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Computational Methods and Theoretical Results
for the Ka-Band Array Feed Compensation

System–Deformable Flat Plate
Experiment at DSS 14

W. A. Imbriale1 and D. J. Hoppe1

This article documents the computational methods and theoretical results for the
deformable flat plate (DFP), array feed compensation system (AFCS), monopulse
tracking system, and combined AFCS–DFP used for compensating the gravity-
induced distortions on the DSN’s 70-m antenna. These systems were utilized in an
experiment designed to verify gravity compensation and tracking performance of
the 70-m antenna at 31.8–32.2 GHz (Ka-band). This experiment took place from
November 1998 through February 1999 and consisted of both quasar and spacecraft
observations. The theoretical results are compared with the experimental data.
The analytical tools are also used to document and understand the characteristics
of each system.

I. Introduction

During the period from November 1998 through February 1999, a series of measurements was carried
out on the 70-m antenna at DSS 14 to determine the performance characteristics of two systems designed
to compensate for the effects of elevation-dependent gravity distortion of the main reflector on antenna
gain. The array feed compensation system (AFCS) and the deformable flat plate (DFP) system both
were mounted on the same feed cone, and each was used independently as well as jointly to measure
and improve the antenna aperture efficiency as a function of elevation angle. The experimental data are
presented in [1] and [2].

This article contains a description of the computational method and theoretical results for the DFP,
the AFCS, the monopulse tracking system, and the combined AFCS–DFP system.

The basic analysis tool is a physical optics reflector-analysis code that was ported to a parallel computer
for faster execution times. There are several steps involved in computing the RF performance of the
various systems:

1 Communications Ground Systems Section.
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(1) A model of the RF distortions of the main reflector is required. This model is based upon
measured holography maps of the 70-m antenna obtained at three elevation angles. The
holography maps then are processed (using an appropriate gravity mechanical model of
the dish) to provide surface distortion maps at all elevation angles. This technique is
further described in [3].

(2) From the surface distortion maps, ray optics is used to determine the theoretical shape
of the DFP that will exactly phase compensate the distortions.

(3) From the theoretical shape and a NASTRAN mechanical model of the plate, the actuator
positions that generate a surface that provides the best rms fit to the theoretical model
are selected. Using the actuator positions and the NASTRAN model provides an accurate
description of the actual mirror shape.

(4) Starting from the mechanical drawings of the feed, a computed RF feed pattern is gen-
erated. This pattern is expanded into a set of spherical wave modes so that a complete
near-field analysis of the reflector system can be obtained.

(5) For the array feed, the excitation coefficients that provide the maximum gain are com-
puted using a phase conjugate technique.

The basic experimental geometry consisted of a dual-shaped 70-m antenna system, a refocusing ellipse,
a DFP, and an array feed system. To provide physical insight into the systems performance, focal plane
field plots are presented at several elevations. Curves of predicted performance are shown for the DFP
system, monopulse tracking system, AFCS, and combined DFP–AFCS system. The calculated results
show that the combined DFP–AFCS system is capable of recovering the majority of the gain lost due to
gravity distortion.

II. Geometry

The experiment geometry is shown in Fig. 1. The main elements are the 70-m main reflector and
subreflector, a refocusing ellipse, the DFP, and the receive feed system. The focal point of the dual-
reflector 70-m system is labeled F1, and the focal point where the feed is placed is labeled F2. The antenna
Cassegrain focus was 0.6 in. (1.5 cm) above F1, which was corrected for alignment of the subreflector in
the z-axis. Looking at the system in the transmit mode, the output of the feed system is refocused at F1,
the input to the dual-reflector system. The parameters of the ellipse are chosen to map the fields (with
no magnification) from F2 to F1. Hence, the performance of the 70-m system would be the same if the
same feed were placed at either F1 or F2.

A. Ray-Based Computation of the Deformable-Mirror Surface

In this section, a description of the steps involved in the computation of the deformable-mirror surface
is provided. The process begins with a processed holography map describing the main-reflector distortions
to be corrected for at the elevation angle of interest. The final output of the design process is the surface
of the deformable mirror required to correct for those distortions. Three main computer programs are
involved. The process is summarized in the flow chart presented in Fig. 2 and in the following paragraphs.

1. Step 1: Zernike Coefficient Computation. The first step in the design process is to process the
holography maps described earlier in the article for use in the computation. Due to the large size of the
reflectors relative to the wavelength at 32 GHz, it was decided to ignore diffraction in the computation of
the deformable-mirror surface. A ray-based analysis code, Modeling and Analysis for Controlled Optical
Systems (MACOS) [4], is used to trace the deformations on the main reflector to the deformable mirror.
With MACOS, arbitrary surfaces such as the distorted-shaped reflectors of DSS 14 are described using a
Zernike expansion. The nominal shaped subreflector and main-reflector surfaces and the main-reflector
distortion require Zernike expansions.
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Fig. 1.  The RF optics design inside the holography cone, showing
the geometry that enables both separate AFCS and DFP measure-
ments at F1 and F2, respectively, and joint AFCS-DFP measure-
ments at F2.

As illustrated in Fig. 2, the program DFM.EXE computes the Zernike coefficients for a given main-
reflector distortion. The distortion is described via a processed holography map, typically on a 127-by-
127 point square grid encompassing the main reflector. Additional information such as the grid spacing,
frequency, reflector diameter, and best-fit parabola are included in an additional data file. This data file
also includes details regarding any masks that must be applied to the holography map. Shadowed areas
of the main reflector are masked. These included strut shadows and the center of the reflector where the
tricone structure is located. These areas receive essentially zero amplitude illumination and, hence, the
phase data in these areas cannot be used to deduce the surface distortion. The masks are employed as
follows. The main-reflector distortions in the masked areas are initially set to zero. An initial Zernike
series is computed. The Zernike series then is used to fill in an approximate distortion in the masked
areas, and a new Zernike series is computed. The process is repeated until convergence of the Zernike
coefficients is achieved. Less than 10 iterations of this process results in a smooth extrapolation of the
surface distortion into the masked areas.

The deformable-mirror surfaces computed for this work were based on including 91 terms in the
Zernike expansion of the main-reflector distortions. Although including more terms would better model
higher-order surface distortions in the main reflector, including them was found to have essentially no
impact on the final actuator positions computed for the deformable mirror. This is expected since the
actuator density on the mirror determines the scale of distortion that may be corrected. In this case,
the resolution of the actuators is already greatly exceeded by the 91-term Zernike expansion of the main-
reflector distortion.
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Fig. 2.  Flow chart describing the computation of the
deformable mirror.

2. Step 2: Ray Trace of the Distorted-Reflector System. As mentioned above, due to the large
size of the reflectors on DSS 14 in terms of wavelengths at 32 GHz, a ray-based approach to determining
the deformable-mirror surface is deemed satisfactory. The validity of this assumption is tested in a
subsequent section of this article, where physical optics (PO), which takes into account diffraction effects,
is used to evaluate the performance of the system. A modified version of MACOS, a JPL-produced code,
was used to trace the rays through the distorted-reflector system. The code was modified to increase the
maximum number of terms in the Zernike expansion of the surfaces. Due to details regarding the manner
in which arbitrary surfaces are handled in MACOS, this modification turned out to be non-trivial.

As illustrated in Fig. 2, the Zernike coefficients for the distortion are combined with the file describing
the nominal-reflector system geometry and fed into MACOS. The shaped subreflector and main reflector
are described by 21-term, rotationally symmetric, Zernike expansions. The additional Zernike terms
describing the deformation then are added to the nominal main-reflector surface description. The ellipsoid,
which refocuses the incoming radiation through the deformable mirror to the remote feed location, also
is included in the model. All hardware locations and rotations are included in the model.

The analysis begins by launching a bundle of approximately 4000 rays into the main reflector. Masks
are applied, limiting the maximum diameter of the main reflector and subreflector. An additional mask is
applied to eliminate the tricone area of the main-reflector surface. The rays are traced to the subreflector
and finally to the ellipsoid, where they are reflected toward the deformable mirror. Figure 3 shows a low-
resolution two-dimensional plot of the reflector geometry and a subset of rays. The output capabilities of
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MACOS then are employed to generate an output file containing the ray positions, directions, and ray-path
lengths immediately after reflection from the ellipsoid. For a typical run, this file contains information
on approximately 3200 rays that survive the masking operations. The ray information contained in this
file then is employed in the last step of the process, as described below.

3. Step 3: Computation of the Deformable-Mirror Surface. The final step in the calculation
is performed in the program PL.EXE, as illustrated in Fig. 2. The ray information from MACOS is
combined with information on the location of the center of the deformable mirror, the required focal
point for the ray bundle, and the overall path length required. For each ray, a point on the deformable-
mirror surface is determined as described below. A file consisting of a point-wise description of the
deformable mirror containing approximately 3200 data points finally is produced. Figure 4 shows an
example deformable-mirror distortion profile, interpolated and plotted with Matlab.

Points on the deformable mirror are computed using a simple algorithm. Starting at the ellipsoid, each
ray is propagated forward toward the deformable mirror until the distance propagated plus the distance
to the required focal point is equal to the overall path length required. For an undistorted main reflector,
this process results in a tilted flat plate. This simple path-length-based algorithm was used to compute
the deformable-mirror surface for each elevation angle of interest. The validity of this simple algorithm
will be assessed in a later portion of this article via a physical optics analysis of the entire antenna system
with the deformed mirror in place. As is discussed later in this article, the “ideal” deformable-mirror
surface so determined is used along with the x- and y-coordinate locations of the actuators to arrive at the
best set of z-axis displacements. The various approximations and limitations of the ray-trace approach
are discussed below.
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Fig. 4.  A sample computed deformable-mirror surface.
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4. Discussion of Limitations. A number of limitations in the above design procedure need to be
discussed. One basic limitation is in the decision to ignore diffraction entirely and to use a ray-based
approach. As was discussed above, the penalty paid for ignoring diffraction is not significant and will
be computed exactly in a later section. Another limitation is that only a finite number of rays are used
to define the mirror surface. This limitation is not significant since the surface described by 3200 rays
contains details not resolvable by the finite number of actuators in the actual deformable mirror.

The most significant limitations involve the description of the reflector surfaces in terms of a finite
Zernike series. The main-reflector distortions are described to a level exceeding that required for de-
termining the actuator positions. Since the surfaces are shaped rather than being a conventional hy-
perbola/parabola, the undistorted main-reflector and subreflector surfaces also are described by a finite
Zernike series. A ray trace of the undistorted system reveals that a perfect focus is not achieved using
only 21 circularly symmetric terms in the representation of the shaped reflectors. The major source of
error is in the representation of the subreflector near its apex. In this region, the slope of the subreflector
is discontinuous due to the presence of the vertex plate. The vertex plate directs rays away from the
tricone area in the center of the main reflector. Such a surface is not well described in this region by
a finite-length Zernike series. The impact of this limitation in the description of the subreflector is also
small, as reflected in the physical optics calculations. In the future, it would be beneficial to investigate
methods for inserting a better model for the undistorted reflectors into MACOS.

B. Perfect, Actual, and Measured Plates

The output of the ray-tracing analysis provides the so-called perfect-plate geometry, the geometry that
will, in a ray-trace sense, perfectly phase compensate for the distortion. The actual DFP is made up
of a thin aluminum sheet backed by 16 actuators (see Fig. 5) whose locations were originally chosen to
compensate for the distortion of the DSN 34-m antenna and do not optimally match the desired shapes
that compensate the 70-m antenna. A computer program does exist (derived from the analysis described
in [5]), however, to predict the actuator displacement values that produce a plate surface that best fits
the desired perfect-plate geometry. Using the best-fit actuator displacements, the surface shape of the
actual DFP can be determined. This is the predicted shape of the actual mirror and is the best that
can be done with the existing 16 actuators. An example of the process is shown in Fig. 6. Figure 6(a)
is the perfect plate geometry and is defined only over the portion of the plate that intercepts the rays
reflected from the main reflector. The rays intercept a diameter of only about 18 in. (46 cm), whereas
the actual plate is 27 in. (68.6 cm) in diameter. Figure 6(b) is the predicted shape based upon actuator
displacements that best fit the desired shape. Figure 6(c) is a measurement of the actual plate geometry
and is within 0.010 in. (0.25 mm) rms of the calculated shape.

III. Physical Optics Computational Techniques

The basic analysis technique used is the physical optics program described in [6]. For computational
speed, the program was converted to run in parallel on the California Institute of Technology exemplar
computer where, on 128 processors, it runs over 100 times faster than on a 266-MHz Pentium Pro
computer.

The undistorted asymmetric 70-m dual-reflector system is approximated by a symmetric system since
a drawing of the subreflector with sufficient accuracy for 32 GHz (Ka-band) was not available. However,
based on analysis of similar systems, the error introduced by using a symmetric system instead of the
actual asymmetric system should be very small and would not alter the basic conclusions. The main-
reflector distortions are modeled by a set of Zernike polynomials derived from the processed holography
maps [3]. The feed patterns are computed using the corrugated feed program and an exact mechanical
description of the feed.
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The 16-actuator plate geometry is derived from the ray-based theoretical description (previous section)
and a computer program [5] that computes the actual shape based upon actuator locations and a finite-
element model of the mechanical plate. The perfect plate uses a smoothed version of the theoretical
description.

For various reasons, there were additional approximations used in computing the performance of the
DFP. Since, when the initial calculations were performed, the errors in the geometry regarding the position
of the ellipse were not known, the errors in the tilt and location of the ellipse relative to the intended
geometry are not included. Also, the DFP surfaces used in the experiment were generated assuming the
DFP was positioned 30 in. (76.2 cm) from the F2 ellipse focal point, not the actual geometry of 28 in.
(71.1 cm). Although these differences will lead to some reductions in the DFP performance, it is expected
that the error will be small and will not alter the conclusions of the experiment.

IV. Focal Plane Analysis

To provide some insight into the performance of the various systems, the focal fields are displayed
for several conditions. Figure 7 shows the focal plane fields for an undistorted system. It is easy to
envision that a single feed horn with the proper spot size would be optimal for this system. It should be
noted that none of the auxiliary rings associated with an Airy pattern are present. They are not present
in the dual-shaped reflector system. Figures 8 through 10 show the focal plane fields are significantly
spread out for the distorted cases over the focal plane region, especially for the 85-deg case. Also shown
on the 85-deg-elevation map is an outline of the 7-element array feed. For this case, it is obvious that
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there is significant spillover past the feed horns, limiting the possible improvement of the current array
feed. Figures 11 through 13 show the results at F2 for the case of the 16-actuator plate and the smoothed
theoretical plate. Observe that the focal plane spread has been significantly reduced. Also observe that
the theoretical plate provides nearly complete compensation.

V. Baseline Efficiency

The baseline efficiency was measured at both the F1 and F2 focal points. At F1, the center feed of the
AFCS was used, and, at F2, the standard 22.5-dBi horn was used. See [1] for a complete description of
the data analysis. Using the expected gain difference between F1 and F2, the data at F2 were referenced
to F1 and plotted on the same graph (see Fig. 14). Using the all-elevation-angle holography model of
the antenna distortion, a complete physical optics analysis was made, predicting antenna performance
versus elevation angle. The computed efficiency is the combination of factors not directly included in
the physical optics program plus the computation of the efficiency due to the modeled geometry and
main-reflector surface shape. The items not directly included in the PO computation are summarized
in Table 1. The most significant term is the projection of the medium-resolution holography rms results

9



-62.3

-28.0

-22.0

-16.0

-10.0
-4.0

7.6

5.1

2.5

0.0

-2.5

-5.1

-7.6
-7.6 -5.1 -2.5 0.0 2.5 5.1 7.6

X-AXIS, cm

Y
-A

X
IS

, c
m

INTERPOLATED DATA
DEFINED LEVELS
Y-COMPONENT

Fig. 7.  Focal plane distribution of the undistorted dual-reflector system.

dB

7.6

5.1

2.5

0.0

-2.5

-5.1

-7.6

Y
-A

X
IS

, c
m

-7.6 -5.1 -2.5 0.0 2.5 5.1 7.6
-65.2

-28.0
-22.0
-16.0
-10.0

-4.0

X-AXIS, cm

INTERPOLATED DATA
DEFINED LEVELS
Y-COMPONENT

Fig. 8.  Focal plane distribution of the dual-reflector system, elevation = 15 deg.

dB

10



7.6

5.1

2.5

0.0

-2.5

-5.1

-7.6
-7.6 -5.1 -2.5 0.0 2.5 5.1 7.6

-57.1

-28.0

-22.0

-16.0

-10.0

-4.0

X-AXIS, cm

Y
-A

X
IS

, c
m

INTERPOLATED DATA
DEFINED LEVELS
Y-COMPONENT

Fig. 9.  Focal plane distribution of the dual-reflector system, elevation = 45 deg.

dB

12.7

10.2

7.6

0.0

-7.6

-10.2

-12.7
-12.7 -7.6 -2.5 2.5 7.6 12.7

-67.6

-28.0

-22.0

-16.0

-10.0
-4.0

X-AXIS, cm

Y
-A

X
IS

, c
m

INTERPOLATED DATA
DEFINED LEVELS
Y-COMPONENT

Fig. 10.  Focal plane distribution of the dual-reflector system, elevation = 85 deg.

AFS TO SCALE

dB

-5.1

-2.5

5.1

2.5

11



7.6

5.1

2.5

-2.5

-5.1

-7.6

0.0

7.6

5.1

2.5

-2.5

-5.1

-7.6

0.0

-7.6 -5.1 -2.5 0.0 2.5 5.1 7.6

X-AXIS, cm

-7.6 -5.1 -2.5 0.0 2.5 5.1 7.6

X-AXIS, cm

Y
-A

X
IS

, c
m

-63.4

-28.0
-22.0
-16.0
-10.0

-4.0

-70.9

-28.0
-22.0
-16.0
-10.0

-4.0

(a) (b)

Fig. 11.  Focal plane distribution at F2, elevation = 15 deg (interpolated data, defined levels, y-component):
(a) actual plate and (b) smoothed perfect plate.
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(a) actual plate and (b) smoothed perfect plate.
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to infinite-resolution rms. This is due to the fact that the medium-resolution maps do not contain all
the very high-order random rms distortions, and this additional loss must be accounted for separately.
The number is based upon comparison of the rms from measured low, medium and high resolution at
the rigging angle and projecting the curve to infinite-resolution rms. The three-angle holography data
are only medium resolution; hence, it is necessary to include the loss due to the missing very high-order
random distortions.

Figure 14 contains two computed differences—the efficiency due to using the Zernike polynomial
description of the main reflector and the efficiency using the full medium-resolution holography maps. As
can be seen, there is a significant amount of loss not accounted for by the Zernike polynomial description
of the main-reflector surface.
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Fig. 13.  Focal plane distribution at F2, elevation = 85 deg (interpolated data, defined levels, y-component):
(a) actual plate and (b) smoothed perfect plate.
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VI. Comparison of Computed Versus Measured Results

The computed versus measured results for the array feed at F1 are shown in Fig. 15. The data
represent the gain improvement obtained by using the seven-element array feed over the power in the
center element alone. Two cases are shown—one using the Zernike polynomial representation of the main
dish and the other using the full holography maps. Even though there is a significant gain difference
between the Zernike polynomials and the full holography maps (see Fig. 12), there is only a very modest
improvement in the array feed performance. This indicates that the higher-order distortions in the full
holography maps versus the Zernike polynomial description cannot be compensated by the array feed.
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Table 1. DSS 14 estimated efficiency performance
at Ka-band without compensation (rigging angle
approximately 42 deg).

Item Ka-band

Main reflector dissipative loss 0.9991

Panel leak 0.9975

Panel gap 0.9982

Subreflector dissipative loss 0.9991

Beam squint 0.9954

Subreflector focus 1.0000

Cassegrain VSWR (voltage standing- 0.9990
wave ratio) loss

Medium-resolution holography 0.7776
rms to infinite

Terms not in PO computation 0.767
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Fig. 15.  Predicted and measured AFCS compensation.
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POLYNOMIALS

USING FULL HOLOGRAPHY

The computed versus measured results for the DFP compensation are shown in Fig. 16. Both the com-
puted and measured results represent the difference between the DFP in the flat (uncompensated) and
flexed (compensated) modes. Since the derivation of the shape of the DFP used only the Zernike polyno-
mial representation of the main-dish distortion, only small differences were expected between calculated
results with either surface representation.

The computed versus measured results for the combined DFP–AFCS are shown in Fig. 17. There
are several curves shown on the figure. The lower solid curve is the measured baseline efficiency. The
calculated results for the combined DFP–AFCS using the full holography maps are shown in circles, and
the calculated results using the Zernike polynomial representation of the surface are shown as triangles.
The gain using the Zernike polynomial surface description has been reduced by 3.4 dB to account for
the loss due to the random component of the surface not included in the Zernike polynomial representa-
tion of the surface. The measured performance of the combined DFP–AFCS system is shown, but only
data for lower elevation angles were obtained. Observe that the measured and calculated values agree
to within a few percent. Also observe that the combined system recovers almost all of the gain lost due
to the systematic distortion (represented by the Zernike polynomial description of the surface) but does
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Fig. 17.  Predicted and measured compensation with
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not recover the random component of the surface distortion (the 3.4-dB difference between the Zernike
polynomial and the full holography maps). It is anticipated that a majority of the random component
will be recovered by resetting the main reflector.

Also shown in Fig. 17 is the expected performance if a so-called “perfect DFP” were used. A perfect
DFP means that the required shape of the plate as determined by the Zernike polynomial expansion of
the main-reflector surface is replicated exactly. With an improved DFP, it should be possible to get close
to the required surface and produce performance close to this prediction. Observe that the perfect DFP
does not recover the random component of the distortion, as this distortion is not even included in its
determination.
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VII. System Characteristics

Each (DFP or AFCS) system has different characteristics, and the intent of this section is to use
the analytical tools to further understand and document these differences. The section will consist of a
statement of the characteristic and an explanation or proof of the validity of the statement.

(1) The current analytical model used for the main-reflector shape does not contain all the dis-
tortion.

The Zernike polynomial description of the main-reflector surface shape was used to design
the DFP. It is obvious from Fig. 14 that this description of the main-reflector surface shape
is several dB short of the actual loss in the 70-m antenna. Even the full medium holog-
raphy description falls 1.15-dB short of the actual losses (see Table 1). A picture of the
15-deg elevation-angle surface is shown in Fig. 18. Figure 18(a) shows the Zernike polynomial
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Fig. 18.  The 15-deg elevation-angle main-reflector surface:  (a) Zernike polynomial representation
(raw data, autolevel on, y-component) (b) full holography (raw data, user-specified levels,
y-component), and (c) the difference between the two surfaces (raw data, user-specified levels,
y-component).
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characterization, Fig. 18(b) the full holography representation, and Fig. 18(c) the difference
between the two surfaces. Observe that this difference is a very random surface and that
neither the AFCS nor the DFP accurately compensates for this random component of the
distortion. This random component can be greatly reduced by resetting the main-reflector
surface.

(2) The DFP requires an accurate description of the main-reflector surface shape; the AFCS does
not.

As seen in the earlier description of the design of the DFP, the basic determination of the
DFP requires knowledge of the surface. The AFCS uses the measured signals from the feeds
to determine the correct combining weights and does not need to know the shape of the
surface to maximize the received signal. However, knowledge of the surface is required for
performance prediction.

(3) For the larger distortions, energy spills past the AFCS, but not past the DFP.

It is clear from the focal plane plots (see especially Fig. 10 for 85-deg distortion) that, for the
larger distortion cases, there is significant energy in the focal plane outside the range of the
AFCS. This also can be seen in plots where a bundle of rays are traced from the reflector to
the focal plane, as in Fig. 19. For the DFP (Fig. 20), all rays and, consequently, all the energy
are captured by the DFP. This is because the location selected for the DFP is in a position
where there is a mapping of the dual-reflector system onto the DFP.
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Fig. 19.  Rays in the focal plane including the full extent of the AFCS for elevations of
(a) 15 deg, (b) 45 deg, and (c) 85 deg.
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Fig. 20.  Rays hitting the DFP (all rays hit the DFP) for elevations of (a) 15 deg, (b) 45 deg, and (c) 85 deg.
The DFP diameter is 68.6 cm, and the area shown is 45.7 cm.

(4) The DFP readjusts the beam to put the peak on the mechanical boresite.

When the dish is distorted because of gravity, the main beam generally is distorted and
scanned from the mechanical boresite direction (see Fig. 21(a) for 75-deg elevation). The
DFP both corrects the beam shape and puts the beam peak on the mechanical boresite [see
Fig. 21(b)]. The combined gain plot for the AFCS for this case (Fig. 22) shows that the array
does not put the beam peak on the mechanical boresite. The combined gain plot of Fig. 22(b)
is not a pattern plot but shows the maximum possible gain of the array in each of the given
directions. This plot is useful for determining the optimum gain of the AFCS. However, if the
AFCS is used in conjunction with the DFP, since the DFP puts the center-horn peak on the
mechanical boresite, the combined gain of the AFCS is also on the mechanical boresite (see
Fig. 23).

(5) When using the DFP, the monopulse null points in the direction of the main beam peak.

As mentioned earlier, when the dish is distorted, the main beam generally is misshapen
and scanned from the mechanical boresite and, in general, the monopulse tracking system
would not necessarily point in the direction of the main-beam peak. However, as can be seen
in Fig. 24, the difference pattern as well as the sum pattern points in the direction of the
mechanical boresite and, consequently, the sum and difference patterns are co-aligned.
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Fig. 21.  The DFP readjusts the beam to put the peak on the mechanical boresite (75-deg elevation):
(a) no DFP compensation (interpolated data, autolevel on, y-component) and (b) DFP compensation
(interpolated data, defined levels, y-component).
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(6) The current AFCS cannot provide vernier beam steering.

In Fig. 25, the maximum gain possible from the AFCS at each point on the −20 to 20 mdeg
grid is plotted. An undistorted antenna is assumed for these calculations. As expected, max-
imum gain is produced on axis. In addition, nearly identical gain is produced at six other
locations. These locations correspond to excitations in one of the six outer horns with es-
sentially zero amplitude in each of the other horns. For regions between these peaks, the
maximum gain falls to more that 10-dB below this peak and drops to nearly zero outside
these six peaks.

Figure 25 shows that the AFCS provides essentially no electronic scan capability. It is capable
of providing seven distinct, non-overlapping beams in the far field. This is expected due to the
large gain of the individual AFCS elements. Arrays with significant scan capability typically
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are constructed with element sizes on the order of a wavelength or less and a high ratio of
effective aperture to physical aperture. The AFCS horns are over four wavelengths in diameter
and have highly tapered aperture distributions.

Figure 26 shows the gain of the center feed and the maximum gain available from the AFCS
for scanning in two planes. The x-scan plane corresponds to the favorable situation depicted
in the figure, while the y-scan corresponds to the unfavorable situation. For scans of less than
5 mdeg around the antenna boresite, the AFCS provides nearly zero additional gain relative
to the center feed alone. In the favorable situation, it recovers almost the total available gain,
minus some small scan loss, for a distinct scan angle of approximately 15 mdeg.

20



Y
-A

X
IS

, m
de

g

-28.3
-26.0

-22.0

-18.0

-14.0

-10.0

20.0

10.0

0.0

-5.0

-15.0

-20.0

X-AXIS, mdeg X-AXIS, mdeg

(a) (b)

15.0

5.0

-10.0

-6.0

Fig. 25.  AFCS electronic scanning contour plots:  (a) far-field combined gain (interpolated data,
defined levels, y-component) and (b) far-field center horn (interpolated data, defined levels,
y-component).

-48.5

-28.0
-24.0
-20.0
-16.0
-12.0

-8.0

0.0
-2.0 -4.0

-20.0 -15.0 -10.0 -5.0 0.0 10.05.0 15.0 20.0 -20.0 -15.0-10.0 -5.0 0.0 10.05.0 15.0 20.0

20.0

10.0

0.0

-5.0

-15.0

-20.0

15.0

5.0

-10.0

dB dB

20-10 0 10-20 -15 -5 5 15

AFCS Y-SCAN

AFCS X-SCAN

SINGLE FEED

50

SCAN ANGLE, mdeg

Fig. 26.  AFCS electronic scanning:  linear cuts.

G
A

IN
, d

B
i

55

60

65

70

75

80

85

90

(7) Neither the AFCS nor the DFP corrects for small errors in subreflector offset.

The AFCS has the capability to correct for some of this real-time gain loss by electronically
recombining the signals in an optimum way. As an example, we consider the simple case
of defocus, electronically compensating for the inability to move the subreflector in response
to real-time effects. For the following calculation, we assume a perfect antenna except for a
subreflector defocus.

The situation in the focal plane is depicted in Fig. 27. A simple defocus will increase the
spot size in the focal plane of the antenna. For a small defocus, we expect very little of the
energy will spill past the center feed. Because of the defocus, the shape of the distribution
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will not match the feed distribution exactly, and some of this power will be reflected off the
center feed. Thus, we do not expect the AFCS to provide excellent compensation for small
defocus. For a large defocus, significant energy may fall into the outer ring of feeds, and a
more significant improvement in gain may be expected from the AFCS.

A simulation of the ability of the AFCS to compensate for defocus was carried out using
physical optics. The results are presented in Fig. 27. For a subreflector defocus of 0.89 cm,
the predicted gain loss is 3.5 dB. The AFCS is capable of recovering 1.0 dB of this loss. Note,
however, that for very small motions (0.15 to 0.4 cm) there is almost no improvement from
the AFCS.

Since there is no adjustment of the DFP for real-time effects like subreflector motion, the
DFP offers no correction for such effects.

VIII. Conclusions

Either system provides partial distortion correction, and the combined AFCS–DFP system both ana-
lytically and experimentally does an excellent job of distortion compensation. We also have shown that,
with an accurate knowledge of the surface, a perfectly shaped DFP alone can provide significant distortion
compensation.
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Fig. 27.  AFCS defocus compensation.
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