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A Simple Tight Bound on Error Probability
of Block Codes with Application

to Turbo Codes
D. Divsalar1

A simple bound on the probability of decoding error for block codes is derived in
closed form. This bound is based on the bounding techniques developed by Gallager.
We obtained an upper bound both on the word-error probability and the bit-error
probability of block codes. The bound is simple, since it does not require any
integration or optimization in its final version. The bound is tight since it works for
signal-to-noise ratios (SNRs) very close to the Shannon capacity limit. The bound
uses only the weight distribution of the code. The bound for nonrandom codes
is tighter than the original Gallager bound and its new versions derived by Sason
and Shamai and by Viterbi and Viterbi. It also is tighter than the recent simpler
bound by Viterbi and Viterbi and simpler than the bound by Duman and Salehi,
which requires two-parameter optimization. For long blocks, it competes well with
more complex bounds that involve integration and parameter optimization, such
as the tangential sphere bound by Poltyrev, elaborated by Sason and Shamai, and
investigated by Viterbi and Viterbi, and the geometry bound by Dolinar, Ekroot,
and Pollara. We also obtained a closed-form expression for the minimum SNR
threshold that can serve as a tight upper bound on maximum-likelihood capacity
of nonrandom codes. We also have shown that this minimum SNR threshold of our
bound is the same as for the tangential sphere bound of Poltyrev. We applied this
simple bound to turbo-like codes.

I. Introduction

Turbo codes proposed by Berrou et al. represent a recent breakthrough in coding theory [19], which
has stimulated a large amount of new research. These codes are parallel concatenated convolutional codes
(PCCC) whose encoder is formed by two [22] or more [20] constituent systematic encoders joined through
one (or more) interleavers. Other types of turbo-like code concatenation with interleavers, such as se-
rial concatenation of two [23] and three codes [25], hybrid concatenated codes [21], self-concatenated
codes [24], and repeat accumulate (RA) codes [7] were proposed. These codes were analyzed by us-
ing the union bound, which cannot predict the performance above the cutoff rate. The performance of
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these concatenated codes is close to Shannon’s capacity limit for moderate to large block sizes, so there
is a great demand to have bounds on performance that are useful for rates above the cutoff rate. A tight
bound by Poltyrev [15] and the geometry bound proposed by Dolinar, Ekroot, and Pollara are among
the tightest bounds. Recently, Duman and Salehi [14] have proposed a bound without integration that
requires two-parameter optimization. Then Viterbi and Viterbi [3] developed a simple bound without
a need for parameter optimization and integration. Both bounds use the second Gallager bounding
technique [2]. Sason and Shamai [8–10] applied the tangential sphere bound, and Viterbi and Viterbi [5]
applied a similar bound to analyze the performance of turbo codes. Both bounds are based on Poltyrev
results [15]. These new tight bounds essentially use “a basic bounding technique” first developed by
Gallager in 1963 [1], namely, given a transmitted codeword,

Pr{word error} ≤ Pr{word error,y ∈ <}+ Pr{y 6∈ <} (1)

where y is the observation vector (transmitted codeword plus noise) and < is a region (volume) in
the observation space around the transmitted codeword (this is our geometric interpretation of Gallager’s
basic bounding technique, which we call Gallager’s first bounding technique). In [5,8,15,18], < was defined
as a cone. Gallager’s < [1] is a complicated region in observation space to be discussed in Section III.

In this article, we propose a simple upper bound on word- and bit-error probability using the basic
bounding technique and the Chernov bounds proposed by Gallager. Although we used the approach and
derivations of Gallager, we will show that our derived bound for nonrandom codes, in addition to its
simplicity, is tighter than the original Gallager bound and versions of the Gallager bound proposed by
Sason and Shamai [10] and Viterbi and Viterbi [4] since the regions in these bounds are optimum for
random codes but suboptimum for nonrandom codes. Also, our bound is tighter than a bound by Viterbi
and Viterbi [3] and simpler than a bound by Duman and Salehi [14]. Our proposed simple bound for short
blocks may not be as tight as in [5,9,18], but it is as tight for very long blocks (as n→∞). We obtained
a closed-form expression for the minimum signal-to-noise ratio (SNR) threshold above which the simple
bound is useful. Our bound can predict the performance close to the capacity limit but cannot achieve the
capacity limit for code rates strictly greater than 0. This was demonstrated for random codes as n→∞
using the expression for the minimum threshold of the bound. We obtained a minimum threshold for
the tangential sphere bound that is identical to the minimum threshold of the simple bound. S. Dolinar2

also independently obtained the minimum signal-to-noise ratio threshold based on the geometry bound
in [18], which is identical to our minimum threshold. Thus, none of the bounds in [5,9,15,18] except the
Gallager bound [2] can achieve Shannon capacity limit for random codes for code rates strictly greater
than 0.

In Section II, we provide the derivation of the simple bound based on the first bounding technique
by Gallager in 1963 [1]. In Section III, a modified Gallager bound is obtained as an upper bound on
a bound by Gallager in 1965 (the second bounding technique) [2]. We have shown that this modified
Gallager bound exactly matches the first bound of Gallager [1] except for a factor eH(ρ) , 0 ≤ ρ ≤ 1,
where H(·) is binary entropy function. The main reason for obtaining a modified Gallager bound is as
follows. In our examples, using a region < that will be discussed, and using the first bounding technique
of Gallager, we obtained a bound identical to the Viterbi and Viterbi bound [3] except for the factor
mentioned above. In [3], the second bounding technique of Gallager was used. Thus, this observation
motivated us to obtain a relation between the first and the second bounds by Gallager in 1963 and 1965,
respectively. In Section IV, we compare the simple bound with other bounds for large block sizes. In
this section, we show that asymptotically the simple bound is as tight as the tangential sphere bound of
Poltyrev. A summary of results is presented in Section V. Examples are given in Section VI.

2 S. Dolinar, Personal communication, Communications Systems and Research Section, Jet Propulsion Laboratory,
Pasadena, California, 1999.
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II. Derivation of the Simple Bound

A. A Simple Bound on Pw

Consider a linear binary (n, k) block code C with code rate Rc = k/n. We view concatenated codes
with interleavers as block codes. Let the codewords be xi ∈ C, i = 0, 1, 2, · · · , 2k − 1. Assume that
an arbitrary codeword x0 is the transmitted codeword over the additive white Gaussian noise (AWGN)
channel. Divide the codewords {xi} with Hamming distance h from x0 into subsets χh, h = 0, 1, 2, · · · , n.
The cardinalities of these sets are |χh| = Ah, where Ah is the number of codewords at distance h from
x0. The goal is to obtain a simple upper bound on the word and then on the bit-error probability using
maximum-likelihood decoding over the binary-input memoryless AWGN channel. The channel can be
modeled as

yj = xi,jγ + nj , j = 1, 2, · · · , n (2)

where yj is the observation sample; xi,j ∈ {+1,−1} is a component of transmitted codeword xi; nj is
a zero-mean unit variance Gaussian noise sample, γ2 = 2Rc(Eb/N0); Eb is the information bit energy;
and N0/2 is the two-sided power spectral density of a white Gaussian noise process at the receiver. The
likelihood function (channel transition probability) is

p(y|xi) =
n∏

j=1

p(yj |xi,j), i = 0, 1, 2, · · · , 2k − 1 (3)

where

p(yj |xi,j) =
1√
2π

e[−(y−xi,jγ)2]/2, −∞ < yj <∞ (4)

Using the maximum-likelihood decision rule, given that x0 is transmitted, a decoding error occurs if

n∑
j=1

yjxi,j >
n∑

j=1

yjx0,j (5)

for some i 6= 0. Define an error event:

Eh
4= some x ∈ χh is chosen in preference to the x0 codeword (6)

Then, using the union bound, we have

Pword ≤
∑
h>0

Pr{Eh| x0} (7)

In the following, we denote Pr{Eh| x0} by p(h).

Next define an arbitrary n-dimensional region (volume) < in the n-dimensional observation space
containing the transmitted codeword, so that
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p(h) = Pr{Eh,y ∈ < | x0}+ Pr{Eh,y 6∈ < | x0} (8)

Next we use the basic bounding technique on p(h), namely,

p(h) ≤ Pr{Eh,y ∈ < | x0}+ Pr{y 6∈ < | x0} (9)

In order to obtain a closed-form solution, we have chosen < as an n-dimensional sphere with radius
√

n R2

to be optimized. In order to obtain a tight bound, we choose the center of the sphere at ηγx0, a point
along the line connecting the origin to the codeword x0. The translation factor η is a parameter to be
optimized (see Fig. 1).

n g
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Fig. 1.  Geometric interpretation of the
simple bound.

The n-dimensional region (volume) then is defined as

< =
{
y | ‖y − ηγx0‖2 ≤ nR2

}
(10)

where ‖y − ηγx0‖2 =
∑n

j=1(yj − ηx0,jγ)2. Using the above-defined region and the union bound on the
first term of Eq. (9), we get

p(h) ≤
∑

xi∈χh:i6=0

Pr


n∑

j=1

yjxi,j >
n∑

j=1

yjx0,j ,
n∑

j=1

(yj − ηx0,jγ)2 ≤ nR2 | x0



+ Pr


n∑

j=1

(yj − ηx0,jγ)2 ≥ nR2 | x0

 (11)

At this point, we further upper bound the two terms on the right-hand side of the above equation, using
the Chernov bounds described in [1], namely, for two random variables, Z and W , we have
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Pr{Z ≥ 0, W ≤ 0} ≤ E
{
et Z+r W

}
, t ≥ 0, r ≤ 0 (12)

and

Pr{W ≥ 0} ≤ E
{
es W

}
, s ≥ 0 (13)

where E represents expectation. Let Z =
∑n

j=1 yjxi,j−
∑n

j=1 yjx0,j and W =
∑n

j=1(yj−ηx0,jγ)2− nR2.
Using the Chernov bound, Eq. (12), with optimized parameter t = (1− 2rη)γ/2, we get

∑
xi∈χh:i6=0

Pr


n∑

j=1

yjxi,j >
n∑

j=1

yjx0,j ,
n∑

j=1

(yj − ηx0,jγ)2 ≤ nR2 | x0


≤ Ahe−nrR2

fh(γ, r, η)gn−h(γ, r, η) 4= e−nrR2
A (14)

where

f(γ, r, η) =
e
−

γ2

2
(1−2rη2)

√
1− 2r

(15)

and

g(γ, r, η) =
e

γ2

2
2r(1− η)2

1− 2r
√

1− 2r
(16)

Note that Ah = |χh| was defined as the number of codewords at distance h from x0. At this point, we can
average this upper bound over all possible transmitted codewords, x0, and use the average of Ah if the
code is a nonlinear binary code. For turbo codes or turbo-like codes, we can average Ah over all possible
interleavers (using the uniform interleaver concept [22]). In both cases, we still use the notation Ah for
such averaged code distribution. Also, for 1− 2s > 0, we obtain

Pr


n∑

j=1

(yj − ηx0,jγ)2 ≥ nR2 | x0

 ≤ e−nsR2
gn(γ, s, η) 4= e−nsR2

B (17)

Minimizing the upper bound on p(h) with respect to enR2
, we get

p(h) ≤ eH(s/(s−r)) As/(s−r)B−r/(s−r) (18)

where H(x) is the binary entropy function, H(x) = −x lnx− (1− x) ln(1− x).

At this point, we redefine the parameters to be optimized. First let
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ρ
4=

s

s− r
(19)

where 0 ≤ ρ ≤ 1. Then,

s = −r
ρ

1− ρ
(20)

Now the upper bound will be in terms of ρ, r, and η. Next define

β
4= ρ(1− 2r) (21)

Since s < 1/2, then 0 ≤ β ≤ 1, and define

ζ
4= ρ(1− 2rη) (22)

With this redefinition of the parameters, the upper bound will be in terms of ζ, ρ, and β. Now define
δ = h/n, r(δ) 4= (lnAh)/n, and c = γ2/2 (note that c = RcEb/N0). With a simple manipulation, we
obtain

p(h) ≤ eH(ρ)e−nE(c,h,β,ρ,ζ) (23)

where

E(c, h, ρ, β, ζ) = −ρr(δ)− ρ

2
ln

ρ

β
− 1− ρ

2
ln

1− ρ

1− β
+ c

[
1− (1− δ)

ζ2

β
− (1− ζ)2

1− β

]
(24)

Minimizing the bound with respect to ζ, we obtain the optimum value for ζ as

ζ∗ =
β

β + (1− δ)(1− β)
(25a)

and

∂2E(c, h, ρ, β, ζ)
∂ζ2

≤ 0 (25b)

The exponent E(c, h, ρ, β, ζ∗) reduces to

E(c, h, ρ, β) = −ρr(δ)− ρ

2
ln

ρ

β
− 1− ρ

2
ln

1− ρ

1− β
+

δβ

1− δ(1− β)
c (26)

The optimum ρ that maximizes the exponent E(c, h, ρ, β) is

ρ∗ =
1

1 +
1− β

β
e2r(δ)

(27a)
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and

∂2E(c, h, ρ, β)
∂ρ2

= − 1
2ρ(1− ρ)

≤ 0 (27b)

Using the optimum value of ρ, we obtain

E(c, h, β) = −r(δ) +
1
2

ln
[
β + (1− β)e2r(δ)

]
+

δβ

1− δ(1− β)
c (28)

The optimal β is the solution to the following equation:

∂E(c, h, β)
∂β

=
(1− e2r(δ))

β + (1− β)e2r(δ)
+

2δ(1− δ)
[1− δ(1− β)]2

c = 0 (29)

which results in

β∗ =

√
c
1− δ

δ

2
1− e−2r(δ)

+
(

1− δ

δ

)2

[(1 + c)2 − 1]− 1− δ

δ
(1 + c) (30)

Also note that

∂2E(c, h, β)
∂β2

= −
(
1− e2r(δ)

)2

(β + (1− β)e2r(δ))2
− 4δ2(1− δ)

[1− δ(1− β)]3
c ≤ 0 (31)

Using the optimum value of β in E(c, h, β) yields the exponent E(c, h) = E(c, h, β∗). For β = 1, we
get the union bound. We are interested in obtaining the minimum signal-to-noise ratio for which the
exponent of the bound is positive for all h. This may be called the minimum threshold of the bound.
Thus, for fixed h, first we should have minc E(c, h) ≥ 0. We see that this occurs if β = 0. Also note that
([∂E(c, h, β)]/[∂β])|β=0 > 0 if

c >
(
1− e−2r(δ)

) 1− δ

2δ

4= c0(δ) (32)

This implies that

c ≥ max
δ

(
1− e−2r(δ)

) 1− δ

2δ

4= c0 (Simple) (33)

The c0 represents the minimum Es/N0 threshold and can serve as a closed-form tight upper bound on
the so called “maximum-likelihood (ML) capacity” for families of nonrandom codes.

Note that β also can be expressed as

β∗ =
1− δ

δ

[√
c

c0(δ)
+ (1 + c)2 − 1− (1 + c)

]
(34)
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Finally, we have

Pw ≤
∑

h

κhe−nE(c,h,β∗) (35)

where

κh = eH(β∗/β∗+(1−β∗)e2r(δ)) (36)

Shortly we will present a slight improvement to this bound.

For β = 1, we have the union bound, i.e.,

E(c, h, 1) = −r(δ) + δc (37)

where

c ≥ max
δ

r(δ)
δ

4= c0(union) (38)

In this case, the c0(union) represents the cutoff-rate threshold for random codes. For random codes,
r(δ) = H(δ)− (1−Rc) ln 2; thus, c0(union) = Rc(Eb/N0)min = − ln[21−Rc − 1].

At this point, it is interesting to note that, for x ∈ χh, the optimum translation factor is

η∗ =
1 +

1
2c0(δ)

1 +
δ

1− δ
β

(39)

This means that the center of the sphere is located at η∗γx0 for the set of codewords at Hamming distance
h from x0.

B. A Simple Bound on Pb

In this subsection, we derive a simple bound on the bit-error probability Pb that uses input–output
weight distributions. For an (n, k) block code C, consider an encoder that maps each k-bit information
block into an n-bit codeword x ∈ C. For each codeword xi ∈ C, denote this information block by ui and
its mth component by ui,m, m = 1, 2, · · · , k. Define an error event:

Eh,m
4= { some xi ∈ χh is chosen in preference to x0 codeword, and ui,m 6= u0,m} (40)

Then, using the union bound, we have

Pb ≤
1
k

k∑
m=1

∑
h

Pr{Eh,m| x0} (41)
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Consider an arbitrary n-dimensional region (volume) < in the n-dimensional observation space con-
taining the transmitted codeword. Using the basic bounding technique, we have

Pr{Eh,m| x0} ≤ Pr{Eh,m,y ∈ < | x0}+ Pr{y 6∈ < | x0} (42)

Define a pairwise error event:

Exi,x0

4= { xi ∈ χh is chosen in preference to x0} (43)

and

Pr{Eh,m,y ∈ < | x0} ≤
∑

xi∈χh:i6=0

Pr{ui,m 6= u0,m, Exi,x0 ,y ∈ < | x0}

=
∑

xi∈χh:i6=0

Pr{ui,m 6= u0,m | Exi,x0 ,y ∈ <,x0}

× Pr{Exi,x0 ,y ∈ < | x0} (44)

Define an indicator function:

Iui,m,u0,m
=

{ 1 if ui,m 6= u0,m

0 otherwise
(45)

Then,

Pr{ui,m 6= u0,m | Exi,x0 ,y ∈ <,x0} = Iui,m,u0,m
(46)

Thus,

1
k

k∑
m=1

Pr{Eh,m,y ∈ < | x0} ≤
∑

xi∈χh:i6=0

k∑
m=1

Iui,m,u0,m

k
Pr{Exi,x0 ,y ∈ < | x0} (47)

If < is sufficiently symmetric, then Pr{Exi,x0 ,y ∈ < | x0} does not depend on the particular xi ∈ χh, so

1
k

k∑
m=1

Pr{Eh,m| x0} ≤
k∑

w=1

w

k
Aw,h Pr{Ex′ ,x0

,y ∈ < | x0}+ Pr{y 6∈ < | x0} (48)

for any x′ ∈ χh. The input–output coefficients Aw,h are defined as the number of codewords, xi, at
distance h from x0, with dH(ui,u0) = w, where dH(·, ·) represents the Hamming distance between two
binary sequences. For turbo or turbo-like codes, Aw,h is averaged over all interleavers. Define

rb(δ) =
ln

{∑k
w=1

w

k
Aw,h

}
n

(49)
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Then the upper bound derived for Pw can be used for Pb if we replace r(δ) with rb(δ). In the above
derivations, we have not restricted ourselves to any particular region <, so this technique can be applied
to other types of regions as well.

If we choose

< = {y | ‖y − ηγx0‖2 ≤ nR2} (50)

and use the results on Pw from the previous subsection, we obtain

Pb ≤
∑

h

κb,he−nEb(c,δ,β) (51)

where

Eb(c, δ, β) = −rb(δ) +
1
2

ln
[
β + (1− β)e2rb(δ)

]
+

δβ

1− δ(1− β)
c (52)

where

β =

√
c
1− δ

δ

2
1− e−2rb(δ)

+
(

1− δ

δ

)2

[(1 + c)2 − 1]− 1− δ

δ
(1 + c) (53)

and

κb,h = eH(β/[β+(1−β)e2rb(δ)]) (54)

For β = 1, the simple bound reduces to the union bound.

C. Summary of the Simple Bound

The derived bound both for word- and bit-error probabilities can be further tightened. The coefficient
factors κh and κb,h can be ignored (i.e., set to 1), as will be discussed shortly. Furthermore, it is shown
in [27] that, for improved union-type bounds, the range of h can be reduced without violating the upper
bound. Thus, we obtain

Pw ≤
n−k+1∑
h=hmin

min
{

e−n E(c,h), AhQ
(√

2ch
)}

(55)

and

Pb ≤
n−k+1∑
h=hmin

min

{
e−n Eb(c,δ),

∑
w

w

k
Aw,hQ

(√
2ch

)}
(56)
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III. On Gallager Bounds

In [13], Sason and Shamai made several observations and extensions on Gallager’s 1963 bound [1].
Although versions of the Gallager bound with one or even two parameters are asymptotically tight for
random codes (they achieve the capacity limits as n→∞), they are not tight for nonrandom codes. The
reason is that the region < used in the bound is optimum for random codes, but it is not optimum for
nonrandom codes. In his thesis, Gallager indeed introduced a function of observation sample (he denoted
it by f(y)) to be optimized to obtain a tight bound. We will shortly see that this function is related
to the region <. So, optimizing this function is equivalent to optimizing the region <. Gallager found
the optimal f(y) using calculus of variations. The result for optimum f(y) was not in a closed-form
expression. However, the result reduces to a closed-form solution for random codes with two parameters
for optimization.

A. Modified Gallager Bound

In 1965, Gallager [2] proposed a second bounding technique on word-error probability, given by

Pw ≤
∑
y

P (y|xm)

 ∑
m′ 6=m

[
P (y|xm′)
P (y|xm)

]λ


ρ

(57)

where the outer sum is over the space of channel output vectors and would be replaced by an integral
when the output of the channel is continuous. This bound was modified by Duman and Salehi [14] as
follows: Define a nonnegative function f(y). Then,

Pw ≤
∑
y

P (y|xm)

 ∑
m′ 6=m

[
P (y|xm′)
P (y|xm)

]λ


ρ

(58)

=
∑
y

f(y)

 ∑
m′ 6=m

[
f(y)

P (y|xm)

]−(1/ρ) [
P (y|xm′)
P (y|xm)

]λ


ρ

(59)

If f(y) represents a density function, i.e.,
∑

y f(y)dy = 1, then for parameter 0 ≤ ρ ≤ 1, the above
bound, using Jensen’s inequality, can be further upper bounded as

Pw ≤

 ∑
m′ 6=m

∑
y

f(y)
[

f(y)
P (y|xm)

]−(1/ρ) [
P (y|xm′)
P (y|xm)

]λ


ρ

(60)

=

 ∑
m′ 6=m

∑
y

P (y|xm)
[

f(y)
P (y|xm)

]1−(1/ρ) [
P (y|xm′)
P (y|xm)

]λ


ρ

(61)

Sason and Shamai [11], using calculus of variation and an iterative method similar to that proposed by
Gallager [1], developed an optimum f(y) without symmetry. In the next subsection, we further modify
the above bound.
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B. Relation Between the First and the Second Bounding Techniques of Gallager

Based on the results of Duman and Salehi [14],the second bounding technique of Gallager [2] can be
further modified by introducing another parameter, s ≥ 0, as follows:

Pw ≤
∑
y

P (y|xm)

 ∑
m′ 6=m

[
P (y|xm′)
P (y|xm)

]λ


ρ

≤
{∑

y

P (y|xm)
[

f(y)
P (y|xm)

]s
}(1−ρ)

×

 ∑
m′ 6=m

∑
y

P (y|xm)
[

f(y)
P (y|xm)

]s(1−[1/ρ]) [
P (y|xm′)
P (y|xm)

]λ


ρ

(62)

This can be shown by replacing f(y) in Eq. (59) with fs(y)/P s−1(y|xm) and then using the argument
of density function and Jensen’s inequality. Since f(y) multiplied by a positive constant does not change
the bound, we can choose f(y) such that

∑
y

P (y|xm)
[

f(y)
P (y|xm)

]s

= 1 (63)

This allows us to express the bound in Eq. (62) alternatively as

Pw ≤

 ∑
m′ 6=m

∑
y

P (y|xm)
[

f(y)
P (y|xm)

]s(1−[1/ρ]) [
P (y|xm′)
P (y|xm)

]λ


ρ

(64)

Next we consider the first bounding technique of Gallager. In his first bounding technique [1], the
region < can be defined as

< =
{
y | ln

[
f(y)

P (y|xm)

]
≤ nR

}
(65)

This provides a geometric interpretation for the Gallager bound. Then the word-error probability can be
bounded as

Pw ≤ Pr{word error, y ∈ <}+ Pr{y 6∈ <} (66)

The two terms on the right-hand side of the above equation, using the Chernov bounds as previously
described, can be bounded as

Pr{word error, y ∈ <} ≤
∑

m′ 6=m

E
{
et Zm′+r W

}
, t ≥ 0, r ≤ 0 (67)

and
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Pr{y 6∈ <} ≤ E
{
es W

}
, s ≥ 0 (68)

where

Zm′ = ln
P (y|xm′)
P (y|xm)

(69)

and

W = ln
[

f(y)
P (y|xm)

]
− nR (70)

Minimizing the bound with respect to R, we obtain

Pw ≤ eH(ρ)

{∑
y

P (y|xm)
[

f(y)
P (y|xm)

]s
}(1−ρ)

(71)

×

 ∑
m′ 6=m

∑
y

P (y|xm)
[

f(y)
P (y|xm)

]r [
P (y|xm′)
P (y|xm)

]t


ρ

(72)

If we define r = s(1 − [1/ρ]) and rename t by λ, then comparing this upper bound with the bound
in Eq. (62), we see that the two bounds are identical except for a constant, eH(ρ), that is between 1
and 2. Thus, the first bound of Gallager [1] is an upper bound to his second bound [2]. Extensions of
these results to improved union-type bounds will be discussed in Subsection III.D. The results of this
subsection suggest that if the first bounding technique of Gallager is used to derive the upper bound on
decoding error probability, then the constant eH(ρ) can be ignored (set to 1).

C. Bit-Error Probability for the Modified Gallager Bound

For an (n, k) block code C, consider an encoder that maps each k-bit information block into an n-bit
codeword x ∈ C. For each codeword xm ∈ C, denote this information block by um and its ith component
by um,i, i = 1, 2, · · · , k.

The bit-error probability can be written as

Pb ≤
∑
y

P (y|xm)
k∑

i=1

1
k

φm,i(y) (73)

where the indicator function, φm,i(y), is defined as

φm,i(y) =
{

1 if P (y|xm′) ≥ P (y|xm) and um′,i 6= um,i for some m′ 6= m
0 otherwise

(74)

Also define an indicator function:

I(um′,i, um,i) =
{ 1 if um′,i 6= um,i

0 otherwise
(75)
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We now upper bound φm,i(y) using arguments similar to those in [2]:

φm,i(y) ≤

 ∑
m′ 6=m

I(um′,i, um,i)
[
P (y|xm′)
P (y|xm)

]λ


ρ

, ρ ≥ 0, λ ≥ 0 (76)

We note that the upper bound on φm,i(y) is always nonnegative. Thus, when φm,i(y) = 0, the upper
bound in Eq. (76) holds. When φm,i(y) = 1, for at least one m′ we have

I(um′,i, um,i)
[
P (y|xm′)
P (y|xm)

]λ

≥ 1 (77)

Thus, the sum over m′ is greater than or equal to 1, and raising the sum to the ρ power is still greater
than one. Next, for 0 ≤ ρ ≤ 1, using Jensen’s inequality, we can further upper bound the average of
φm,i(y) over i as

k∑
i=1

1
k

φm,i(y) ≤

 ∑
m′ 6=m

k∑
i=1

1
k

I(um′,i, um,i)
[
P (y|xm′)
P (y|xm)

]λ


ρ

(78)

Using this bound, we have

Pb ≤
∑
y

P (y|xm)

 ∑
m′ 6=m

k∑
i=1

1
k

I(um′,i, um,i)
[
P (y|xm′)
P (y|xm)

]λ


ρ

, 0 ≤ ρ ≤ 1, λ ≥ 0 (79)

Denote the Hamming distance between information blocks um′ , and um as

dH(um′ ,um) =
k∑

i=1

I(um′,i, um,i) (80)

Then,

Pb ≤
∑
y

P (y|xm)

 ∑
m′ 6=m

dH(um′ ,um)
k

[
P (y|xm′)
P (y|xm)

]λ


ρ

, 0 ≤ ρ ≤ 1, λ ≥ 0 (81)

D. Union-Type Bounds for Modified Gallager Bounds

As in Section II, let χh be the set of codewords with Hamming distance h from xm, h = 0, 1, 2, · · · , n.
The cardinality of these sets is |χh| = Ah, where Ah is the number of codewords at distance h from xm.
Starting with the upper bound by Gallager in [2], i.e.,

Pw ≤
∑
y

P (y|xm)

 ∑
m′ 6=m

[
P (y|xm′)
P (y|xm)

]λ


ρ

(82)
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and using the results of previous sections, the following bounds can be obtained for any nonnegative
function f(y), 0 ≤ ρ ≤ 1, s = −rρ/(1− ρ) ≥ 0, r ≤ 0, and λ ≥ 0:

Pw(xm) ≤
∑

h

{∑
y

P (y|xm)
[

f(y)
P (y|xm)

]s
}(1−ρ)

×

 ∑
xm′∈χh:m′ 6=m

∑
y

P (y|xm)
[

f(y)
P (y|xm)

]r [
P (y|xm′)
P (y|xm)

]λ


ρ  (83)

and

Pb(xm) ≤
∑

h

{∑
y

P (y|xm)
[

f(y)
P (y|xm)

]s
}(1−ρ)

×

 ∑
xm′∈χh:m′ 6=m

dH(um′ ,um)
k

∑
y

P (y|xm)
[

f(y)
P (y|xm)

]r [
P (y|xm′)
P (y|xm)

]λ


ρ  (84)

For binary-input discrete memoryless channels, assume f(y) =
∏

j f(yj). Then we obtain

Pw ≤
∑

h

e−n E(c,h) (85)

where

E(c, h) = max
ρ,r,λ,f

{
−ρ [r(δ) + δ lnh(r, λ) + (1− δ) ln g(r)]− (1− ρ) ln g

( −rρ

1− ρ

)}
(86)

and, for bit-error probability,

Pb ≤
∑

h

e−n Eb(c,h) (87)

where

Eb(c, h) = max
ρ,r,f

{
−ρ [rb(δ) + δ lnh(r, λ) + (1− δ) ln g(r)]− (1− ρ) ln g

( −rρ

1− ρ

)}
(88)

r(δ) = (lnAh)/n, rb(δ) = (ln
∑

w[w/k]Aw,h)/n,

g(s) =
∑

y

P (y|x = 0)
[

f(y)
P (y|x = 0)

]s

(89)
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and

h(r, λ) =
∑

y

P (y|x = 0)
[

f(y)
P (y|x = 0)

]r [
P (y|x = 1)
P (y|x = 0)

]λ

(90)

We note that the exponents are similar to that obtained by Gallager in [1]; see also a report by Sason and
Shamai [13]. In [1], Gallager assumed f(y) = f(−y); then, for binary-input, symmetric-output channels,
λ = (1− r)/2 maximizes the exponent E(c, h). Further, Gallager used calculus of variation to maximize
the exponent with respect to f(y); by doing so, we obtain

f(y)
P (y|x = 0)

= k

[
1 + P (y)1−s

1 + 2βP (y)(1−r)/2 + P (y)1−r

]1/(r−s)

(91)

where P (y) 4= P (y|x = 1)/P (y|x = 0), and β should satisfy

β =
δ

1− δ

g(r, β)
h(r, β)

(92)

with the above-given expression for f(y). The constant k is arbitrary, and its choice does not change
the exponent. Let us define λ = (1 − r)/2 ≥ 1/2, and after using Eq. (91), let us redenote g(s) by
g1(ρ + 1, λ, β); g(r) by g(ρ, λ, β); and h(r, λ) by h(ρ, λ, β).

g1(ρ + 1, λ, β) =
∑

y

P (y|x = 0)
[

1 + P (y)(1−2ρλ)/(1−ρ)

1 + 2βP (y)λ + P (y)2λ

]−ρ

(93)

g(ρ, λ, β) =
∑

y

P (y|x = 0)
[

1 + P (y)(1−2ρλ)/(1−ρ)

1 + 2βP (y)λ + P (y)2λ

]1−ρ

(94)

and

h(ρ, λ, β) =
∑

y

P (y|x = 0)
[

1 + P (y)(1−2ρλ)/(1−ρ)

1 + 2βP (y)λ + P (y)2λ

]1−ρ

P (y)λ (95)

Since we assumed f(y) = f(−y) and a symmetric binary channel, then it is easy to show that

g1(ρ + 1, λ, β) = g(ρ, λ, β) + βh(ρ, λ, β) (96)

With such an assumption, we also can use

g(ρ, λ, β) =
∑
y>0

P (y|x = 0)
[

1 + P (y)(1−2ρλ)/(1−ρ)

1 + 2βP (y)λ + P (y)2λ

]1−ρ

[1 + P (y)2λ] (97)

and
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h(ρ, λ, β) =
∑
y>0

P (y|x = 0)
[

1 + P (y)(1−2ρλ)/(1−ρ)

1 + 2βP (y)λ + P (y)2λ

]1−ρ

2P (y)λ (98)

Thus, the exponent of the bound can be expressed as

E(c, h) = max
ρ,λ,β

{−ρ [r(δ) + δ lnh(ρ, λ, β) + (1− δ) ln g(ρ, λ, β)]− (1− ρ) ln [g(ρ, λ, β) + βh(ρ, λ, β)]} (99)

where λ ≥ 1/2, δ/(1 − δ) ≤ β ≤ 1, and 0 ≤ ρ ≤ 1. For random codes, it can be shown that β = 1 and
λ = 1/(1 + ρ) minimize the bound, and the minimum SNR threshold coincides with the capacity limit.
The parameter β is the solution to the nonlinear equation

β =
δ

1− δ

g(ρ, λ, β)
h(ρ, λ, β)

(100)

which depends on the values of ρ, λ, and δ. Rather than solving this nonlinear equation, for every ρ, λ,
and δ, we treat β as a parameter to be optimized numerically to obtain the maximum exponent for each
δ. Note that

g(ρ, λ, β) > h(ρ, λ, β) (101)

This implies that β ≥ δ/(1− δ). By using an upper bound on the parameter s in Gallager’s bound, which
was obtained in [13], we may choose λ ≤ 1/2ρ, but this requires further study.

For a binary-input AWGN channel, P (y) = e−2y
√

2c, P (y|x = 0) = 1/(
√

2π)e−(1/2)(y−
√

2c)2 ,
c = Es/N0, and

∑
y should be replaced by

∫
. Let z = e−2y

√
2c; then we have

g(ρ, λ, β) =
∫ 1

0

e−[([ln z+4c]2/16c)+ln z]
√

16cπ

[
1 + z(1−2ρλ)/(1−ρ)

1 + 2βzλ + z2λ

]1−ρ [
1 + z2λ

]
dz (102)

and

h(ρ, λ, β) =
∫ 1

0

e−[([ln z+4c]2/16c)+ln z]

√
16cπ

[
1 + z(1−2ρλ)/(1−ρ)

1 + 2βzλ + z2λ

]1−ρ

2zλdz (103)

For linear codes, if we do not use the symmetry f(y) = f(−y), then the optimized f(y) using the
calculus of variation method of Gallager is obtained as

f(y)
P (y|x = 0)

= k[1 + βP (y)λ]1/(s−r) (104)

where β satisfies Eq. (100)with the above optimized f(y). However, in this case,
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g(s) =
∑

y

P (y|x = 0)[1 + βP (y)λ]ρ (105)

g(r) =
∑

y

P (y|x = 0)[1 + βP (y)λ]ρ−1 (106)

and

h(r, λ) =
∑

y

P (y|x = 0)[1 + βP (y)λ]ρ−1P (y)λ (107)

We note that g(s), g(r), and h(r, λ) are independent of r. Let us define

g(ρ + 1, λ, β) =
∑

y

P (y|x = 0)[1 + βP (y)λ]ρ (108)

and

h(ρ, λ, β) =
∑

y

P (y|x = 0)[1 + βP (y)λ]ρ−1P (y)λ (109)

It is easy to show that

g(ρ + 1, λ, β) = g(ρ, λ, β) + βh(ρ, λ, β) (110)

Then,

E(c, h) = max
ρ,λ,β

{−ρ[r(δ) + δ lnh(ρ, λ, β) + (1− δ) ln g(ρ, λ, β)]− (1− ρ) ln[g(ρ, λ, β) + βh(ρ, λ, β)]}

(111)

Thus, when we do not use the symmetry, i.e., f(y) = f(−y), our modified Gallager bound coincides with
Sason and Shamai’s bound [13] (called “the second version of Duman and Salehi’s bound”). The minimum
SNR threshold of this bound meets the capacity limit for random codes for β = 1 and λ = 1/(1 + ρ).

The minimum SNR threshold for a given code-weight distribution can be obtained as the smallest c
such that

min
δ

max
ρ,λ,β

{−ρ[r(δ) + δ lnh(ρ, λ, β) + (1− δ) ln g(ρ, λ, β)]− (1− ρ) ln[g(ρ, λ, β) + βh(ρ, λ, β)]} ≥ 0

(112)

This threshold, although more complex to calculate, is tighter than all other thresholds discussed in this
article, particularly for high-rate codes.
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IV. Comparisons with Other Bounds

A. Simplified Sphere Bound of Hughes

This is a special case of our simple bound when the center of the sphere is located at the transmitted
codeword, i.e., η = 1. In this case, the region < is (see Fig. 2)

< = {y | ‖y − γx0‖2 ≤ nR2} (113)

By setting η = 1, or equivalently setting ζ = β in our results, we obtain a looser bound with exponent

E(c, h, β) = −r(δ) +
1
2

ln
[
β + (1− β)e2r(δ)

]
+ δβc (114)

where the optimum β is

β =
2δc−

(
1− e−2r(δ)

)
2δc

(
1− e−2r(δ)

) (115)

and we should have

c ≥ max
δ

(
1− e−2r(δ)

) 1
2δ

4= c0 (Hughes) (116)

For β = 1, we have the union bound.

This bound with the exponent given by Eq. (114) can be considered as a simplified version of a bound
by Hughes [17]. It is easy to show that the exponent given by Eq. (114) is smaller than our exponent for
the simple bound [see Eq. (28)]. Also, c0 (Hughes) ≥ c0 (Simple).

n g

g xi

0

h
y

nR

R

g x0

Fig. 2.  Geometric interpretation of the
Hughes bound.
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B. Geometric Interpretation of the Viterbi-and-Viterbi Bound, and a Simplified Version
of the Tangential Bound of Berlekamp

If we define the region < as

< = {y | 〈y, γx0〉 ≥ nR} (117)

where 〈·〉 represents the inner product, we obtain the exponent of the Viterbi-and-Viterbi bound [3].
This bound also can be considered as a simplified version of the tangential bound by Berlekamp [16] (see
Fig. 3).

n g

g xi

0

h
y

n R
g  x0

R

g x0

Fig. 3.  Geometric interpretation of the
Viterbi-Viterbi bound.

Based on our derivations, the exponent of the bound is obtained as

E(c, h, ρ) = −ρr(δ) +
δρ

1− δ + δρ
c (118)

The optimum ρ is

ρ =

√
(1− δ)c
δr(δ)

− (1− δ)
δ

(119)

Finally, for ρ < 1, we obtain

E(c, h) =

(
√

c−
√

(1− δ)
δ

r(δ)

)2

(120)

where we should have

c ≥ max
δ

r(δ)
1− δ

δ

4= c0 (Viterbi Viterbi) (121)
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For ρ = 1, we have the union bound.

Note that Viterbi and Viterbi used a different approach, namely, the second bounding technique of
Gallager [2], and the coefficient κh in their upper bound is 1. Since we got the same exponent for the
bound using the first bounding technique of Gallager, this motivated us to look for a relation between
the first and the second bounding techniques of Gallager, as we have shown in the previous section. Since
the modified version of the Gallager bound is the same as his first bound, but without the coefficients
κh and κb,h, these coefficients therefore can be ignored in the above-derived bounds. It is easy to show
that the exponent given by Eq. (120) is small than our exponent for the simple bound. Note that as β
approaches ρ in Eq. (26), we get Eq. (118). Also, c0 (Viterbi–Viterbi) ≥ c0 (Simple).

C. Geometric Interpretation of the Duman–Salehi Bound, and Its Closed-Form Solution

Duman and Salehi [14] proposed the following upper bound on word-error probability (we use a “ ˜ ”
for distinction over the parameters in Duman and Salehi’s bound):

Pw ≤

 ∑
m′ 6=m

∑
y

F (y)
[

F (y)
P (y|xm)

]−(1/ρ̃) [
P (y|xm′)
P (y|xm)

]λ̃


ρ̃

(122)

where

F (y) =
n∏

i=1

(
α̃

πN0

)1/2

e−[(yi−[β̃/α̃]
√

Esx0)
2/(N0/α̃)] (123)

and
∫∞
−∞ F (y)dy = 1.

Duman and Salehi minimized the bound with respect to λ̃ and β̃ and obtained optimum solutions for
these two parameters. However, the closed-form solutions for two other parameters, α̃ and ρ̃, were not
obtained. Thus, the bound requires numerical optimization over α̃ and ρ̃ for each output weight, h, and
each Es/N0. At first glance, it seems that our proposed bound with s = 1 was used; thus, it might be
looser than our bound. However, since Duman and Salehi introduced two rather than one parameter in
F(y), we can show that

F (y)
P (y|xm)

=
[

f(y)
P (y|xm)

](1−α̃)/2

(124)

Therefore, the bound can be expressed as our proposed modified Gallager bound with

s =
1− α̃

2
(125)

with a new defined nonnegative function f(y). Therefore, ln[f(y)]/[P (y|xm)] ≤ nR should define the
region <. In fact,

< =

{
y |

∣∣∣∣∣∣∣∣y√
2

N0

∣∣∣∣∣∣∣∣2 − 2
1− β̃

1− α̃

√
2Es

N0

〈
y

√
2

N0
,x0

〉
+ ζ ≤ nR

}
(126)
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where

ζ =
1
α̃

(
α̃− β̃2

1− α̃

)
2Es

N0
||x0||2 +

0.5n

1− α̃
ln α̃ (127)

Aside from the normalized observation and ζ, which does not depend on observation, the region < is
identical to our region. Thus, we claim that the exponent of Duman and Salehi’s bound should be
identical to the exponent of our bound. If this is true, then the translation factor η that we found should
be equal to the translation factor in the Duman–Salehi region. Also, the parameter s in our bound should
be equal to (1− α̃)/2. Therefore, we have two equations to solve for α̃ and ρ̃ (since β̃ depends on ρ̃), i.e.,

s =
1− α̃

2

η =
1− β̃

1− α̃

 (128)

If we take the first and the second derivatives of the Duman–Salehi bound with respect to α̃ and ρ̃, we
can in fact show that the obtained solutions for α̃ and ρ̃ from the above two equation, using the results
of our simple bound, satisfy the first derivative and that the second derivative is positive. Thus, these
solutions minimize the bound, and the exponent of Duman and Salehi’s bound will be identical to the
exponent of the simple bound.

D. Simplified Version of the Tangential Sphere Bound of Poltyrev

The tangential sphere bound on word-error probability was derived by Poltyrev in [15]. The bounding
technique is similar to the basic bounding technique of Gallager [1] (i.e., the first bounding technique
of Gallager). For the tangential sphere bound, the region < is a circular cone with a half angle θ whose
main axis passes through the origin and the transmitted codeword (see Fig. 4).

In Fig. 4, the noise vector z = z1, z2, · · · , zn with the origin at x0 has orthogonal zero-mean unit vari-
ance components, where z1 is along the main axis of the cone, z2 is orthogonal to z1, and it is in the plane

g xi

0

y
R

g x0z 2

z 1

q

r (z 1)

bh (z 1)

h / 2

Fig. 4.  Geometric interpretation of the
tangential sphere bound.
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defined by three points: the origin 0, the transmitted codeword x0, and some codeword xi with Hamming
distance h from the transmitted codeword. All other components of z are orthogonal to the described
plane. Also in Fig. 4 we have

r(z1) =
√

η
(√

2nc− z1

)
(129)

and

βh(z1) =
(√

2nc− z1

) √
δ

1− δ
(130)

where η = tan2 θ and c = Es/N0. In [15, Eqs. (25 and (26)], Poltyrev defines the region < as

n∑
j=2

z2
i ≥ r2(z1) (131)

over all values of z1. (Note that this region is in fact a double cone. For a single cone, we should have
the further restriction z1 ≤

√
2nc, but for large n this does not make any difference). The upper bound

on the probability of word error can be written as

Pw ≤
∑

h

∑
xi∈χh:i6=0

Pr{Exi,x0 ,y ∈ < | x0}+ Pr{y 6∈ < | x0} (132)

If z2 > βh(z1), Exi,x0 occurs; furthermore, the event {Exi,x0 , y ∈ <} is nonempty if z2 ≤ r(z1),
which implies βh(z1) < r(z1) or η > δ/(1 − δ). Next the upper bound is minimized over η. We can
proceed by using the Chernov bounds. However, the resulting bound, although without integrations, will
require numerical parameter optimization in its final version. Next we use the method of partitioning the
codewords into subsets with the same Hamming distance as was used in the previous sections. Then we
can have the following upper bound:

Pw ≤
∑

h

Ah Pr


n∑

j=2

z2
i ≤ r2(z1), z2 > βh(z1)

 + Pr


n∑

j=2

z2
i > r2(z1)


 (133)

Now, using Chernov bounds, we get

Pr


n∑

j=2

z2
i > r2(z1)

 ≤
√

1− 2s√
1 + 2sη

e−nE1(c,s,η), s ≥ 0 (134)

E1(c, s, η) =
2sηc

1 + 2sη
+

1
2

ln(1− 2s) (135)

Ah Pr


n∑

j=2

z2
i ≤ r2(z1), z2 > βh(z1)

 ≤
√

1− 2r√
1 + 2rη

e−nE2(c,r,δ,η), r ≤ 0 (136)
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and

E2(c, r, δ, η) = c
2rη + (1− 2r)

δ

1− δ

1 + 2rη + (1− 2r)
δ

1− δ

+
1
2

ln(1− 2r)− r(δ) (137)

Rather than taking the derivative with respect to η to minimize the bound, for large n we simply solve
the following equation:

E1(c, s, η) = E2(c, r, δ, η) (138)

The solution should result in an optimum η for very large n. Before solving the above equation, we define
new parameters to simplify the expressions representing the exponents. Define

ρ =
s

s− r
(139)

Hence, 0 ≤ ρ ≤ 1,

β = ρ(1− 2r) (140)

ζ =
1

1 + 2sη
(141)

and

d =
δ

1− δ
(142)

In obtaining the above bounds, we assumed 1− 2s ≥ 0 and 1 + 2rη ≥ 0. This implies that 0 ≤ β ≤ 1 and
0 ≤ ζ ≤ 1. Also, we have η ≥ d. Now the exponents can be written as

E1(c, β, ρ, ζ) = c− cζ +
1
2

ln
1− β

1− ρ
(143)

and

E2(c, β, ρ, ζ) = c− c
ρζ

(1 + βd)ζ − (1− ρ)
+

1
2

ln
βe−2r(δ)

ρ
(144)

Define A = 1/2 ln{[β(1− ρ)e−2r(δ)]/[ρ(1− β)]}. Then the solution to E1 = E2 is given as

ζ =
(c− (1 + βd)A)±

√
(c− (1 + βd)A)2 + 4c(1− ρ)(1 + βd)A

2c(1 + βd)
(145)
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Using the positive solution in E1, we obtain the exponent for the simplified version of the tangential
sphere bound. Next we maximize the exponent with respect to ρ. The solution to ρ is

ρ =
βe−2r(δ)

1− β + βe−2r(δ)
(146)

Maximizing the exponent with respect to β, we finally obtain the simplified version of the tangential
sphere bound as

Pw ≤
∑

h

κe−nE(c,h) (147)

where κ = (
√

1− 2s/
√

1 + 2sη) + (
√

1− 2r/
√

1 + 2rη) with optimized parameters,

E(c, h) =
1
2

ln(1− β + βe−2r(δ)) +
βd

1 + βd
c (148)

and

β =
1− δ

δ

[√
c

c0(δ)
+ (1 + c)2 − 1− (1 + c)

]
(149)

with

c0(δ) =
(
1− e−2r(δ)

) 1− δ

2δ
(150)

But the exponent of the simplified tangential sphere bound is identical to the exponent of the simple
bound previously derived. This implies that asymptotically the simple bound is as good as the tangential
sphere bound. The minimum SNR threshold is

c0 =
Es

N0
= max

δ
c0(δ) = c0 (Poltyrev tangential sphere) (151)

It is interesting to note that the optimum half angle θ is obtained as

η = tan2 θ =
1

2c0(δ)
(152)

These results imply that, as n → ∞, the optimum η = tan2 θ for the tangential sphere bound is 1/2c0

and that c = c0 represents the minimum SNR threshold for the tangential sphere bound. Moreover, the
plot of c0 for random codes monotonically diverges from the capacity plot for a binary-input AWGN
channel as the code rate increases. Thus, for all code rates strictly greater than zero, the tangential
sphere bound will not achieve the capacity limit for random codes. Thus, the tangential bound is loose
for high code rates. All results hold for the bit-error probability if we replace r(δ) = lnAh/n with
rb(δ) = (ln

∑
w[w/k]Aw,h)/n. We can also roughly show that, as n → ∞, tan2 θ = 1/(2c0) satisfies the
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following equation (the optimum θ in the tangential sphere bound satisfies this equation) that can be
found, for example, in [9]:

∑
h:η>δ/(1−δ)

enr(δ)

∫ θδ

0

sinn−3(φ)
Γ([n− 1]/2)

Γ([n− 2]/2)
√

π
dφ = 1 (153)

where

θδ = cos−1

(
1√
η

√
δ

1− δ

)
(154)

To show this, we use a result by Shannon [26], namely, as n→∞,

∫ θδ

0

sinn−3(φ)
Γ([n− 1]/2)

Γ([n− 2]/2)
√

π
dφ ∼ en ln sin(θδ) (155)

Using this asymptotic result, we see that all terms in the summation will go to zero, except when
the value of h or, equivalently, of δ corresponds to the maximum of c0(δ). Furthermore, if we use
the central limit theorem, then we can obtain an asymptotic expression for Pr{

∑n
j=2 z2

i > r2(z1)} and
Pr{

∑n
j=2 z2

i ≤ r2(z1), z2 > βh(z1)} as n → ∞. Then one can show that, if c ≤ c0, the tangential
bound goes to 1 as n→∞. The same threshold also was obtained by S. Dolinar3 for the F (θ) geometry
bound [18] as n→∞.

1. Simplified Tangential Sphere Bound of Poltyrev Using the Modified Gallager Bound.
The modified Gallager bound was derived as

Pw ≤
∑

h

[
E

{
f(y)

P (y|xm)

}s]1−ρ
 ∑

m′ 6=m

E

{[
f(y)

P (y|xm)

]r [
P (y|xm′)
P (y|xm)

]λ
}ρ

(156)

Using the results of the previous subsection, we obtain this bound as

Pw ≤
∑

h

κe−nE(c,h) (157)

where κ = (
√

1− 2s/
√

1 + 2sη)1−ρ(
√

1− 2r/
√

1 + 2rη)ρ and

E(c, h) = max
β,ρ,ζ

(1− ρ)
[
c− cζ +

1
2

ln
1− β

1− ρ

]
+ ρ

[
c− c

ρζ

(1 + βd)ζ − (1− ρ)
+

1
2

ln
βe−2r(δ)

ρ

]
(158)

Maximizing over ζ, we obtain ζ = 1/(1 + βd). The exponent reduces to

E(c, h) = max
β,ρ

[
−ρr(δ) +

ρ

2
ln

β

ρ
+

1− ρ

2
ln

1− β

1− ρ
+

βd

1 + βd
c

]
(159)

3 Ibid.
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After maximizing the exponent with respect to ρ and β, we obtain the same exponent as in the previous
subsection, which is identical to the exponent we obtained for the simple bound.

V. Summary of the Results on the Simple Bound

Let us express the exponent of the simple bound in another form as

E(c, h) =
1
2

ln [1− 2c0(δ)f(c, δ)] +
cf(c, δ)

1 + f(c, δ)
, c0(δ) < c <

e2r(δ) − 1
2δ(1− δ)

(160)

Otherwise,

E(c, h) = −r(δ) + δc (161)

δ = h/n, c = Rc(Eb/N0), and

c0(δ) =
(
1− e−2r(δ)

) 1− δ

2δ
(162)

with threshold

c0 = max
0≤δ≤1−Rc

c0(δ) (163)

when n→∞, or

(
Eb

N0

)
min

=
1

Rc
max

0<δ≤(1−Rc)
c0(δ) (164)

and

f(c, δ) =
√

c

c0(δ)
+ 2c + c2 − c− 1 (165)

Then the upper bound on the frame-error rate (using r(δ) 4= lnAh/n, where Ah is the output-weight
distribution) and the upper bound on the bit-error rate (using r(δ) 4= (ln

∑
w[w/k]Aw,h)/n, where Aw,h

is the input–output weight distribution) is given by

Pe ≤
n−k+1∑
h=hmin

min
{

e−nE(c,h), enr(δ)Q
(√

2ch
)}

(166)

All other union-type bounds, including the modified Gallager bounds, can be tightened in this way, i.e.,
by the Q(.) function and limiting the range of h up to n− k + 1 ([27]). The simple bound and all bounds
obtained by using the Chernov bounding technique can be further tightened by a technique discussed
in [27]. The simple bound and the modified Gallager bound were extended to independent fading chan-
nels in [27]. The simple bound is the tightest closed-form upper bound on the decoding error rate, since c0,
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Fig. 5.  Comparison of the minimum threshold, c 0, for random codes
and RA codes as n         for various bounds.

the minimum signal-to-noise-ratio threshold as n→∞ for various bounds, has the following relation (see
also Fig. 5, where c0’s for various bounds for random codes and repeat–accumulate (RA) codes as n→∞
are compared with capacity limits):

c0(Simple) = c0 (Poltyrev tangential sphere) = c0 (Dolinar–Ekroot–Pollara)

= c0 (Duman–Salehi) ≤ c0 (Viterbi–Viterbi)

= c0 (Berlekamp) ≤ c0 (Union)

Also, c0 (Simple) ≤ c0 (Hughes) ≤ c0 (Union). However, c0 (Hughes) is worse than c0 (Viterbi–Viterbi)
for low code rates, and better for high code rates where c0’s are given as

c0(Simple) = max
δ

(
1− e−2r(δ)

) 1− δ

2δ
(167)

c0(Viterbi Viterbi) = max
δ

r(δ)
1− δ

δ
(168)

c0(Hughes) = max
δ

(
1− e−2r(δ)

) 1
2δ

(169)

and
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c0(Union) = max
δ

r(δ)
δ

(170)

VI. Examples

The simple bound was used to bound the ML word-error probability of rate-1/2 (n,j,k) low-density
parity-check (LDPC) codes [1,12], as shown in Fig. 6. In the example, rate-1/2 (n, j, k) low-density
parity-check codes for n=10,000, j=3,4,5,6, and k=2j are considered. The minimum SNR threshold
using c0 (Simple) is also shown in the figure.

In the second example, as shown in Fig. 7, the simple bound is applied to bound the ML performance
of rate-1/4 repeat accumulate (RA) codes [7]. In the figure, the performance of the suboptimum iterative
turbo decoder for RA codes also is shown.

VII. Conclusion

We derived a simple tight bound on bit- and frame-error rates for block codes. This is the tightest
closed-form upper bound on the decoding error rate. The minimum Eb/N0 threshold can be computed
as (n→∞):

(
Eb

N0

)
threshold

= max
δ

c0(δ)
Rc

(171)
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LDPC(10000,4,8)
LDPC(10000,5,10)
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Fig. 6.  Performance of low-density parity-check codes using
the simple bound.
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This threshold for the proposed bound for random codes with low rates is very close to the Shannon
capacity limit. For nonrandom codes, this is the tightest closed-form threshold, better than the threshold
that can be obtained from the nonmodified versions of the Gallager bound. This threshold can be used
to show that, for turbo, serial, or turbo-like codes with interleaving gain, the probability of error goes to
zero as the block size goes to infinity if Eb/N0 > (Eb/N0)threshold. The method in [7] can be used to show
this. Also see [28].

For the union bound, we have

E(c, h) = −r(δ) + δc (172)

where the minimum Eb/N0 threshold based on the union bound can be computed as (n→∞):

(
Eb

N0

)
threshold

= max
δ

r(δ)
δRc

(173)

which corresponds to the cutoff-rate threshold for random codes.
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Appendix

Calculation of Input–Output Weight Coefficients for Turbo Codes

Consider an (n, k) block code constructed from a terminated convolutional code. Then the input–
output weight enumerating function (IOWEF) is

A(W, H) =
k∑

w=0

n∑
h=0

Aw,hWwHh (A-1)

This is a two-dimensional Z-transform. Inverse Z-transform results in Aw,h. Calculation of Aw,h is
illustrated by means of an example (this is based on results by Viterbi et al. [6]). Consider a rate-1/2,
four-state systematic recursive convolutional code and its state diagram, as shown in Fig. A-1.

1001

1/11

0/01

1/10

1/10

0/00
0/01

1/11
00

11

Fig. A-1.  A rate-1/2, four-state systematic recursive
convolutional code.

The state-transition matrix for this code is
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C(W, H) =


PS 00 01 10 11

NS 00 1 0 WH2 0
01 WH2 0 1 0
10 0 WH 0 H
11 0 H 0 WH

 (A-2)

and the IOWEF is

A(W, H) = [ 1 0 0 0 ]Ck(W, H)


1
0
0
0

 (A-3)

The state-transition equations, with the initial conditions to obtain Aw,h, are


A(00) (W, H, t)
A(01) (W, H, t)
A(10) (W, H, t)
A(11) (W, H, t)

 =


1 0 WH2 0

WH2 0 1 0
0 WH 0 H
0 H 0 WH




A(00) (W, H, t− 1)
A(01) (W, H, t− 1)
A(10) (W, H, t− 1)
A(11) (W, H, t− 1)

 (A-4)

and

A
(00)
w,h (t) = A

(00)
w,h (t− 1) + A

(10)
w−1,h−2(t− 1)

A
(01)
w,h (t) = A

(00)
w−1,h−2(t− 1) + A

(10)
w,h (t− 1)

A
(10)
w,h (t) = A

(01)
w−1,h−1(t− 1) + A

(11)
w,h−1(t− 1)

A
(11)
w,h (t) = A

(01)
w,h−1(t− 1) + A

(11)
w−1,h−1(t− 1)


(A-5)

with initial conditions A
(00)
0,0 (0) = 1, A

(s)
w,h(0) = 0, all (s) 6= (00), and A

(s)
w,h(0) = 0 for all (s) when w, h < 0.

The final result is Aw,h = A
(00)
w,h (k).

For turbo codes, suppose we want to compute

Aw,h =
∑

h1,h2:h1+h2=h

Aw,h1Aw,h2(
k
w

) (A-6)

To prevent numerical problems we should compute

Ãs
w,h(t) =

As
w,h(t)(
t
w

)β
(A-7)

This results in a new set of difference equations:
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Ã
(00)
w,h (t) = f0Ã

(00)
w,h (t− 1) + f1Ã

(10)
w−1,h−2(t− 1)

Ã
(01)
w,h (t) = f1Ã

(00)
w−1,h−2(t− 1) + f0Ã

(10)
w,h (t− 1)

Ã
(10)
w,h (t) = f1Ã

(01)
w−1,h−1(t− 1) + f0Ã

(11)
w,h−1(t− 1)

Ã
(11)
w,h (t) = f0Ã

(01)
w,h−1(t− 1) + f1Ã

(11)
w−1,h−1(t− 1)


(A-8)

where f0 = (1− [w/t])β and f1 = (w/t)β .
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