
TMO Progress Report 42-140 February 15, 2000

A Multimission Deep-Space Telecommunications
Analysis Tool: The Telecom Forecaster

Predictor
K. K. Tong1 and R. H. Tung1

The Telecom Forecaster Predictor (TFP) fulfills the need for a powerful, easily
adaptable, multimission telecommunications analysis tool. The software is used in
operations by 5 JPL missions, and adaptations exist for 13 missions.

Built upon MATLAB, the TFP combines both multimission and mission-specific
models to predict performance. Basing new mission adaptations on existing ones
while sharing common models reduces development time and the number of model-
ing errors. Link configurations are specified through a user-friendly graphical user
interface, and navigation inputs are provided through standard JPL Navigation
Ancillary Information Facility (NAIF) Spacecraft, Planets, Instruments, C-Matrix,
Events (SPICE)2 trajectory and attitude files, which the TFP can read directly.

Current work involves the development of a mission-planning tool based on the
TFP architecture. The objective is to create an evolvable telecommunications anal-
ysis tool to support missions from start to finish. The modular architecture of the
TFP is a solid framework upon which other multimission tools can be modeled.

I. Introduction

In the past, telecommunication analysts at the Jet Propulsion Laboratory (JPL) would build their own
tools for mission support. These tools would differ in architecture, user interface, and software basis,3

even though their primary purposes were the same. Data and formulations common to all missions
were not shared, which resulted in a duplication of effort. Modeling differences and errors often went
uncorrected because there was no convenient baseline for comparison. There was a need for an easily
adaptable telecommunications tool for supporting a wide variety of deep-space missions, and the TFP
was created to fill this void.

1 Communications Systems and Research Section.

2 The SPICE data system is a software system consisting of a set of standard database formats (referred to as kernels
or SPICE files) and a set of library functions that allow users to retrieve data from these files. This software standard
was introduced by JPL’s NAIF Group and is gaining acceptance outside of JPL. For more information on SPICE, see
C. Acton, “The SPICE Description Paper,” JPL Web material (internal document), Jet Propulsion Laboratory, Pasadena,
California.

3 Previous tools were based on Microsoft Excel or PERL.

1

The TFP analysis tool4 is built upon the popular MATLAB computing environment. Users can
customize their own TFP sessions without changing official versions. Inputs are entered through the
TFP’s main graphical user interface (GUI), which has a characteristic look and feel independent of
mission adaptation. A sample TFP GUI is shown in Fig. 1. The building blocks of the TFP are models
(specialized MATLAB scripts) that are organized in a logical fashion. Model hierarchy is traceable
through an automatically created model tree, and individual models can be examined using the TFP’s
model-editing tool. After execution, outputs are viewable in plot or tabular5 form, and design control
tables provide snapshots of link performance at a single time point.

The TFP model libraries are analogous to MATLAB toolboxes. Multimission models reside in an area
accessible to all missions, whereas mission-specific models are stored in individual mission areas. Models
are easily modified or replaced, which allows great flexibility. Existing mission models often are reused
or used as templates by new missions, which accelerates development.

MATLAB is used extensively by the scientific community and provides a familiar environment for
TFP users. There are many reasons for choosing MATLAB as the engine for the TFP. MATLAB code is
portable across all platforms supported by MATLAB, which currently include Sun and HP workstations
and PC Win9x/NT.6 The software offers easy to use GUI builder tools, C/C++ and FORTRAN interfaces,
excellent graphing capabilities, and powerful and proven built-in functions. Since MATLAB is a matrix-
based computing platform, it easily manages the time-based vector calculations performed by the TFP.

II. GUI Features

The TFP GUI is a frame that allows several independent tools to work together seamlessly to form an
integrated simulation environment. The TFP software features dynamic script formation, model tracing,
a model editing and viewing tool, GUI button linkage, and state-saving capability. In addition, it has a
special C/C++/FORTRAN interface for importing navigation data.7

A. Dynamic Script Formation

Dynamic script formation refers to the automatic generation of simulation code while parameters are
set in the GUI. The TFP internally forms the main execution script from the current GUI state (which
determines the top-level model that controls the simulation) and the model libraries. There is a finite,
but different, set of top-level models for each mission, so use of a dynamic main script is cleaner and
more efficient than enumerating all possible choices with logical switch statements. It also relieves the
programmer of main script changes if additional GUI inputs are needed.

B. Model Tracing

The model tree is derived from the top-level model determined by the GUI state. It is built on demand
and allows the user to visually trace through the simulation sequentially at a high level. When one model
calls (or “imports”) another model, it is similar to calling a subroutine: it executes the code in the
imported model, and then returns to the calling model. The model tree depicts the full hierarchy of
calling and called models.

4 Described in detail in K. K. Tong and R. H. Tung, “Telecom Forecaster Predictor (TFP) User’s Guide and Reference,” JPL
Interoffice Memorandum 33110-99-010 (internal document), Jet Propulsion Laboratory, Pasadena, California, October 1,
1999.

5 Time-stamped data can be saved in comma-separated variable (CSV) form for export to other applications, such as
Microsoft Excel.

6 Macintosh support ceased with MATLAB version 5.1. The TFP is not available for the Macintosh.

7 MATLAB provides a general C/C++/FORTRAN interface. It is possible to write routines that allow the TFP to read
from a wide variety of input sources.

2

Fig. 1. A typical TFP GUI.

3

A sample model tree is shown in Fig. 2. The tree is built in the following manner. First, the top-
level model, 34MeterBWG-HighGain.ConfigA, is listed. All models that it imports directly are listed in
sequential order below it. If any of these models imports additional models, an extension arrow (>) is
placed next to the model name. In the example, BWGDirEirp imports additional models. Following
the arrow shows another listing, beginning with BWGDirEirp and followed by all the models it imports
directly. This procedure is followed sequentially until the end of each branch is reached.

When the models menu is invoked, only the models that the top-level model imports directly are
shown. The model tree is traversed one level at a time by clicking on the extension arrows. Clicking on a
model name that does not have an extension arrow automatically loads a copy of the model into editpar,
which is the TFP’s model-editing tool.

Fig. 2. Tracing through the model tree.

C. Model Editing and Viewing

Editpar is the TFP’s tool for editing and viewing models. An editpar window containing a sample top-
level model is shown in Fig. 3. The tool encourages the programmer to write equations and algorithms
in a standard format, keeping code short and simple. Support code that performs more complicated
functions is off-loaded to scripts and functions created with a text editor. In this manner, higher-level
algorithms and simulation flow can be viewed using editpar. If desired, detailed support code can be
examined using any text editor.

D. GUI Button Linkage

The design of the TFP GUI allows buttons to be linked together to perform limited constraint checking.
In other words, choosing a selection in one button can affect the list of choices of one or more other buttons.
The GUI allows an unlimited level of linkages,8 but has a built-in mechanism that prevents an infinite
loop if more than one level of linkages is used.

8 That is, the selection in one button can affect the selections in another button, which in turn may affect other buttons,
and so forth.

4

Fig. 3. A sample uplink top-level model in editpar.

E. State Saving

The save-state function is a powerful feature of the TFP GUI. When selected, it saves the current
state of the GUI to a GUI state file (GSF) and allows a user to restore the simulation configuration in
the future. In addition, a batch script is automatically generated. This batch script can be invoked from
the MATLAB command line, performs the same analysis, and saves the results in a MATLAB data file.

If the GUI creation software is modified after a GSF is saved, a warning will be issued when a user
tries to restore the GUI state. The TFP will restore as much of the saved GUI state as it can; then it will
check the restored state against the saved state and highlight any differences. A summary of the saved
GUI state appears in the MATLAB command window (and in a log file) for reference. After the user
corrects any discrepancies, the GSF should be saved again.

III. Model Architecture

Models are the building blocks of the TFP. They are created using the editpar tool and translated
into MATLAB script files that are combined to perform the requested analysis. The TFP core contains a
library of common models, scripts, and functions, which is accessible to all missions. The common model
library is similar to a MATLAB toolbox. It contains validated Deep Space Network (DSN) models,9

useful link analysis computations, and general utilities. While common model use is not required, it is
highly recommended because the models contain up-to-date information and have proven to be robust.

Top-level models (which are mission-specific) control the flow of the simulation. Typically, there are
three types of top-level models: uplink, downlink, and two-way.10 Top-level models of the same type have
the same internal structure and differ only by the specific antenna models they import. Furthermore, this
common structure is maintained regardless of the mission adaptation; that is, all mission top-level models
of a given type have the same general architecture. For instance, Fig. 3 depicts a typical uplink top-level
model showing an uplink from the 34-meter beam-waveguide (BWG) antennas11 to a spacecraft’s high-
gain antenna (HGA). Note that it imports the BWG transmit model and the HGA receive model. The top-
level model describing an uplink from the 34-meter standard (STD) antennas12 to the spacecraft’s low-gain
antenna (LGA) would have exactly the same structure except it would import the 34-meter STD transmit

9 Currently, the TFP contains the latest available DSN data. In the future, it will automatically import DSN data from an
official repository (as soon as the DSN creates this database). The links to the database are already in place.

10 Two-way involves a simultaneous uplink and downlink at the same ground station. Internally, the run is organized into
an uplink followed by a downlink.

11 The 34-meter BWG antennas are in the DSN.

12 The 34-meter STD antennas are also in the DSN.

5

model and the LGA receive model. These transmit and receive models are usually interchangeable because
the models were written with a generalized method for accounting gains and losses.

Dividing the TFP simulation into models organizes the code. As mentioned in the previous section on
GUI design, models can be nested, and the model tree displays a visual hierarchy of the execution of the
code. When designing the model architecture, calculations and information common to all missions were
identified and placed into the common model area. All other calculations were placed in mission-specific
models. Within models, the use of standardized parameter names was adopted to simplify and accelerate
the adaptation process.

The “typical” deep-space telecommunications analysis was examined and logically divided into high-
level models. Common components include a space loss (or path loss) model, atmospheric loss models,
and ground receive/transmit models. Examples of mission-specific models are spacecraft transmit/receive
models, uplink and downlink parameter initialization models, and output-generation models. Each high-
level model was further subdivided into common and mission-specific components. Related computations
were naturally grouped into blocks that could be easily replaced if missions decided to use alternative
models.

A simple philosophy governs the organization of the analysis. Initially, external data (e.g., NAIF
SPICE data) are brought in and geometric, time-based parameters such as range, azimuth, elevation,
degrees off boresight (or cone), and clock are precalculated for all time points. Constants for conversions
(e.g., speed of light and Boltzmann’s constant) and internal indicator flags also are initialized up front.
Subsequently, mission-specific constants are defined. Two models consolidate most mission-specific pa-
rameters so that, if their values need updating (such as when a new adaptation is being generated), they
are easily found. After mission-specific constants are defined, a typical link analysis is performed, and
outputs are generated. The different output products of the TFP are described in the next section.

IV. Data Visualization

A. Formatted Data Files

The TFP generates a standard set of output files for the analyst’s convenience. These include design
control tables (DCTs) and a Doppler predicts table. A DCT provides a detailed snapshot of link perfor-
mance at a single time point. It is a complete accounting of the gains and losses in the telecommunications
link. Received power levels in the carrier, data, and ranging channels are computed and then compared
with thresholds. The TFP produces uplink, downlink, and ranging DCTs. A Doppler predicts table also
is returned to help DSN ground equipment compensate for the expected Doppler shift.

It is easy to create additional data files. All major variables used in a simulation are available after a
TFP run, and MATLAB file-input/output commands are modeled after C, making it straightforward to
write scripts that produce customized outputs. As an example, the TFP provides a specially formatted
data-rate capability file to one of the JPL missions.

B. QuickPlots and Reports

QuickPlots provides a convenient method for viewing data of interest in the workspace. The QuickPlots
menu contains a list of typical variables of interest to telecommunications analysts.13 Users can select
up to nine variables to either plot on the screen14 or save in a report file. Reports are comma-separated
variable (CSV) files that contain the time-stamped values of the selected variables. CSV files can be
imported into standard spreadsheet programs, such as Microsoft Excel.

13 The items on this menu are easily customizable.

14 Plots on the screen can be printed or saved in a wide variety of formats using the MATLAB print command.

6

C. Workspace Visualization Tool

The Workspace Visualization Tool is a graphical analysis tool that can quickly access and analyze
time-based data in the workspace after a run. This tool is GUI-based and is called from a pull-down
menu in the TFP GUI. It is intended for users who are not familiar with MATLAB’s plotting commands
and includes a predefined set of plot routines and filters that are commonly used by telecommunications
analysts.

V. Conclusions

Built upon MATLAB, the TFP is a powerful, easily adaptable, multimission analysis tool for deep-
space telecommunications analysis. It has proven to be dependable and robust through its extensive use
for mission support at JPL. Common information is shared between missions, which limits redundancy
and improves accuracy. The TFP also offers many useful options for viewing and processing results.

The TFP model architecture has been generalized such that new adaptations usually are modeled after
existing adaptations. This allows them to inherit the full advantages of previous adaptations. Adherence
to current TFP modeling philosophies and naming conventions drastically reduces development time.
Changing variable names and bookkeeping strategies for gains and losses requires significant customization
and is not recommended unless absolutely necessary. Fortunately, the architecture conforms to generally
accepted conventions wherever possible.

The TFP is adaptable to support different mission phases, but currently it is primarily an operations
tool. Immediate plans involve the development of a mission-planning tool based on the TFP architecture.
The main objective is to create an evolvable telecommunications-analysis tool that supports a mission
from start to finish (design to operations), which yields tremendous savings in time and cost. Possible
future endeavors include generalizing the TFP to analyze communications between any two bodies, such
as spacecraft-to-spacecraft or lander-to-orbiter.

One can envision basing other types of multimission analysis tools on the TFP architecture. Several
telecommunications tools based on the TFP architecture are currently in use at JPL. These include
the Derived Channel Processor, which allows comparison of predictions with actual data, the Unified
Telecom Predictor, which provides a specific batch-mode interface to the TFP for the DSN, and the Radio
Frequency Interference (RFI) Analyzer, which can be used to predict and analyze potential interference
to the DSN. Though the TFP models are telecommunications-specific, the TFP software architecture is
general enough to manage many types of engineering simulations.

Acknowledgments

The TFP and this article were collaborative efforts of both authors. The au-
thors would like to acknowledge Bruno Calanche and Jeff Steinman for their early
contributions to the development of the TFP.

7

