of
several samples. A sample is reconstructed from several of these quantized values. Although some of the
principles that we discuss apply to this situation, we do not tailor our analysis to it since transform coding
is not well-suited to near-lossless compression. Although near-lossless predictive compression (discussed
in the next section) is in some ways similar to transform coding, our analysis does apply to near-lossless
predictive compression because a sample is reconstructed primarily based on a single quantization.

When a sample is quantized by multiple, progressively coarser quantization steps, the final quantization
step is the primary factor in determining the quantization noise statistics and the bit rate needed to encode
the quantized data. However, the fineness of an earlier quantization step may be a contributing factor:
if it is finer, then overall compression performance may be better. We discuss this effect in Section VIII.

We primarily consider uniform quantization—that is, quantization in which the bins all have equal
size. Uniform quantization of noise is known to be good in that, if the quantized values are entropy
coded,4 the resulting rate-distortion performance is close to optimal (but usually not exactly optimal)
under several sets of assumptions (for example, Gaussian noise and mean-squared error [16]). We may
infer that uniform quantization is also often close to optimal for signal-sample quantization, since an
interesting signal generally may be modeled as a random process not unlike noise.

Nonuniform quantization may be appropriate if the noise level varies with the signal level or if the im-
portance of accuracy varies with the signal level. A common reason for using nonuniform compression is
to obtain a large dynamic range without requiring an enormous number of quantization levels. Compand-
ing (see Section 5.5 of [3]) is one method of achieving this. More generally, any nonuniform quantization
can be obtained by applying a reversible nonlinear transform to each sample and then applying uniform
quantization. If the RMSE of the transformed data is a useful measure of its value, then the analysis in
this article may apply to quantization of the transformed data.

We consider situations in which analog-to-digital conversion or more general quantization is applied
to pure noise, to signals with little or no noise, or to noisy signals in which the underlying signal varies
slowly compared with the sample-to-sample variations caused by noise.

4 The entropy (see, for example, [2]) of a distribution is the theoretical lowest rate, in bits/sample, at which random variables
with this distribution may be losslessly encoded. Entropy coding (see, for example, [2,3,8]) is the process of encoding
the values near this rate. Useful techniques for entropy coding include the well-known techniques of Huffman coding,
arithmetic coding [5,15], run-length coding, and Golomb–Rice coding [4,9].
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III. Predictive Compression

A natural and well-known method of lossless and near-lossless compression is predictive compression [8],
of which differential pulse-coded modulation (DPCM) is a simple form. In lossless predictive compression,
each sample is estimated from the previous sample values, and the difference between the estimate and
the actual value is encoded. The decoder is able to compute the same estimates as the encoder, since
those estimates are based on values it has already reconstructed.

Near-lossless predictive encoding has two main differences. First, the difference between the estimated
sample value and the actual value is quantized before it is encoded (this is the lossy step). Second, the
sample estimates must be based on the reconstructed sequence that will be observed by the decoder,
not on the original samples, so that the decoder can form the same estimates as the encoder. Thus, the
encoder must perform a limited form of decoding to form the reconstructed values.

The sample value estimation should be designed using knowledge of the anticipated signal character-
istics. For images, the estimator typically incorporates several adjacent pixel values into its estimate. It
often is desirable to make the estimation procedure adaptive, so that the estimator will perform well on
a wide range of signals.

Let xi denote the (possibly digitized) sample value at index i. For multidimensional signals, the index
can be multidimensional (for example, the value of a pixel of an image would be denoted as x(i,j)). The
estimate of a sample value is denoted x̂i, and the reconstructed sample value is denoted x̃i.

A basic form of the quantization procedure consists of quantizing the prediction error, xi − x̂i, to the
nearest multiple of a fixed quantization step size, q. Specifically, the index of the quantization level is
given by

ηi =
⌊
xi − x̂i
q

+
1
2

⌋
(1)

The value of ηi is losslessly encoded in the compressed bit stream. The reconstructed sample is computed
as

x̃i = x̂i + qηi (2)

The values x̂i+ qj, where j ranges over the integers, are known as the reconstruction levels of xi. If there
are minimum and maximum possible values of xi, then Eq. (2) should be modified to include clipping to
the allowed range. The effects of this clipping usually are insignificant and generally can be ignored in
the analysis.

When the samples have been converted to digital form before the compression, we may assume each
xi is an integer and that the minimum difference between possible values of xi is 1. (If not, the xi can be
scaled linearly so that this condition holds.) We assume that an analog-to-digital conversion step always
yields values with this property.

Typically, a maximum allowable error value δ is supplied to or chosen by the predictive compressor.
That is, for each i, we require |x̃i−xi| ≤ δ. If the xi are integers (and δ is an integer), choosing q = 2δ+1
(or smaller) yields, through Eqs. (1) and (2), a procedure that produces reconstructed values satisfying
this constraint.

Again suppose the xi are integers. Although it is natural to choose q to be an odd integer, q also may
be chosen to be an even integer. However, the possible reconstructed values of a sample then will range
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from xi − q/2 + 1 to xi + q/2, giving an average of xi + 1/2. Equivalently, the possible values of xi given
x̃i range from x̃i − q/2 to x̃i + q/2− 1, so the best guess of xi is x̃i − 1/2, which is not an integer. There
is nothing inherently wrong with this, since this bias is known and can be corrected (by using x̃i− 1/2 as
the reconstructed value), but it is often inconvenient to have reconstructed samples that have a different
set of possible values than the original digitized samples. An advantage of allowing q to be even is that,
if q is a power of 2, the quantization may be performed without a division operation.

IV. Basic Distortion Estimation

In this section, we give some well-known and useful properties of the RMSE distortion resulting from
uniform quantization. Here we let xi represent an original (analog) sample value and x̃i represent the
corresponding quantized value. The RMSE distortion of a collection of x̃i, denoted by DRMSE, is given
by

DRMSE =

√
1
n

∑
i

(x̃i − xi)2

where n is the number of samples.

When the final quantization step size is q, the reconstruction errors x̃i − xi will be in the range5

[−q/2, q/2]. If we assume that the reconstruction errors are uniformly distributed in this range, then
DRMSE is given by

DRMSE =

√∫ q/2

−q/2

1
q
x2dx =

q√
12

(3)

Thus, under the uniform error assumption, if the RMSE distortion is required to be at most a given value
DRMSE, then it suffices to choose

q ≤
√

12DRMSE (4)

If the quantization step is a simple analog-to-digital conversion or other quantization procedure in which
the reconstruction levels are the same for each sample, then Eq. (3) generally is fairly accurate if the
region over which the distortion is computed contains sample values whose range is somewhat larger than
the quantization step size. If the quantization step occurs in a predictive compression algorithm, then
Eq. (3) generally is slightly pessimistic (more so with larger q and less so when the signal is noisy) because
the estimator should produce a distribution on xi − x̂i that has its peak near 0, which usually gives a
distribution of x̃i − xi that is slightly peaked at 0.

In Eq. (3), it matters little whether finer quantization (such as analog-to-digital conversion) was
performed before the final, coarse quantization (but see Section VIII). It is common, however, to measure
the distortion between the digitized samples and the final quantized samples, in part because the digitized
samples are more often available than the original analog samples. We denote the RMSE distortion
measured in this way by D′RMSE. If the xi are integers and δ is the maximum error value and q = 2δ+ 1,
the possible reconstruction errors x̃i − xi are

5 Note that if the quantization procedure given by Eqs. (1) and (2) is used, the range will be the half-open interval
(−q/2, q/2].
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{−δ,−δ + 1, · · · , δ − 1, δ}

If it is assumed that the distribution of errors is uniform over this set, then

D′RMSE =

√
δ2 + δ

3
(5)

Solving Eq. (5) for δ shows that a distortion of at most D′RMSE would be achieved if δ were chosen as

δ =

⌊
−1 +

√
1 + 12(D′RMSE)2

2

⌋
(6)

It usually is reasonable to model the quantization noise introduced by the analog-to-digital conversion
as uncorrelated with the additional noise introduced by the later quantization step. With DMSE and
D′MSE defined analogously to DRMSE and D′RMSE, we have DMSE = D′MSE + 1/12 or, equivalently,
DRMSE =

√
(D′RMSE)2 + 1/12. This is consistent with Eqs. (3) and (5).

V. Lossless and Near-Lossless Rate Comparison

Near-lossless compression has a large advantage over lossless compression in terms of the rate, in
bits/sample, needed to encode a digitized signal.

Suppose the (integer) sample sequence {xi} can be modeled as a realization of a random process, {Xi}.
Let r∗0 be the best possible expected rate, in bits/sample, needed to losslessly compress the sequence.
(Note that r∗0 is actually the entropy of the entire sequence divided by the number of samples; however, we
wish to emphasize practical coding here.) Now suppose that a near-lossless algorithm is used to compress
the sequence such that the maximum sample error is δ, for some integer δ ≥ 0. Let rδ be the expected
rate achieved and let {X̃i} be the resulting reconstructed sequence (a random sequence that is a function
of {Xi}). Each difference bX̃ic −Xi can take on at most 2δ+ 1 values. (For simplicity, we have assumed
that the reconstructed sequence takes on integer values, although this assumption is not essential.) Thus,
the sequence {bX̃ic−Xi} can be encoded with an expected rate re (with units of bits/sample) satisfying

re ≤ log2(2δ + 1) (7)

The sequence {Xi} can be obtained from the sequences {X̃i} and {bX̃ic −Xi}, so it follows that

r∗0 ≤ rδ + re (8)

Combining Eqs. (7) and (8) yields

rδ ≥ r∗0 − log2(2δ + 1) (9)

In other words, no near-lossless encoding algorithm that guarantees a maximum sample error of δ can
achieve an expected rate that is lower than log2(2δ + 1) less than the best expected rate achievable with
a lossless encoder.
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In practice, of course, it usually is impossible to determine r∗0 exactly. However, it is as difficult to
approach the theoretical compression limits for near-lossless compression as it is for lossless compression
(except in some uninteresting concocted cases), so Eq. (9) generally will be satisfied when r∗0 is replaced by
the best lossless rate achieved. When δ is small, the rates achieved by practical near-lossless compression
algorithms tend to be close to this bound. Incidentally, Eq. (9) may be generalized; if a compression
algorithm achieves rate r while generating a distribution of reconstruction errors with entropy He, then
Eq. (9) may be replaced by

r ≥ r∗0 −He

Table 1 shows the potential and experimental rate advantage of using near-lossless compression, as
opposed to lossless compression, for a variety of choices of δ. The maximum savings are a practical upper
bound. The actual savings values are an indication of what is achievable; they were obtained for a simple
near-lossless compression algorithm applied to 8-bit images. The top row of the table (δ = 0) corresponds
to lossless compression. The “munar,” “thor,” and “olaf” images are planetary images, and the “boat”
image is an image with an outdoors setting. Clearly, there can be a large rate advantage over lossless
compression, even if a small value of δ is used.

Table 1. Decrease in rate resulting from near-lossless compression with maximum sample error d,
as compared with lossless compression.

“Munar” “Thor” “Olaf” “Boat”
Maximum

δ savings, Actual Resulting Actual Resulting Actual Resulting Actual Resulting
bits/sample savings, rate, savings, rate, savings, rate, savings, rate,

bits/pixel bits/pixel bits/pixel bits/pixel bits/pixel bits/pixel bits/pixel bits/pixel

0 0 0 5.05 0 4.97 0 4.70 0 4.65

1 1.58 1.54 3.51 1.50 3.47 1.53 3.17 1.51 3.14

2 2.32 2.23 2.82 2.16 2.81 2.19 2.51 2.15 2.50

3 2.81 2.68 2.37 2.59 2.38 2.62 2.08 2.54 2.11

4 3.17 3.00 2.05 2.90 2.07 2.88 1.82 2.81 1.84

5 3.46 3.21 1.84 3.11 1.86 3.04 1.66 3.00 1.65

6 3.70 3.35 1.70 3.25 1.72 3.15 1.55 3.13 1.52

7 3.91 3.46 1.59 3.35 1.62 3.23 1.47 3.22 1.43

8 4.09 3.53 1.52 3.43 1.54 3.29 1.41 3.28 1.37

9 4.25 3.59 1.46 3.49 1.48 3.33 1.37 3.32 1.33

10 4.39 3.64 1.41 3.54 1.43 3.37 1.33 3.36 1.29

VI. Compression of Noisy Signals

In this section, we assume the signal can be conceptually viewed as an underlying signal that is
corrupted by additive noise. We refer to the noise as instrument noise, but it may be background noise
in the physical signal. For meaningful estimation of total distortion (which includes instrument noise
and distortion from compression), our primary requirement on the noise is that the scientists are not
interested in the individual noise values. The noise statistics may be of interest, however. For example,
an image of the surface of Mars may contain small pixel-to-pixel variations that look much like noise, but,
if these variations actually exist on the surface, then they should be considered part of the underlying
signal since scientists are presumably interested in their individual values. (For some purposes, statistics
may be sufficient, so in such cases the variations could be treated as noise.) However, if there is also a
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noticeable amount of noise from sources such as thermal noise in the sensor electronics or radiation hits
on the sensor, then the distortion results in this section may apply. For rate calculations, the source of
signal variations is obviously unimportant.

When near-lossless predictive compression is used to compress a signal containing a significant amount
of memoryless noise, the predictor should attempt to estimate the underlying signal, since it usually
cannot hope to predict the individual noise values. This estimation often consists of performing some
sort of running average of the previously quantized samples. In such cases, the predictor’s estimate of a
sample may be fairly accurate when the underlying signal is changing slowly.

A. Rate Estimation

Compression of a noisy signal is similar to compression of noise, the performance of which can be
estimated fairly accurately. Suppose the Xi sequence is formed from an underlying signal with zero-
mean additive noise. We derive some useful bounds on the compression achievable. We are interested in
the value of (1/n)H({X̃i}ni=1), the entropy per sample of the random sequence of quantized instrument
readings. For noisy signals, it often is possible to achieve compression that is very close to this value
(perhaps within 0.1 to 0.3 bits/sample). Each X̃i is a quantized version of the instrument reading Xi.
We denote a general quantization function by Q and a uniform quantization function with step size q
(and a reconstruction level at 0) by Qq; that is, Qq(x) = qbx/q + 1/2c. Each Xi is formed as the sum of
the underlying signal Yi and the instrument noise Ni.

For readability, we have relegated most calculations of this section to Appendix A.

Most generally, the average entropy per sample may be bounded by

1
n
H
({
X̃i

}n
i=1

)
≥ inf
{yi}ni=1

1
n
H ({Q(Yi +Ni)}ni=1 |{Yi}ni=1 = {yi}ni=1) (10)

where the infimum is over all possible signal sequences. If the sequence {Yi}ni=1 is independent from the
sequence {Ni}ni=1, then

1
n
H
({
X̃i

}n
i=1

)
≥ inf
{yi}ni=1

1
n
H ({Q(yi +Ni)}ni=1) (11)

If, in addition, the Ni are independent and identically distributed, then Eq. (11) becomes

1
n
H
({
X̃i

}n
i=1

)
≥ inf

y
H (Q(y +N)) (12)

where N is a random variable with the distribution of the Ni.

It is observed experimentally that Eqs. (11) and (12) are useful as approximations (and not simply lower
bounds) to the rate obtained with near-lossless compression. They are most accurate when the underlying
signal value changes slowly from sample to sample compared with the signal variations caused by the
noise. It is not necessary for the overall variations in the underlying signal to be small compared with the
noise. The right-hand sides of Eqs. (11) and (12) are good approximations for the respective left-hand
sides when the estimator in the compressor is able to closely predict the values of the underlying signal.
When this occurs, the entropy of the quantized residuals will be only slightly larger than the entropy
of the quantized instrument noise. Only moderate accuracy in estimating Yi is needed to accomplish
this, since the entropy of a random variable grows as the logarithm of its standard deviation. If the
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RMSE between the estimate and the underlying signal is Dest and the standard deviation of the noise is
σN , then a rough estimate of the extra rate (in bits/sample) needed to encode the quantized signal plus
noise (versus the noise only) is log2

√
1 +D2

est/σ
2
N . Note, however, that an algorithm for compressing the

signal sequence {Xi}ni=1 may need to be more complicated than an algorithm for compressing the noise
sequence {Ni}ni=1, even if there is little difference in the compression achieved; this is because estimation
of the underlying signal is not needed for compression of {Ni}ni=1.

Naturally, if the behavior of the total signal (underlying signal plus noise) can be modeled accurately,
then one can compute the entropy directly based on that model. However, it is often much more difficult
to model the total signal (often, a purpose of the instrument is to provide data to develop such a model).
In addition, the above results provide an intuitive feel for the effect of noise on the resulting rate.

We next turn our attention to the entropy of the quantized noise. We consider only the case when the
quantizer is Qq; that is, uniform with quantization step size q. Let h(N) denote the differential entropy
of the continuous random variable N , given as

h(N) = −
∫ ∞
−∞

pN (x) log2 pN (x)dx (13)

where pN is the probability density function for N . If there is a reconstruction level at a, then the
probabilities of the possible values of Qq(a+N) are given by

pi =
∫ a+(i+1/2)q

a+(i−1/2)q

pN (x)dx

for i ∈ Z. With this notation, the entropy of Qq(a+N) is

H (Qq(a+N)) = −
∑
i∈Z

pi log2 pi (14)

With a little work (see Appendix A), we obtain

H (Qq(a+N)) ≥ − log2 q + h(N) (15)

The right-hand side of Eq. (15) is independent of a, so it follows that

inf
a
H (Qq(a+N)) ≥ − log2 q + h(N)

In fact (see Theorem 9.3.1 of [2]), it is also true that

lim
q↓0

(H (Qq(a+N)) + log2 q) = h(N)

and, for relatively smooth distributions, the approximation

H (Qq(a+N)) ≈ − log2 q + h(N) (16)
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becomes accurate enough for practical purposes about when q becomes smaller than the standard devia-
tion of N . Overall,

1
n
H
({
X̃i

}n
i=1

)
≥ − log2 q + h(N)

when the underlying signal is independent of the instrument noise and the latter is independent and
identically distributed, with approximate equality holding in many practical situations.

The differential entropy of a distribution can be computed using Eq. (13); also, Table 16.1 of [2]
contains differential entropies of many distributions. For convenience, we mention that, for the Gaussian
distribution

pN (x) =
1√

2πσ2
e−(x−µ)2/2σ2

the differential entropy is

h(N) =
1
2

log2

(
2πeσ2

)
and, for the Laplacian distribution

pN (x) =
α

2
e−α|x−θ| (17)

(which has variance 2/α2), the differential entropy is

h(N) = log2

(
2e
α

)

As an example, we have computed bounds on H(Qq(a+N)) for the Laplacian distribution. The result
is shown in Fig. 1. Analytic expressions for the entropies involved are given in Appendix B.

In practice, it is not especially relevant to examine the range of entropies resulting from variations in
a predictor offset, a. The offset a generally is not constant, so the overall discrete distribution (on the ηi)
to be compressed actually will be a convex combination of the distributions resulting from all different
possible values of a. Even if a is constant, the entropy coder may not be able to encode the resulting
discrete distribution to near its entropy, because, if a is nonzero, then the peak of the distribution will be
offset slightly from 0, which will make some entropy coders inefficient. This offset can be accounted for
by the entropy coder if a is known, but, if a is known, the prediction could simply be adjusted so that a
becomes 0.

Our calculations are useful in that they give an indication of whether Eq. (16) is likely to be accu-
rate. In addition, these results can give insight into the effects of quantizing samples before near-lossless
compression. (These effects are discussed in Section VIII.)
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Fig. 1.  Bounds on the entropy of quantized Laplacian
noise. The upper two curves are supa H (Qq (a + N )) and
infa H (Qq (a + N )), while the lower curve is the lower
bound h (N ) - log2 q.

B. Distortion and Bias

As in Section VI.A, we assume that the samples obtained from the instrument are random variables
of the form X = Y +N , where Y is the underlying signal and N is the instrument noise. We assume that
X may be approximated by a continuous (undigitized) random variable. The final reconstructed value
of X is denoted X̃, obtained by uniform quantization with step size q. As long as the amount of noise is
significant, it does not matter for these calculations if the final quantization step is during near-lossless
compression or analog-to-digital conversion. We assume that N is memoryless noise with mean 0. (If N
has a known nonzero mean, this value can be subtracted before further processing.)

A well-known approximation for the noise X̃ − X in the final quantization step is to assume it is
uniformly distributed on [−q/2, q/2] and uncorrelated with N . With this assumption, we have

E
[
X̃ − Y

]
= 0 (18)

E

[(
X̃ − Y

)2
]

= E
[
N2
]

+
q2

12
(19)

Note that q2/12 is the MSE equivalent to the approximation Eq. (3) for the RMSE distortion between X̃
and X. The approximations of Eqs. (18) and (19) are together equivalent to the well-known corrections

E
[
X̃
]

= E[X]

E
[
X̃2
]

= E
[
X2
]

+
q2

12

 (20)

for the quantization of pure noise [6].

When applying near-lossless compression to a noisy signal, it usually is logical to choose the quantiza-
tion step size based on the resulting total (quantization-plus-instrument) noise. In this context, Eq. (19)
may be rewritten
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σtotal =
√
σ2
N +D2

RMSE (21)

where σN is the instrument-noise standard deviation, DRMSE is the distortion, Eq. (3), from quantization,
and σtotal is the standard deviation of the resulting total noise.

As an example, suppose that σN is estimated to be about 10.0, and it is determined that a value of
σtotal up to 5 percent larger than σN can be tolerated (where the increase results from compression).
From Eq. (21), we find that we need DRMSE ≤ 3.2. Applying Eq. (4) yields q ≤ 11.1. [Alternatively, this
value could have been obtained directly from Eq. (19).] If the samples have been digitized to integers
before compression, we may apply near-lossless compression with maximum sample error δ = 5. As the
results of Sections V and VI.A indicate, this could result in a savings of more than 3 bits/sample as
compared with lossless compression and result in a rate lower than 2 bits/sample.

We now turn our attention to the distribution of the total noise and in particular to the accuracy of
Eqs. (18) and (19). Let X̂ be a random variable indicating the reference level for the quantization (if
the quantization occurs in a predictive compression algorithm, then X̂ is the estimate of X as usual).
Let pX̂−Y (x) denote the density function, which we assume exists, of the random quantity X̂ − Y and
pX̃−Y (x) the density function of X̃−Y . The latter is presumably of most interest to scientists concerned
with the effects of compression and noise on their data.

Using the standard quantization scheme, we may calculate

pX̃−Y (x) = Pr
(
N ∈

[
x− q

2
, x+

q

2

))∑
i∈Z

pX̂−Y (x+ iq)

An example of the density function produced from this calculation in shown in Fig. 2. Although the
total noise distribution is somewhat disturbing in appearance, it does have a zero mean, and its standard
deviation is in line with Eqs. (21) and (3), so under many circumstances this would be acceptable to
scientists.

In a near-lossless compression algorithm, there inevitably will be portions of the data where the
estimator X̂ will be biased. This is likely to happen in regions where the underlying signal is especially
interesting; for example, in an image, the estimator may have trouble accurately estimating the values
near one side of a boundary between two regions of different brightness. An example of the effect of this
bias on the total noise distribution is illustrated in Fig. 3. In this case, the total noise distribution is
more disturbing since it is not symmetric. However, the mean of this distribution is still extremely close
to zero, so it still may be acceptable.

INSTRUMENT
NOISE

-5 -4 -3 -2 -1 0 1 2 3 4 5

(a)
pN ,

pX -Y ,
PREDICTION
ERROR WITH
RESPECT TO
UNDERLYING

SIGNAL

-5 -4 -3 -2 -1 0 1 2 3 4 5

(b) ~pX -Y ,

TOTAL NOISE
AFTER

QUANTIZATION

Fig. 2.  Example noise distributions:  (a) instrument-noise density function (Gaussian with mean 0
and standard deviation 1) and a possible prediction error X - Y density function (Gaussian with
mean 0 and standard deviation 0.2) and (b) the resulting total noise density function when the
quantization step size q is 1. Each density is plotted on a different vertical scale.
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(a)
pN , ALTERNATE

PREDICTION
ERROR

-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 3.  Example noise distributions when the estimator is biased:  (a) instrument-noise density
function (Gaussian with mean 0 and standard deviation 1) and prediction-error density function
(Gaussian with mean 0.25 and standard deviation 0.2) and (b) the resulting total noise density func-
tion when the quantization step size q is 1. Each density is plotted on a different vertical scale.

~pX -Y ,pX -Y ,

The bias in the total noise resulting from a given estimator value x is given by

∑
i∈Z

(x+ iq) Pr
(
N ∈

[
x+

(
i− 1

2

)
q, x+

(
i+

1
2

)
q

))
(22)

Figure 4 shows an example of this quantity as a function of x. Notice that this function always will be
periodic with period q, since changing the estimate by any multiple of q does not affect how the signal
will be quantized (although it will usually affect the cost in bits).

When N is Gaussian (with zero mean) and q/σN is less than about 4, the worst-case total noise bias
occurs when the predicted value is very close to ±q/4. We can thus obtain an accurate estimate of the
worst-case bias by evaluating Eq. (22) at x = q/4. The result is shown in Fig. 5. Perhaps surprisingly,
the bias is not significant when q/σN is less than about 2. The maximum bias decays to 0 exponentially
in σ2

N/q
2 [6].

When N has a distribution other than Gaussian, we expect the results to be similar.

The problem of determining the worst-case bias resulting from quantizing noisy samples is essentially
equivalent to the problem of determining the effect of quantization on the measured mean of samples
of noise. The latter problem is addressed in detail in [6] using complex Fourier series. Our Fig. 5 is
equivalent to Fig. 4 in [6] (although they are presented quite differently). Also in [6] are results for
uniform distributions and for sine waves.
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Fig. 4.  Total noise bias as a function of the underlying
signal prediction error value X - Y when N is Gaussian
with mean 0 and standard deviation 1, and the quanti-
zation step size is q = 2.
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tion of q / sN , when N is Gaussian with mean 0.

The accuracy of the correction to the second moment in Eq. (20) also is considered in [6]. Those results
are closely related to the accuracy of Eq. (19). If it is desired to determine the variance of a signal with
great accuracy, then this may be important (and perhaps [6] should be consulted), but in our application
the underlying signal is usually the primary concern, so any inaccuracies to Eq. (19) are corrections to a
correction and generally will be insignificant.

VII. Artifacts and Dithering

When the instrument noise level is small compared with the final quantization step size, predictive
near-lossless compression can result in disturbing artificial features (artifacts) in the reconstructed signal.
Of course, the magnitude of the individual sample errors will be strictly limited, but several correlated
errors can produce artifacts that are evident on close inspection or that may interfere with scientific
analysis of the signal. These artifacts may include

(1) A biased average value of some regions of the signal

(2) Contouring, or step-like signal-value profiles, in slowly changing portions of the signal

(3) Erasure of faint features that would be detectable in the original signal because they
occupy a large area

A technique for reducing or eliminating these artifacts is subtractive dither [10,12]. In the simplest
form, which may be used with uniform quantization, a pseudorandom value, uniformly distributed on
[−q/2, q/2], is added to the sample before quantization occurs. The same value then is subtracted from the
quantized sample during reconstruction. Thus, in a predictive compression algorithm, the reconstructed
value is x̃ = Qq(x− x̂+D) + x̂−D, where D is the dither pseudorandom variable. It is well-known that
the resulting quantization noise, x̃− x, is uniform on [−q/2, q/2] and independent of x and x̂.

When this dithering technique is used, the resulting quantization noise will satisfy Eq. (3) exactly.
This usually will represent an increase in the RMSE as compared to when dithering is not used, since,
as discussed in Section IV, Eq. (3) is generally pessimistic. The resulting rate (in bits/sample) generally
will be higher also, since the values being quantized will have a larger variance. See [12] for some useful
techniques for reducing these increases.

The reconstructed signal will have none of the artifacts mentioned above, since those artifacts occur
due to correlations between the quantization noise and the signal. However, the entire signal may appear
somewhat grainy due to the uniform noise on all samples.
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It is possible to compromise between the dithering described above and no dither. This can be
accomplished by using a dither signal that tends to take on values of smaller magnitude than would a
signal uniformly distributed on [−q/2, q/2]. This dither signal still will increase the rate and distortion,
but by a smaller amount, and it will remove some correlation between the reconstruction errors and the
signal.

We denote a general dither distribution by PD (so that PD(S) = Pr(D ∈ S)). Suppose A(PD) is a
metric for the degree to which the reconstructed signal will contain artifacts, and C(PD) is a metric for
the cost of the dither signal as manifested by the increase in rate and distortion. Then we would like to
determine the dither signal distributions that achieve the optimal trade-off between minimizing A(PD)
and minimizing C(PD).

Two reasonable choices for C(PD) are the variance of D and the second moment of D. (Note that
these are the same if the dither distribution has mean 0.) Experimentally, the variance of D is a good
indicator of the increase in distortion from dithering. It is logical that the variance of D also gives an
indication of the increase in rate, since the rate generally is roughly equal to a constant plus the logarithm
of the variance of the residual distribution. Figure 6(a) of [12] suggests that a similar relation will hold
if the values of D are supplied to the entropy coder and decoder.

Reasonable choices of A(PD) are more complicated. When dithering is not used, the error x̃− x in a
reconstructed sample is dependent on the estimate x̂ of the sample by x̃− x = x̂+Qq(x− x̂)− x. When
subtractive dither is used, this error is random, and the dependence between the reconstruction error
and the estimate takes the form of a possible bias in the reconstructed value. Specifically, E[x̃ − x] =
E[Qq(x − x̂ + D) − (x − x̂ + D)]. Treating the signal and the estimate as random variables makes this
quantity a random variable; the (random) bias is then

ED

[
Qq

(
X − X̂ +D

)
−
(
X − X̂ +D

)]

To deal more easily with this expression, we introduce quantities that behave better than X and X̂.
Let R = X − X̂ − Qq(X − X̂). Note that R is the difference between a sample and its estimate,
translated by a multiple of q to be in the range [−q/2, q/2]. If no dither is used, R is the error in the
reconstructed sample, and, when a dither signal is used, R still should be distributed in the same way as
the no-dither reconstruction error (that is, ideally uniformly distributed over [−q/2, q/2] but in practice
typically slightly peaked at 0, as remarked in Section IV). Let R̃ = Qq(R + D) − D, so that R̃ is the
quantized value of subtractively dithered R. Note that if no dither is used, then R̃ = 0.

With these definitions, we have

ED

[
R̃−R

]
= ED

[
Qq(R+D)−D −

(
X − X̂

)
+Qq

(
X − X̂

)]

= ED

[
Qq

(
X − X̂ −Qq

(
X − X̂

)
+D

)
−
(
X − X̂ +D

)
+Qq

(
X − X̂

)]

= ED

[
Qq

(
X − X̂ +D

)
−
(
X − X̂ +D

)]

so ED
[
R̃−R

]
expresses the sample bias in terms of R and D. We let A(PD) be the mean-squared value

of this bias (averaged over R); that is,
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A(PD) = ER

[(
ED

[
R̃−R

])2
]

or, equivalently,

A(PD) =
∫

[−q/2,q/2]

(
r − E

[
R̃|R = r

])2

dPR(r) (23)

We primarily consider the case when R is distributed uniformly on [−q/2, q/2] (or at least when we weight
the bias uniformly over this range of R) so that

A(PD) =
∫ q/2

−q/2

(
r − E

[
R̃|R = r

])2

dr (24)

This metric is discussed in [10] and [13]. Intuitively, A(PD) indicates the degree to which the expected
mean of a sample can be biased by the quantization reference point.

Suppose A(PD) is given by Eq. (24) and C(PD) is the variance or the second moment of PD. When
no dither is used, C = 0 and A = q2/12. When a dither that is uniform on [−q/2, q/2] is used, C = q2/12
and A = 0. Note that 0 is the minimum value of both A(PD) and C(PD). Our definitions of A and C are
intended for comparison among dither distributions when q is constant. There is no obvious significance of
a specific value of A or C, so we can only determine the range of best compromises between minimization
of A and minimization of C. In a particular application, experimentation and subjective judgment will
be needed to determine which of these “best compromises” to use.

In Appendix C, we present several results concerning the nature of optimal dither distributions. In
particular, we show (Theorem C-5) that, when A(PD) is given by Eq. (24) and C(PD) is either the
variance or the second moment of PD, then the optimal trade-off between C(PD) and A(PD) occurs for
dither distributions that are uniform on [−k/2, k/2] for k ∈ [0, q] (where k = 0 corresponds to no dither).

The discrete case also is considered in Appendix C. In that case, the samples are integers, q = 2δ + 1,
where δ is the maximum absolute error allowed, and D must take on integer values. When A(PD) is the
discrete analogue of Eq. (24) and C(PD) is the second moment of PD, then the optimal distributions are
those that are uniform on {−k, · · · , k}, where k ∈ {0, · · · , δ}, or are a convex combination of two such
distributions with consecutive values of k (Theorem C-9).

As an example of the use of these results, an image we refer to as “munar” was compressed with a
simple predictive algorithm with maximum sample error δ = 2. A dither signal uniformly distributed on
{−k, · · · , k} was used, where k = 0, 1, or 2. Note that k = 0 corresponds to no dither and k = 2 corre-
sponds to standard subtractive dither. The results are given in Table 2. Note how the cost of dithering
increases as the dither signal amplitude increases. For comparison, the lossless compression rate obtained
with the same algorithm was 5.049 bits/pixel. Observe that the error distribution becomes more uniform
as the dither signal amplitude increases. Figure 6 contains a portion of the original “munar” image, and
Fig. 7 shows an enlarged and contrast-enhanced detail area of the original and reconstructed images,
from which it can be seen how the dither signal amplitude affects the appearance of the reconstructed
image. We make no claim as to which version is best. When displayed normally, the original and all
three reconstructed images are virtually indistinguishable.

16



Table 2. Result of compressing “munar” with maximum pixel error
d = 2 and a dither distribution uniform on {{{– k, . . . , k}}}.

Error distribution, percentage of pixels
Rate,

k RMSE
bits/pixel −2 −1 0 1 2

0 2.819 1.370 18.6 21.2 22.1 20.1 18.0

1 2.842 1.405 19.8 20.2 20.5 20.1 19.5

2 2.873 1.414 19.9 20.0 19.9 20.1 20.0

Fig. 6.  A portion of the "munar" image used in our
dither example. The detail area shown in Fig. 7 is
indicated.

When the instrument-noise level is not small as compared with the final quantization step size, the
instrument noise itself reduces the occurrence of harmful artifacts in the reconstructed data. In this
case, dithering could be used to prevent total noise distributions like those in Figs. 2(b) and 3(b) from
occurring, but, as indicated in Section VI.B, such distributions may not be very harmful. Thus, in this
case, dithering may not be worthwhile. However, the rate and distortion costs of dithering are small when
the signal is noisy.

VIII. Analog-to-Digital Conversion and Near-Lossless Compression

In addition to the quantization step size q used for near-lossless compression, the quantization step
size used in the analog-to-digital conversion, which we call qd, also affects the rate-distortion performance
of the compression. This effect is secondary but important.

Decreasing qd never results in worse rate-distortion performance. Thus, one could simply make qd
as small as possible (very fine quantization) and ignore compression considerations. However, there fre-
quently are practical considerations that make it more convenient to use a larger qd: increasing the number
of bits of precision of analog-to-digital conversion may be difficult or expensive; it may be convenient to
use, say, 16 bits to store an integer instead of 20; and the compression software may be quicker if it can
work with smaller integers.
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(a) (b)

(c) (d)

Fig. 7.  Dither example with maximum pixel error d = 2. Each image is magnified and contrast enhanced:
(a) detail of original, (b) compressed and decompressed with k = 0 (no dither), (c) k = 1, and (d) k = 2
(standard dither). As k increases from 0 to 2, the appearance of streaks and artificial regions of constant
intensity decreases, but an overall grainy look becomes more evident.

For the purposes of this discussion, we consider qd to be the step size used in the last quantization
performed with a fixed set of reconstruction levels. (The set of reconstruction levels varies with the sample
estimate, x̂, in lossy predictive compression.) Thus, we include the possibility of reducing the precision of
the data by dropping some of the least-significant bits after the analog-to-digital conversion. This may be
useful if one desires to vary qd (perhaps with the noise level of the data). On occasion the crude strategy
of dropping a number of bits (depending on the noise level) and sending the resulting quantized data
compressed losslessly (qd = q) can be convenient and reasonably effective, although better results usually
are obtained with qd < q. (A rough comparison of lossy compression to dropping bits and using lossless
compression is given in [14]; however, near-lossless compression is not considered there.)

For a given q, a possible detrimental effect of a larger qd is that the estimate of a sample (in the
near-lossless compression) will be more limited in what values it can take on. This is best illustrated
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with an example. Suppose the signal is noisy but the underlying signal value is accurately estimated
(perhaps by averaging over several previous quantized samples) to have the value 11. Suppose that q = 4.
If qd = 1, then the estimate can be exactly 11, but if qd is 2, then the estimate may be constrained to
be either 10 or 12. Thus, the entropy of the quantized residuals may be larger. The maximum extent
of this rate increase may be estimated by examining the effect of prediction bias on the entropy of the
quantized residuals. When the signal is noisy, we may use the results of Section VI.A for this purpose.
The difference between the worst-case and best-case curves in Fig. 1 is an indication of the approximate
maximum cost of a prediction bias when the noise has a Laplacian distribution, as a function of q/σN .
However, the bias needed to give this maximum cost is q/2, so it can occur only when qd = q (lossless
compression). Note that the cost could occur with respect to arbitrarily small qd or to qd as large as q/2.
A slightly higher distortion also may result.

The other detrimental effects of coarse digitization are more difficult to quantify analytically. These
effects are a cost in both rate and distortion due to the fact that the predictor is less accurate because the
previous samples are encoded less accurately. The rate is increased because of the less accurate estimate,
and the distortion is increased because the distribution of distortion values is less peaked (it is closer to
being uniform on [−q/2, q/2]).

We offer general guidelines for the fineness needed in the analog-to-digital conversion. No significant
detrimental effects occur if qd ≤ max{q/4, σN/4}. Thus, if the minimum possible amount of instrument
noise is known, it is safe to digitize to no coarser than 1/4 of the standard deviation of this noise.
Alternatively, if it is known that the compressor will not use a quantizer step size smaller than q, then it
is safe to choose qd ≤ q/4. (The latter is perhaps less likely in general since usually some amount of data
is sent losslessly, but it may apply to a subset of the data.)

IX. Conclusion

This article has covered several aspects of quantization that will be of interest to those using data
compression as well as to those implementing it. The more important practical observations concern the
rate achievable with near-lossless compression, the largest acceptable quantization step size, and the use
of dither. Near-lossless compression has a large rate improvement over lossless compression, even if the
maximum allowed sample error δ is small, as illustrated in Table 1. When the signal to be compressed is
noisy, the effect of quantization on the scientific value of the signal often can be determined rather precisely.
Figure 5 shows that surprisingly large quantization step sizes may be used without introducing a significant
bias into the reconstructed samples. Subtractive dither is a technique for reducing or eliminating artifacts
in the reconstructive image. We have found the best dither signal distributions to use to produce a range
of degrees of dithering. Examples are shown in Fig. 7.

Our results suggest some possibilities for onboard analysis of signal data. We have been concerned with
the ability to accurately measure certain properties of a signal, especially the mean of a group of samples.
It is natural to ask whether one may simply measure the desired statistics onboard the spacecraft and
transmit those statistics, along with some general descriptive information of the signal to give context to
the statistics. Clearly, such a strategy has the potential to greatly reduce the volume of transmitted data
without sacrificing analysis accuracy.

Such a strategy often is worth consideration and likely will prove useful in a variety of situations.
However, there are complications in onboard analysis that will ensure that there is a continuing demand
for distortion-controlled compression. The primary disadvantage of onboard analysis is that the spacecraft
may not be able to determine which regions of the data should be characterized by statistics. The regions
of interest may be determined using data from another instrument or another (perhaps future) mission.
It may be very difficult to determine regions of interest automatically, since they depend on recognition
of some feature in the data such as, in the case when the signal is an image, a crater, fault, or shadow.
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The regions may be irregularly shaped, and there may be too many possible regions of interest to account
for all possibilities. Scientists often will not be able to determine beforehand what sort of interesting
features may be present. Finally, it may be necessary to remove spurious samples (occurring, e.g., from
radiation) from the region of interest before determining statistics.

Future work on distortion-controlled compression could include compression in which the local re-
gions of constrained distortion are larger than a single sample. Although such a generalization probably
would not yield significantly better algorithms for high-fidelity compression, there is evidence that such
compression could be competitive over a wider range of fidelities than near-lossless compression.
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Appendix A

Rate-Estimation Calculations for Noisy Signals

This Appendix contains calculations for results in Section VI.A.

Let A and B be two arbitrary random variables. Suppose B takes on values in a set S with probability
one. Then

H(A) ≥ H(A|B) ≥ inf
b∈S

H(A|B = b)

Using similar reasoning,

1
n
H
({
X̃i

}n
i=1

)
=

1
n
H ({Q(Yi +Ni)}ni=1)

≥ 1
n
H ({Q(Yi +Ni)}ni=1 | {Yi}

n
i=1)

≥ inf
{yi}ni=1

1
n
H ({Q(Yi +Ni)}ni=1 | {Yi}

n
i=1 = {yi}ni=1)

where the infimum is over all6 possible signal sequences. This is Eq. (10). If the sequence {Yi}ni=1 is
independent from the sequence {Ni}ni=1, then

H ({Q (Yi +Ni)}ni=1 | {Yi}
n
i=1 = {yi}ni=1) = H ({Q (yi +Ni)}ni=1)

so Eq. (11) follows.

We now derive Eq. (15). Define f on [0,∞) by f(x) = −x log2 x. Starting from Eq. (14), we have

H (Qq(a+N)) = −
∑
i∈Z

pi log2 pi

= −
∑
i∈Z

pi

(
log2 q + log2

pi
q

)

= − log2 q − q
∑
i∈Z

pi
q

log2

pi
q

= − log2 q + q
∑
i∈Z

f

(
pi
q

)

6 Actually, a set with probability one is sufficient.
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Note that f is convex ∩ on its domain. This implies that

qf

(
pi
q

)
= qf

(∫ a+(i+1/2)q

a+(i−1/2)q

pN (x)
1
q
dx

)

≥ q

∫ a+(i+1/2)q

a+(i−1/2)q

f(pN (x))
1
q
dx

=
∫ a+(i+1/2)q

a+(i−1/2)q

f(pN (x))dx

where we have used Jensen’s inequality. Thus,

H(Qq(a+N)) ≥ − log2 q +
∑
i∈Z

∫ a+(i+1/2)q

a+(i−1/2)q

f(pN (x))dx

= − log2 q +
∫ ∞
−∞

f(pN (x))dx

= − log2 q −
∫ ∞
−∞

pN (x) log2 pN (x)dx

= − log2 q + h(N)

of which the final result is Eq. (15).
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Appendix B

Entropy of the Quantized Laplacian Distribution

In this Appendix, we compute the entropy of a Laplacian random variable that has been uniformly
quantized, when the quantization levels are offset from 0 by a. These results are referred to in Sec-
tion VI.A, where they are shown as an indication of the accuracy of entropy bounds.

Suppose N is a Laplacian random variable, with parameter α as in Eq. (17) but with zero mean
(θ = 0). We wish to find H(Qq(a+N)). For convenience, let β = a/q. From the symmetries involved, we
need only consider β ∈ [0, 1/2]; thus, we assume β is in this range. Also let c = αq. It is straightforward
(but tedious) to compute

H(Qq(a+N)) =
1
2
e−c(β+1/2)

(
− ln

(
1
2
− 1

2
e−c
)

+ c

(
β − 1

2

)
+

c

1− e−c
)

+
1
2
e−c(−β+1/2)

(
− ln

(
1
2
− 1

2
e−c
)

+ c

(
−β − 1

2

)
+

c

1− e−c
)

+
(

1
2
e−c(−β+1/2) +

1
2
e−c(β+1/2) − 1

)
ln
(

1− 1
2
e−c(−β+1/2) − 1

2
e−c(β+1/2)

)

in nats. Note that dividing this result by ln 2 yields the result in bits. For a fixed value of c, the
extreme values for β ∈ [0, 1/2] apparently always occur at the end points of that interval. Specifically,
the minimum always occurs at β = 0 with

H(Qq(N)) = e−c/2
(
− ln

(
1
2
− 1

2
e−c
)

+
c+ cec

2ec − 2

)
+
(
e−c/2 − 1

)
ln
(

1− e−c/2
)

(B-1)

in nats, and the maximum always occurs at β = 1/2, where

H
(
Qq

(q
2

+N
))

= − ln
(

1
2
− 1

2
e−c
)

+
c

ec − 1
(B-2)

in nats. Note that these results can be given in terms of q/σN by letting c =
√

2q/σN . The approximation
Eq. (16) for this noise distribution, which is also the lower bound of Eq. (15), becomes

H (Qq (a+N)) ≈ log2

(√
2e
)

+ log2

(
σN
q

)
≈ 1.9427 + log2

(
σN
q

)
(B-3)

Figure 1 of the main text compares the functions Eqs. (B-1) and (B-2), converted to bits, and Eq. (B-3),
which is already in bits.
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Appendix C

Optimal Dithering

In this Appendix, we demonstrate that the dither distributions described in Section VII are optimal as
claimed. Along the way we present general results that could simplify the process of determining optimal
distributions if the basic assumptions are modified.

I. Continuous Case

We first consider the case in which R and D may take on a continuum of values. We scale the numbers
involved so that q = 1.

A. General Results

Although our choices of A(PD) and C(PD) under which we find optimal dither distributions are
reasonable, it is possible that a more detailed analysis of a particular situation may yield more refined
functions A(PD) and C(PD). We have not analyzed any specific alternate formulation in detail, but
we present some results that may be helpful in determining optimal dither distributions for alternate
formulations. Theorems C-1, C-3, and C-4 give cases in which it is sufficient to consider distributions that
are concentrated on certain intervals or that are symmetric. Theorem C-2 gives conditions guaranteeing
the existence of optimal dither distributions.

In this section, we frequently use the notation PD to denote the probability measure corresponding to
the random variable D. We extend this notation to expressions such as Pf(D), PD+c, and P−D, where,
for example, Pf(D) is the probability measure corresponding to the random quantity f(D). When we say
that PD is concentrated on a set S, we mean PD(R− S) = 0.

We will make use of the topology of weak convergence, for which a good reference is Appendix III of
[1]. This is a topology on the set of probability measures on R, under which a sequence {Pi} converges
to P if and only if for all continuous and bounded functions f : R→ R,

lim
i→∞

∫
fdPi =

∫
fdP

This topology is equivalent to the weak-∗ (“weak-star”) topology and is important because it is small
enough (“coarse” enough) to make many commonly occurring sets compact while at the same time large
enough (“fine” enough) to allow needed continuity properties.

For these results, we assume A(PD) is of the form of Eq. (23), but we no longer assume PR is uniform
on [−1/2, 1/2]. We also do not assume that C(PD) is the variance of D or the second moment of D.
However, we do place several restrictions on C. We assume that the cost of no dither is 0, and that
C(PD) ≥ 0 for each PD. The cost function also must be one of the following two types:

Type A: For any (measurable) function f : R → R satisfying 0 ≤ |f(x)| ≤ |x| for all real x, and
for any PD, we require C(Pf(D)) ≤ C(PD).

Type B: The cost function satisfies the following:

(1) The cost is invariant to translations of D; that is, for any x, we have C(PD+x) =
C(PD).

(2) For any (measurable) function f : R→ R satisfying 0 ≤ |f(x)| ≤ |x| for all real
x, and for any PD with mean 0, we require that C(Pf(D)) ≤ C(PD).
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Intuitively, a Type A cost function must assign higher cost to distributions that have larger amplitudes.
A Type A cost function must be symmetric about 0 in the sense that C(PD) = C(P−D), since with
f(x) = −x we have C(PD) ≤ C(P−D) ≤ C(PD). The second moment of D is a Type A cost function.

A Type B cost function must be symmetric about µ when restricted to distributions with mean µ.
The variance of D is a Type B cost function.

Theorem C-1. For any PD′ , there exists a PD′′ with C(PD′′) ≤ C(PD′) and A(PD′′) = A(PD′), and

(i) if C is a Type A cost function, then PD′′ can be chosen to be concentrated on [−1/2, 1/2];

(ii) if C is a Type B cost function, then PD′′ can be chosen to be concentrated on an interval
of the form [c− 1/2, c+ 1/2], where c ∈ [−1/2, 1/2];

(iii) if C is a Type B cost function that is continuous under the topology of weak convergence,
then PD′′ can be chosen so that its mean, µ, is in [−1/2, 1/2] and PD′′ is concentrated on
[µ− 1/2, µ+ 1/2].

Note that Theorem C-1 implies that, in all cases that obey our general restrictions on the cost function,
it suffices to consider dither distributions that are concentrated on [−1, 1].

Proof. Rewriting Eq. (23) for q = 1 gives

A(PD) =
∫

[−1/2,1/2]

(
r − E

[
R̃|R = r

])2

dPR(r) (C-1)

Since R̃ is defined as R̃ = Q1(R+D)−D, we have

E
[
R̃|R = r

]
= E [Q1(r +D)−D] (C-2)

It is clear from Eqs. (C-1) and (C-2) that A(PD) can be determined from P(D mod 1). Intuitively, shifting
any part of the distribution PD by any integer does not affect A(PD). In particular, if we let f(x) =
x− bx+ 1/2c, then A(Pf(D)) = A(PD). Note that f satisfies 0 ≤ |f(x)| ≤ |x| and f(x) ∈ [−1/2, 1/2] for
all real x.

In Case (i), we let PD′′ = Pf(D′). This PD′′ is concentrated on [−1/2, 1/2] since f(x) ∈ [−1/2, 1/2],
and the Type A property implies C(PD′′) ≤ C(PD′).

In Case (ii), we first form PD1 by translating PD′ by an integer (D1 = D′ + i for some i) so that
the mean of D1 is in [−1/2, 1/2]. Let c be this mean. Clearly, D1 and D′ are equivalent modulo 1, so
A(PD1) = A(PD′), and by Type B Property (1), C(PD1) = C(PD′). Now let D′′ = c+ f(D1 − c). Then
D′′ and D1 are equivalent modulo 1 so A(PD′) = A(PD′′) = A(PD). We also have

C (PD′′) = C
(
Pc+f(D1−c)

)
= C

(
Pf(D1−c)

)
≤ C (PD1−c) = C (PD1) = C (PD′)

where we have used both Type B properties. Note that Pf(D1−c) is concentrated on [−1/2, 1/2], so PD′′
is concentrated on [c − 1/2, c + 1/2]. Thus, Case (ii) is established. Note that c might not be the mean
of D′′.

In Case (iii), a formal proof can be obtained by parametrizing all distributions that are equivalent to
PD′ modulo 1 and concentrated on a closed interval of width 1 with midpoint in [−1/2, 1/2]. At least
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one of these distributions must have cost less than or equal to C(PD′). It can be shown that, among
all of the parametrized distributions, there exists one, call it P ∗D, that achieves the minimum cost. This
distribution usually will be concentrated on the interval of width 1 about its mean. If not, then we can
form a sequence of parameters that converge to one for which the distribution does satisfy this condition.
We omit the details. ❐

Theorem C-2. If the (Type A or B) cost function C(PD) is continuous under the topology of weak
convergence and PR can be described by a density function pR (that is, PR(S) = 0 whenever the Lebesgue
measure of S is 0), then for each α ≥ 0 there exists a P ∗D that minimizes A(PD) subject to C(PD) ≤ α.

Proof. By Theorem C-1, we may restrict our attention to dither distributions that are concentrated
on [−1, 1]. Let T be the set of all such distributions. It follows from Prohorov’s Theorem [1] that T is
compact under the topology of weak convergence. Let S = {PD ∈ T : C(PD) ≤ α}. Our continuity
assumption on C implies that S is closed under the topology of weak convergence. Since S ⊂ T , it follows
that S is compact under the topology of weak convergence.

Next we show that A(PD) is continuous under the topology of weak convergence. Suppose {PDn}∞n=1

is a sequence of probability measures that converges to PD under the topology of weak convergence. It
suffices to show that limn→∞A(PDn) = A(PD).

Using the density function pR, we can write

A (PD) =
∫ 1/2

−1/2

(r + E [D −Q1(r +D)])2
pR(r)dr

Thus,

A(PD) =
∫ 1/2

−1/2

(
r + E[D]−

∑
i∈Z

iPD

([
i− r − 1

2
, i− r +

1
2

)))2

pR(r)dr

=
∫ 1/2

−1/2

(∫
R

(
x+ r −

⌊
x+ r +

1
2

⌋)
dPD(x)

)2

pR(r)dr

Let fr(x) = x+ r − bx+ r + 1/2c and let gr(x) = x+ r − dx+ r − 1/2e. We then may write

A(PD) =
∫ 1/2

−1/2

(∫
R

fr(x)dPD(x)
)2

pR(r)dr (C-3)

We will eventually apply Lebesgue’s Dominated Convergence Theorem (see [11], for example) to this
formulation of A to conclude that limn→∞A(PDn) = A(PD).

Observe that gr(x) ≥ fr(x) and if x 6∈ Z−r−1/2, then gr(x) = fr(x). Each fr is lower semicontinuous
and each gr is upper semicontinuous; it thus follows [1] that

lim inf
n→∞

∫
R

fr(x)dPDn(x) ≥
∫

R

fr(x)dPD(x) (C-4)

and
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lim sup
n→∞

∫
R

gr(x)dPDn(x) ≤
∫

R

gr(x)dPD(x) (C-5)

Also note that, since gr(x) ≥ fr(x), we have

lim sup
n→∞

∫
R

gr(x)dPDn(x) ≥ lim sup
n→∞

∫
R

fr(x)dPDn(x) (C-6)

If PD(Z− r − 1/2) = 0, then

∫
R

fr(x)dPD(x) =
∫

R

gr(x)dPD(x) (C-7)

and combining Eqs. (C-4) through (C-7) yields

lim inf
n→∞

∫
R

fr(x)dPDn(x) ≥
∫

R

fr(x)dPD(x) ≥ lim sup
n→∞

∫
R

fr(x)dPDn(x)

Thus, if PD(Z− r − 1/2) = 0, then

lim
n→∞

∫
R

fr(x)dPDn(x) =
∫

R

fr(x)dPD(x) (C-8)

Note that the set {r : PD(Z− r − 1/2) > 0} must have Lebesgue measure zero.

Finally, we bound the integrand (of the outer integral) of Eq. (C-3). Since |fr(x)| ≤ 1/2, we have, for
each n,

∣∣∣∣∫
R

fr(x)dPDn(x)
∣∣∣∣ ≤ 1

2

and, thus,

(∫
R

fr(x)dPDn(x)
)2

pR(r) ≤ 1
4
pR(r)

The Dominated Convergence Theorem may now be applied to formulation Eq. (C-3) of A to conclude
that

lim
n→∞

A(PDn) = A(PD)

establishing the continuity of A under the topology of weak convergence.

The theorem now follows from the fact that a continuous function achieves its minimum on a compact
set. ❐
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Theorem C-3. Suppose PR is symmetric about 0 and can be described by a density function pR.
Suppose also that C is a Type A cost function and C is convex ∪. Then, for any PD′ , there exists a
PD′′ that is symmetric about 0, is concentrated on [−1/2, 1/2], and for which A(PD′′) ≤ A(PD′) and
C(PD′′) ≤ C(PD′).

Note that Theorem C-3 implies that, when its hypothesis holds, it suffices to consider dither distribu-
tions that are symmetric about 0 (and thus have mean 0) and are concentrated on [−1/2, 1/2].

Proof. The symmetry condition on PR implies pR(r) = pR(−r). We first show that A(P−D′) =
A(PD′). Using the functions fr and gr defined in the proof of Theorem C-2 and starting with Eq. (C-3),
we have

A(P−D′) =
∫ 1/2

−1/2

(∫
R

fr(x)dP−D′(x)
)2

pR(r)dr

=
∫ 1/2

−1/2

(∫
R

(
x+ r −

⌊
x+ r +

1
2

⌋)
dP−D′(x)

)2

pR(r)dr

=
∫ 1/2

−1/2

(∫
R

(
−y − s−

⌊
−y − s+

1
2

⌋)
dPD′(y)

)2

pR(−s)ds

=
∫ 1/2

−1/2

(∫
R

(
y + s+

⌊
−y − s+

1
2

⌋)
dPD′(y)

)2

pR(s)ds

=
∫ 1/2

−1/2

(∫
R

(
y + s−

⌈
y + s− 1

2

⌉)
dPD′(y)

)2

pR(s)ds

=
∫ 1/2

−1/2

(∫
R

gs(y)dPD′(y)
)2

pR(s)ds

where for the third equality we have changed variables (y = −x and s = −r) and replaced dP−D′(−y)
by dPD′(y). If PD′(Z − s − 1/2) = 0, then

∫
R
gs(y)dPD′(y) =

∫
R
fs(y)dPD′(y). But the set

{s : PD′(Z− s− 1/2) > 0} must have Lebesgue measure zero, so

∫ 1/2

−1/2

(∫
R

gs(y)dPD′(y)
)2

pR(s)ds =
∫ 1/2

−1/2

(∫
R

fs(y)dPD′(y)
)2

pR(s)ds = A(PD′)

and, thus, A(P−D′) = A(PD′) as claimed.

Now let PD1 = (PD′ + P−D′)/2. Note that PD1 is symmetric about 0. From Eq. (C-3), it can be
seen that A(PD) is a convex ∪ function of PD, and, by hypothesis, C(PD) is a convex ∪ function of PD.
Therefore, A(PD1) ≤ A(PD′) and C(PD1) ≤ C(PD′).

Now let f be given by
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f(x) =


x−

⌈
x− 1

2

⌉
if x ≥ 0

x−
⌊
x+

1
2

⌋
if x ≤ 0

(C-9)

Note that f is symmetric in that f(x) = −f(−x). Also, f(x)−x ∈ Z and f(x) ∈ [−1/2, 1/2]. Let PD′′ =
Pf(D1). Then A(PD′′) = A(PD1) ≤ A(PD′) and, by the Type A property, C(PD′′) ≤ C(PD1) ≤ C(PD′).
Note that PD′′ is symmetric and concentrated on [−1/2, 1/2], so the proof is complete. ❐

Theorem C-4. Suppose PR is the uniform distribution on [−1/2, 1/2]. Suppose also that C(PD)
is a Type B cost function and that C(PD) is convex ∪ when restricted to PD with mean 0. Then, for
any PD′ , there exists a PD′′ that is symmetric about 0, is concentrated on [−1/2, 1/2], and for which
A(PD′′) ≤ A(PD′) and C(PD′′) ≤ C(PD′).

Proof. Under the hypothesis, Eq. (C-3) becomes

A(PD) =
∫ 1/2

−1/2

(∫
R

fr(x)dPD(x)
)2

dr

From the definition of fr, for any real c we may write

∫
R

fr(x)dPD+c(x) =
∫

R

fr−c(x)dPD(x)

But for a fixed x, the value of fr(x) depends only on r mod 1, and as r ranges over [−1/2, 1/2], r mod 1
ranges over the same range as (r − c) mod 1. Thus,

A(PD+c) =
∫ 1/2

−1/2

(∫
R

fr(x)dPD+c(x)
)2

dr

=
∫ 1/2

−1/2

(∫
R

fr−c(x)dPD(x)
)2

dr

=
∫ 1/2

−1/2

(∫
R

fr(x)dPD(x)
)2

dr

= A(PD)

Thus, A(PD) = A(PD+c), so A(PD) is invariant to translations of D. Let D1 be D′ translated to have
mean 0. We have shown that A(PD1) = A(PD′) and, by Type B Property (1), we have C(PD1) = C(PD′).
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As in the proof of Theorem C-3, we have

A(P−D1) =
∫ 1/2

−1/2

(∫
R

fr(x)dP−D1(x)
)2

dr

=
∫ 1/2

−1/2

(∫
R

gr(x)dPD1(x)
)2

dr

=
∫ 1/2

−1/2

(∫
R

fr(x)dPD1(x)
)2

dr

= A(PD1)

Now let PD2 = (PD1 +P−D1)/2. Then PD2 is symmetric about 0. Since A is convex ∪, A(PD2) ≤ A(PD1).
By hypothesis, C is also convex ∪ in a region that includes PD1 , P−D1 , and PD2 , and, by Type B
Property (2), we have C(PD1) = C(P−D1), so C(PD2) ≤ C(PD1).

Using f as given by Eq. (C-9), let PD′′ = Pf(D2). Then A(PD′′) = A(PD2) ≤ A(PD′) and, by Type B
Property (2), C(PD′′) ≤ C(PD2) ≤ C(PD′). Note that PD′′ is symmetric about 0 and concentrated on
[−1/2, 1/2], so the proof is complete. ❐

B. Solution for the Basic Continuous Case

We now prove the following result.

Theorem C-5. Suppose A(PD) is given by Eq. (24) and C(PD) is either the variance or the second
moment of PD. Suppose k ∈ [0, q] and let P ∗D be the uniform distribution on [−k/2, k/2]. Then P ∗D
minimizes A(PD) subject to C(PD) = k2/12.

Proof. The theorem is obvious when k = 0, so we assume that k ∈ (0, q]. It is easily calculated that
A(P ∗D) = (1− k)2/12 and C(P ∗D) = k2/12. Without loss of generality, we assume that q = 1.

When C(PD) is the second moment of PD, by Theorem C-3 it suffices to find the optimum PD among
those which are concentrated on [−1/2, 1/2] and are symmetric about 0. When C(PD) is the variance
of PD, Theorem C-4 implies the same result. Since these distributions have mean 0, both cost functions
become equivalent. We may, therefore, confine our attention to PD that are concentrated on [−1/2, 1/2]
and are symmetric about 0, and to the cost function C(PD) = 2

∫
[0,1/2]

x2dPD(x), which exploits the
symmetry of the PD.

Using Eqs. (C-1) and (C-2) and the symmetry of the PD, we have

A(PD) = 2
∫ 1/2

0

(r − E [Q1(r +D)−D])2
dr

= 2
∫ 1/2

0

(r − E [Q1(r +D)])2
dr
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When 0 < r < 1/2 and −1/2 ≤ D ≤ 1/2, observe that

Q1(r +D) =

 1 if r +D ≥ 1
2

0 otherwise

so that

E [Q, (r +D)] = Pr
(
D ≥ 1

2
− r
)

= PD

([
1
2
− r, 1

2

])

and, thus,

A(PD) = 2
∫ 1/2

0

(
r − PD

([
1
2
− r, 1

2

]))2

dr

As already mentioned, A is a convex ∪ function of PD. It also is apparent that the distributions we
need to consider with C(PD) = k2/12 form a convex set. Thus, P ∗D must minimize A if

∂

∂ε
A ((1− ε)P ∗D + εPD)

∣∣∣
ε=0
≥ 0 (C-10)

for all PD with C(PD) = k2/12.

We have

∂

∂ε
A ((1− ε)P ∗D + εPD) =

∂

∂ε
2
∫ 1/2

0

(
r − (1− ε)P ∗D

([
1
2
− r, 1

2

])
− εPD

([
1
2
− r, 1

2

]))2

dr

= 4
∫ 1/2

0

(
r − (1− ε)P ∗D

([
1
2
− r, 1

2

])
− εPD

([
1
2
− r, 1

2

]))

×
(
P ∗D

([
1
2
− r, 1

2

])
− PD

([
1
2
− r, 1

2

]))
dr

and so
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∂

∂ε
A ((1− ε)P ∗D + εPD)

∣∣∣
ε=0

= 4
∫ 1/2

0

(
r − P ∗D

([
1
2
− r, 1

2

]))(
P ∗D

([
1
2
− r, 1

2

])
− PD

([
1
2
− r, 1

2

]))
dr

= −4
∫ 1/2−k/2

0

rPD

([
1
2
− r, 1

2

])
dr

+ 4
∫ 1/2

1/2−k/2

(
r −

(
1
2
− 1

2k
+
r

k

))(
1
2
− 1

2k
+
r

k
− PD

([
1
2
− r, 1

2

]))
dr

= −4
∫ 1/2−k/2

0

rPD

([
1
2
− r, 1

2

])
dr + 4

∫ 1/2

1/2−k/2

(
r −

(
1
2
− 1

2k
+
r

k

))(
1
2
− 1

2k
+
r

k

)
dr

− 4
∫ 1/2

1/2−k/2

(
r −

(
1
2
− 1

2k
+
r

k

))
PD

([
1
2
− r, 1

2

])
dr

=
k

12
− k2

12
− 4

∫ 1/2

0

rPD

([
1
2
− r, 1

2

])
dr

+ 4
∫ 1/2

1/2−k/2

(
1
2
− 1

2k
+
r

k

)(
PD

([
1
2
− r, k

2

])
+ PD

((
k

2
,

1
2

]))
dr

=
k

12
− k2

12
+
k

2
PD

((
k

2
,

1
2

])
− 4

∫ 1/2

0

rPD

([
1
2
− r, 1

2

])
dr

+ 4
∫ 1/2

1/2−k/2

(
1
2
− 1

2k
+
r

k

)
PD

([
1
2
− r, k

2

])
dr

Now observe that

−4
∫ 1/2

0

rPD

([
1
2
− r, 1

2

])
dr = − 4

∫ 1/2

0

r

∫
[1/2−r,1/2]

dPD(x)dr

= − 4
∫

[0,1/2]

∫ 1/2

1/2−x
r dr dPD(x)

=
∫

[0,1/2]

(2x2 − 2x)dPD(x)

and a similar calculation gives
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4
∫ 1/2

1/2−k/2

(
1
2
− 1

2k
+
r

k

)
PD

([
1
2
− r, k

2

])
dr =

∫
[0,k/2]

(
2x− 2x2

k

)
dPD(x)

Also note that

k

2
PD

((
k

2
,

1
2

])
=
∫

(k/2,1/2]

k

2
dPD(x)

and, since C(PD) = 2
∫

[0,1/2]
x2dPD(x) = k2/12, we have

k

12
− k2

12
=
∫

[0,1/2]

(
2x2

k
− 2x2

)
dPD(x)

Substituting these results into our earlier expression gives

∂

∂ε
A ((1− ε)P ∗D + εPD)

∣∣∣
ε=0

=
∫

[0,1/2]

(
2x2

k
− 2x2

)
dPD(x) +

∫
(k/2,1/2]

k

2
dPD(x)

+
∫

[0,1/2]

(
2x2 − 2x

)
dPD(x) +

∫
[0,k/2]

(
2x− 2x2

k

)
dPD(x)

=
∫

[0,k/2]

((
2x2

k
− 2x2

)
+ (2x2 − 2x) +

(
2x− 2x2

k

))
dPD(x)

+
∫

(k/2,1/2]

((
2x2

k
− 2x2

)
+
k

2
+ (2x2 − 2x)

)
dPD(x)

= 0 +
∫

(k/2,1/2]

(
2x2

k
− 2x+

k

2

)
dPD(x)

=
∫

(k/2,1/2]

2
k

(
x− k

2

)2

dPD(x)

≥ 0

so Eq. (C-10) holds as promised; thus, P ∗D is optimal and the proof is complete. ❐

II. Discrete Case

For the discrete case, we assume that R and D take on integer values. We consider only the case in
which q is odd, with q = 2δ+ 1. We use PD to denote the (discrete) dither probability distribution, with
PD(i) = Pr(D = i). Most of the notation is the same as in the continuous case, and we rely on context
to distinguish the two. In the basic discrete case, A(PD) is defined as
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A(PD) =
1

2δ + 1

δ∑
r=−δ

(r − E [Qq(r +D)−D])2 (C-11)

and the cost C(PD) is the second moment of D.

A. General Results

Again we remove some of our specific assumptions on A(PD) and C(PD). We consider A(PD) of the
form

A(PD) =
1

2δ + 1

δ∑
r=−δ

(r − E [Qq(r +D)−D])2
PR(r)

where PR is the (discrete) distribution on R. We require that the cost of no dither be 0 and that
C(PD) ≥ 0 for each PD. The cost function also must be one of the following two types:

Type A: For any function f : Z→ Z satisfying 0 ≤ |f(i)| ≤ |i| for all integers i, and for any PD,
we require C(Pf(D)) ≤ C(PD).

Type B: The cost function satisfies the following:

(1) The cost is invariant to translations of D; that is, for any integer i, we have
C(PD+i) = C(PD).

(2) For any function f : R→ R satisfying 0 ≤ |f(x)| ≤ |x| and f(x)− x ∈ Z for all
real x, and for any PD, we require that C(Pf(D−µ)+µ) ≤ C(PD), where µ is the
mean of D.

Intuitively, a Type A cost function must assign higher cost to distributions that have larger amplitudes.
As is the continuous case, a Type A cost function must be symmetric about 0 in the sense that C(PD) =
C(P−D), since with f(i) = −i, we have C(PD) ≤ C(P−D) ≤ C(PD). The second moment of D is a
Type A cost function.

A Type B cost function must be symmetric about 0 when restricted to distributions with mean 0. The
variance of D is a Type B cost function.

Theorem C-6. For any PD′ , there exists a PD′′ with C(PD′′) ≤ C(PD′) and A(PD′′) ≤ A(PD′), and

(i) if C is a Type A cost function, then PD′′ can be chosen to be concentrated on {−δ, · · · , δ};
(ii) if C is a Type B cost function, then PD′′ can be chosen to be concentrated on a set of the

form {c− δ, · · · , c+ δ}, where c ∈ {−δ, . . . , δ}.

Note that Theorem C-6 implies that, in all cases that obey our general restriction on the cost function,
it suffices to consider dither distributions that are concentrated on {−(q − 1), · · · , q − 1}. The proof of
Theorem C-6 is analogous to the proof of (i) and (ii) of Theorem C-1. We omit the details.

Theorem C-7. If C(PD) is continuous when restricted to PD that are concentrated on
{−(q− 1), · · · , q− 1}, then for each α ≥ 0 there exists a PD that minimizes A(PD) subject to C(PD) ≤ α.

Theorem C-7 is the discrete analogue of Theorem C-2. The former is much easier to prove, however,
since A is readily seen to be continuous and the set
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{PD : C(PD) ≤ α and PD is concentrated on {−(q − 1), · · · , q − 1}}

is compact. Again we omit the details.

Theorem C-8. Suppose PR is symmetric about 0 and C is a Type A cost function that is convex ∪.
Then, for any PD′ , there exists a PD′′ that is symmetric about 0, is concentrated on {−δ, · · · , δ}, and for
which A(PD′′) ≤ A(PD′) and C(PD′′) ≤ C(PD′).

Theorem C-8 is the discrete analogue of Theorem C-3 and is straightforward to prove (we omit the
details).

Note that there is no simple discrete analogue of Theorem C-4. Our results for the basic discrete case
apply when the cost function is the second moment of PD and do not apply when the cost function is the
variance of PD.

B. Solution for the Basic Discrete Case

We now consider our basic discrete case. Note that the result below does not apply to the case when
C(PD) is the variance of PD, since with this cost function there are dither distributions with nonzero
mean that are better than any with mean 0.

Theorem C-9. Suppose A(PD) is given by Eq. (C-11) and C(PD) is the second moment of PD.
Suppose P ∗D is the discrete distribution given by

P ∗D(i) =


α if |i| < k

1 + α

2
− kα if |i| = k

0 if |i| > k

where k ∈ {1, · · · , δ} and α ≥ (1 + α)/2− kα. Then P ∗D minimizes A(PD) subject to C(PD) = C(P ∗D).

Note that α ≥ (1 + α)/2− kα implies

α ≥ 1
2k + 1

(C-12)

and that P ∗D is a convex combination of the uniform distributions on {−k, · · · , k} and {−(k−1), · · · , k−1}.

Proof. By Theorem C-8, it suffices to find the optimum PD among those that are concentrated on
{−δ, · · · , δ} and are symmetric about 0. With these conditions, we may rewrite Eq. (C-11) as

A(PD) =
2

2δ + 1

δ∑
r=1

(r − E [Qq(r +D)])2

and the cost becomes

C(PD) = 2
δ∑
i=1

i2PD(i) (C-13)
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When r ∈ {1, · · · , δ},

Qq(r +D) =
{ 2δ + 1 if r +D > δ

0 otherwise

Thus,

A(PD) =
2

2δ + 1

δ∑
r=1

(r − (2δ + 1) Pr(D > δ − r))2

= (4δ + 2)
δ∑
r=1

 r

2δ + 1
−

δ∑
j=δ−r+1

PD(j)

2

(C-14)

As in the continuous case, A(PD) is a convex ∪ function of PD. By the Kuhn–Tucker conditions [7],
our choice of P ∗D minimizes A(PD) subject to C = C(P ∗D) if there exists a λ such that

∂A

∂PD(i)

∣∣∣∣
PD=P∗

D

+ λ
∂C

∂PD(i)

∣∣∣∣
PD=P∗

D

= 0 (1 ≤ i ≤ k) (C-15)

and

∂A

∂PD(i)

∣∣∣∣
PD=P∗

D

+ λ
∂C

∂PD(i)

∣∣∣∣
PD=P∗

D

≥ 0 (k < i ≤ δ) (C-16)

Interestingly, it turns out to be unnecessary to include the condition
∑
i PD(i) = 1.

Starting from Eq. (C-14), we have

∂A

∂PD(i)
= (8δ + 4)

δ∑
r=δ−i+1

 δ∑
j=δ−r+1

PD(j)− r

2δ + 1


and so

∂A

∂PD(i)

∣∣∣∣
PD=P∗

D

= −4
δ∑

r=δ−i+1

r +


(8δ + 4)

δ∑
r=δ−i+1

(
(r − δ + k − 1)α+

1 + α

2
− kα

)
if i ≤ k

(8δ + 4)
δ∑

r=δ−k+1

(
(r − δ + k − 1)α+

1 + α

2
− kα

)
if i > k

These sums are easily evaluated, yielding

∂A

∂PD(i)

∣∣∣∣
PD=P∗

D

= (2− 2α− 4αδ)i2 (1 ≤ i ≤ k)
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and

∂A

∂PD(i)

∣∣∣∣
PD=P∗

D

= (2− 2α− 4αδ)i2 + 2(1 + 2δ)(i− k)(αi+ αk − 1) (k < i ≤ δ) (C-17)

Since Eq. (C-17) applies when i ≥ k + 1, we have i− k ≥ 1 and αi+ αk − 1 ≥ α(2k + 1)− 1 ≥ 0 [using
Eq. (C-12)]; thus,

∂A

∂PD(i)

∣∣∣∣
PD=P∗

D

≥ (2− 2α− 4αδ)i2 (k < i ≤ δ)

From Eq. (C-13), we have

∂C

∂PD(i)
= 2i2

so Eqs. (C-15) and (C-16) are satisfied when λ = −1 + α + 2αδ, and we have proven that our P ∗D is
optimal. Note that these optimal P ∗D cover the useful range of costs, from 0 to (δ2 + δ)/3. ❐
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