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The Gray-Box Approach to Sensor Data Analysis
M. Zak1 and H. Park1

Model-based fault diagnosis has become an important approach for diagnosis of
dynamical systems. By comparing the observed sensor values with those of the
values predicted by the model, e.g., the residual, the health of the system can be
assessed. However, because of modeling errors, sensor noise, disturbances, etc.,
direct comparison of observed and predicted values can be difficult.

In an effort to address this problem, we present a new method called the gray-box
method. It is called a “gray box” because a deterministic model of the system, i.e.,
a “white box,” is used to filter the data and generate a residual, while a stochastic
model, i.e., a “black-box,” is used to describe the residual. Instead of setting a
threshold on the residual, the residual is modeled by a three-tier stochastic model.
The linear and nonlinear components of the residual are described by an autore-
gressive process and a time-delay feed-forward neural network, respectively. The
last component, the noise, is characterized by its moments.

The stochastic model provides a complete description of the residual, and the
faults can be detected by monitoring the parameters of the autoregressive model,
the weights of the neural network, and the moments of noise. The method is robust
to system modeling errors and is applicable to both linear and nonlinear systems.

I. Introduction

Fault diagnosis is an important element in realizing truly autonomous vehicles. Reliable information
about the operational health of the vehicle is crucial for proper mission planning and on-board intelligent
decision making. To fully assess the vehicle health, the diagnostic system must have comprehensive ability
to sense impending failures, rather than failures, and operational difficulties. While fixed thresholds, i.e.,
traditional redlines, may be sufficient for simple steady-state systems, more sophisticated diagnostic
techniques are needed for unsteady operations and detection of incipient faults.

The natural starting point for a more sophisticated diagnosis is the model of the system. Fortunately,
many systems, such as aircraft, spacecraft, gas turbine engines, hydraulic systems, etc., usually have well-
developed dynamic models. The most straightforward application of the model for diagnosis is to compare
the observed sensor readings with those predicted by a model. If the difference between the observed and
the predicted values, i.e., the residual, is greater than some set threshold value, an anomaly has occurred.
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In practice, however, it is not straightforward to compare the observed and predicted values because the
quality of the model may vary and noise may be present. If the model is inaccurate or has insufficient
detail, the predicted values may differ greatly from those of the actual system. Some deviations are
unavoidable since there is no theoretical description for the phenomenon. For example, secondary effects
such as friction, thermal effects, sensor noise, etc., may not have simple model descriptions. In other cases,
the model can be purposely coarse, i.e., contain insufficient detail, to facilitate real-time computations.

In an effort to mitigate the problem of comparing observed and predicted values, many different
approaches have been developed to generate robust residuals and/or thresholds for anomalies. A compre-
hensive overview of model-based fault diagnosis is found in Chen and Patton [1]. These methods include
adaptive threshold methods, observer-based approaches, parity relation methods, parameter estimation
methods, and statistical testing methods.

In adaptive threshold methods, the threshold on the difference between the observed and predicted
values is varied continuously as a function of time [2]. The method is passive in the sense that no
effort is made to design a robust residual [1]. The unknown input observer (UIO) and parity relation
methods are active since the residual is made to be robust to known disturbances and modeling errors.
The residual is sensitive to only unknown disturbances that are likely to be anomalies or faults in the
system. The drawback of these methods is that the structure of the input disturbances and modeling
error must be known. In addition, the methods are applicable to mostly linear systems. The parameter
estimation methods use system identification techniques to identify changes in the model parameters of
the dynamical system. The advantage of this method is that the implementation is straightforward, and it
can deal with nonlinear systems. The disadvantage is that a large amount of computational power may be
required to estimate all of the parameters in the model. Finally, statistical testing methods use statistical
techniques such as the weighted sum-squared residual (WSSR), x2 testing, sequential probability ratio
testing (SPRT), the generalized likelihood ratio (GLR), etc., to differentiate between normal noise and
anomalous sensor values. The disadvantage of this method is that the residual is assumed to be a
zero-mean white-noise process with known covariance matrix. The residual in many cases may not be
describable in this manner.

II. Gray-Box Method

In an effort to improve model-based fault diagnosis, we propose a new approach called the gray-box
method. It is called a “gray box” because it incorporates both a “black box,” i.e., a stochastic model,
and a “white box,” i.e., a deterministic model. It is a hybrid model incorporating elements from residual-
based methods and parametric-estimation methods. It is similar to adaptive-threshold methods in that
a residual is generated without any regard for robust residual generation. However, instead of examining
the amplitude of the residual as in the case of the adaptive threshold methods, the structure, i.e., the
model parameters, of the residual is examined. The residual generation is our white box. The residual is
modeled using techniques similar to the parametric estimation methods. The method is distinct from the
standard parametric estimation method in that the system identification is carried out on the residual, not
on the system variables directly. The residual is parameterized, not the full system. In our terminology,
the parameter estimation method is a black box.

A block diagram of the gray-box method is shown in Fig. 1. After filtering the deterministic components
using the model of the system, the residual is separated into its linear, nonlinear, and noise components
and is fitted to stochastic models. The parameters to the linear, nonlinear, and noise models completely
describe the residual. The gray box has several advantages. First, the full model is employed rather than
only the model structure, as in the case of standard parametric estimation methods. Thus the gray box
takes full advantage of the information about the system. Second, the gray-box method can be made
robust to modeling errors that can be taken care of during residual modeling. The model of the residual
also can describe many unmodeled phenomena in the original model. Finally, the method is applicable
to both linear and nonlinear systems.
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Fig. 1.  The gray-box approach to modeling
residual.

III. Residual Generation

Any theoretical dynamical model includes two types of components: those that describe the phenom-
ena directly associated with the primary function of the system (such as the effect on rotor speed of torque
exerted on the turbine shaft) and those that represent secondary effects (such as frictional losses, heat
losses, etc.). The first type of component usually is well understood and possesses a deterministic analyt-
ical structure, and, therefore, its behavior is fully predictable. On the other hand, the second type may
be understood only on a much more complex level of description (including molecular level) and cannot
be simply incorporated into a theoretical model. In fact, some components may be poorly understood
and lack any analytical description, e.g., viscosity of water in micro-gravity. Therefore, the first step in
the gray-box approach is to filter out the contributions that are modeled, i.e., the components of the first
type, and to focus on the components of the second type whose theoretical prediction is inadequate.

The residual generation is as follows. Let us assume that the theoretical model is represented by a
system of differential equations:

ẋ(t) = f
(
x(t),u(t)

)
+ y(t) (1)

where x(t) is the state variable vector, u(t) is the known input, and f is the known theoretical relationship
following from conservation laws of mechanics, thermodynamics, etc. The last term, y(t), represents
components that lack theoretical descriptions, are too complex, or are the result of modeling errors.
These can include sensor noise, unknown input to the system, friction in bearings, material viscosity, and
other secondary effects such as torsional oscillations of the shaft, flutter in the turbine and compressor
blades, incomplete fuel combustion, etc.

The estimate of the system is accomplished by substituting the observed sensor data for the evolution
of the state variables, x∗(t), and input, u(t). Hence,
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ẋ∗(t) = f
(
x∗(t),u(t)

)
(2)

The residual,

r(t) = x∗(t)− x̂∗(t) (3)

is generated by subtracting the solution of Eq. (2), x̂∗(t), which is generated by using the observed state
variables, x∗(t), from the solution of Eq. (1). Hence, the original theoretical model is the filter.

In general, the residual can be treated as another realization of some stochastic process. If the theoret-
ical model, Eq. (1), is accurate and accounts for most physical effects, and if the observed state variables
are accurate, then the residual, |r(t)|, will be very small, i.e.,

|r(t)| ¿ |x∗(t)| (4)

and either a fixed or an adaptive threshold can be assigned as a criterion for anomalous behavior. If
the system is linear and the structure of y(t) is known, a more sophisticated unknown input observer
(UIO) filter [1] can be constructed to make the residual more robust to modeling errors and disturbances.
However, in our gray-box approach, the simple form of Eq. (3) is preferred over the more robust residuals
since the residual is to be modeled. If the residual is too robust, the characteristic structure of y(t) will
become hidden.

As an example, consider the simplest gas turbine plant consisting of a turbine, 1; a compressor, 2; and
a combustion chamber, 3 (Fig. 2). Ignoring the thermal inertia of the combustion chamber, one can write
the following dynamic equation for the angular velocity, ω, of the shaft:

J
dω

dt
= M1(ω, µ)−M2(ω)−Mr(t) (5)

where J is the moment of inertia of the turbo-compressor (1−2) in the axis of rotation; M1 is the turning
moment generated by the turbine; M2 is the resistive moment applied by the compressor, bearings, etc.,
on the shaft; µ is the rate of fuel burned inside the combustion chamber; and Mr(t) is the random moment
applied by effects such as torsional vibration of the shaft, blade flutter in the compressor and turbine,
propagation of pressure pulses along the pipelines, heat loss, seal leaks, etc.

1

3

2 ω

Fig. 2.  Schematic of a gas turbine plant.
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The conditions for stability of the solutions of Eq. (5) are

∂M1

∂ω
< 0,

∂M2

∂ω
> 0 (6a)

or

∂

∂ω
(M1 −M2) < 0 (6b)

Consequently, if one linearizes Eq. (5) with respect to a steady-state regime where the rate of fuel burn
is constant, i.e,

µ = µo = constant (7)

Eq. (5) can be reduced to the form

ω̇ = −γω + Γ(t) (8)

where,

γ =
1
J

[
∂M1(ω, µ)

∂ω
− ∂M2(ω)

∂ω

]
µ=µo

> 0 (9)

and

Γ(t) =
Mr(t)
J

(10)

The Γ(t) represents a stochastic force, and Eq. (8) is a Langevin equation whose formal solution is

ω(t) = ωoe
−γt +

∫ t

0

e−γ(t−t′)Γ(t′)dt′ (11)

subject to the initial condition

ω = ωo at t = 0 (12)

This solution is the only information that can be obtained from the sensor data. The first term in Eq. (11)
is fully deterministic and represents all of the theoretical knowledge about the plant. The second term
includes the stochastic force, Eq. (10), and is stochastic. Hence, the stochastic process described by
Eq. (11) represents only a part of the sensor data. Substituting the measured sensor data, ω∗, into the
theoretical model, Eq. (8), the original stochastic force is immediately exposed as the inverse solution:

Γ(t) = ω̇∗ + γω∗ (13)
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Equation (11) shows that the more stable the model, i.e., the larger the value of γ, the less the
stochastic force, Γ(t), contributes to the sensor data since

0 < e−γ(t−t′) < 1 at t > t′ (14)

In other words, for highly stable dynamical models, the stochastic forces become deeply hidden in the
sensor data. However, using the theoretical model as a filter damps the deterministic components and
amplifies the stochastic components. This effect of damping deterministic and amplifying unknown com-
ponents, i.e, sensor noise, modeling errors, etc., is important if the residual is to be modeled properly.

IV. Residual Modeling

For the model of the residual, we start with a traditional description of sensor data given in the form
of a time series that describes the evolution of an underlying dynamical system. It will be assumed that
this time series cannot be approximated by a simple analytical expression and is not periodic. In other
words, for an observer, the future values of the time series are not fully correlated with the past ones,
and, therefore, they are apprehended as random. Such time series can be considered as a realization
of an underlying stochastic process that can be described only in terms of probability distributions.
However, any information about this distribution cannot be obtained from a simple realization of a
stochastic process unless this process is stationary. Then the ensemble average can be replaced by the
time average. An assumption about the “stationarity” of the underlying stochastic process would exclude
from consideration such important components of the dynamical process as linear and polynomial trends,
or harmonic oscillations. Thus, a method is needed to deal with nonstationary processes.

Our approach to building a dynamical model of the residual is based upon progress in three independent
fields: nonlinear dynamics, theory of stochastic processes, and artificial neural networks. From the field
of nonlinear dynamics, based upon the Takens theorem [3], any dynamical system that converges to an
attractor of a lower (than original) dimensionality can be simulated with a prescribed accuracy by the
time-delay equation:

x(t) = F
(
x(t− τ), x(t− 2τ), · · · , x(t−mτ)

)
(15)

where x(t) is a given time series, such as a variable in the residual vector, r(t), and τ , a constant, is the
time delay.

It was proven that the solution to Eq. (15) subject to appropriate initial conditions converges to the
original time series:

x(t) = x(t1), x(t2), · · · (16)

if m in Eq. (15) is sufficiently large.

However, the function F , as well as the constant τ and m, are not specified by this theorem, and the
most “damaging” limitation of the model, Eq. (15), is that the original time series must be stationary
since it represents an attractor. This means that for nonstationary time series the solution to Eq. (15)
may not converge to Eq. (16) at all. Actually, this limitation has deeper roots and is linked to the problem
of stability of the model, Eq. (15).

Before [3], a different approach [4] to the same problem was developed in the statistic community. A
discrete-time stochastic process can be approximated by a linear autoregressive model:
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x(t) = a1x(t− 1) + a2x(t− 2) + · · ·+ an(t− n) + z(t) as n→∞ (17)

where ai are constants and z(t) represents the contribution from white noise.

As shown by [7], any zero-mean purely nondeterministic stationary process x(t) possesses a linear
representation as in Eq. (17) with

∑∞
j=1 a

2
j <∞, i.e., the condition of the stationarity.

In order to apply Eq. (17), the time series Eq. (16) must be decomposed into its stationary and
nonstationary components. To “stationarize” the original time series, certain transformations of Eq. (16)
are required. These types of transformations follow from the fact that the conditions of stationarity of the
solution to Eq. (17) coincide with the conditions of its stability, i.e., the process is nonstationary when

|Gi| ≥ 1 (18)

where Gi are the roots of the characteristic equation associated with Eq. (17).

The case |Gi| ≥ 1 usually is excluded from considerations since it corresponds to an exponential
instability that is unrealistic in physical systems under observation. However, the case |Gi| = 1 is realistic.
Real and complex conjugates of Gi incorporate trend and seasonal (periodic) components, respectively,
into the time series Eq. (16).

By applying as many times as required a difference operator,

∇x(t) = x(t)− x(t− 1) = (1−B)x(t) (19)

where B is defined as the backward shift operator, one can eliminate the trend from the time series:

x(t), x(t− 1), x(t− 2), · · · (20)

Similarly, the seasonal components from the time series Eq. (20) can be eliminated by applying the
seasonal difference operator:

∇sx(t) = (1−Bs)x(t) = x(t)− x(t− s) (21)

In most cases, the seasonal differencing, Eq. (21), should be applied prior to standard differencing,
Eq. (19).

Unfortunately, it is not known in advance how many times the operators, Eq. (19) or (21), should be
applied to the original time series Eq. (20) for their stationarization. Moreover, in Eq. (21) the period s
of the seasonal difference operator also is not prescribed. However, several methods have been developed
to estimate the order of differentiation [4]. One simple estimate of the number of operations for Eq. (20)
is the minimization of the area under the autocorrelation curve.

Once the time series Eq. (20) is stationarized, one can apply to it the model Eq. (15):

y(t) = F
(
y(t− 1), y(t− 2), · · · , y(t−m)

)
(22)

where
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y(t), y(t− 1), · · · ;
(
y(t) = x(t)− x(t− 1)

)
(23)

are transformed series, Eq. (20), and τ = 1. After fitting the model Eq. (22) to the time series Eq. (20),
one can return to the old variable x(t) by exploiting the inverse operators (1−B)−1 and (1−Bs)−1. For
instance, if the stationarization procedure is performed by the operator Eq. (19), then

x(t) = x(t− 1) + F
([
x(t− 1)− x(t− 2)

]
,
[
x(t− 2)− x(t− 3)

]
, · · ·

)
(24)

Equation (24) can be utilized for modeling the residual,2 predictions of future values of Eq. (20), and
detection of structural abnormalities. However, despite the fact that Eqs. (22) and (24) may be signif-
icantly different, their structures are uniquely defined by the same function, F . Therefore, structural
abnormalities that cause changes of the function F can also be detected from Eq. (22), and, consequently,
for that particular purpose the transition to Eq. (24) is not necessary.

It should be noted that, strictly speaking, the application of the stationarization procedure, Eqs. (19)
and (21), to the time series Eq. (20) is justified only if the underlying model is linear since the criteria of
stationarity for nonlinear equations are more complex than for linear ones in the same way as the criteria
of stability are. Nevertheless, there is numerical evidence that, even in nonlinear cases, the procedures
of Eqs. (19) and (21) are useful in the sense that they significantly reduce the error, i.e., the difference
between the simulated and the recorded data if the latter are nonstationary.

V. Model Fitting

The models, Eqs. (22) and (24), that have been selected in the previous section for detection of
structural abnormalities in the time series Eq. (20) have the following parameters to be found from
Eq. (20): the function, F ; the time delay, τ ; the order of time delays, m; the powers, m1 and m2, of the
difference, (1−B)m1 , and the seasonal difference, (1−Bs)m2 ; and the period, s, of the seasonal operator.

The form of the function F we have selected for the residual is shown in Fig. 3. After stationarization,
the linear component is fit using the Yule–Walker equations [4], which define the autoregressive parameters
ai in Eq. (17) via the autocorrelations in Eq. (20). If sufficient, the residual left after removal of the linear
component, w(t), can be directly analyzed and modeled as noise.

If the linear model of the residual leads to poor model fitting, the best tool for fitting the nonlinear
component of the residual may be a feed-forward neural network that approximates the true extrapolation
mapping by a function parameterized by the synaptic weights and thresholds of the network. A rigorous
proof [6] states that any continuous function can be approximated by a feed-forward neural net with only
one hidden layer and, thus, is selected for fitting the nonlinear component after the linear component is
removed using Eq. (17). Hence, w(t) is sought in the following standard form of a time-delay feed-forward
network:

z(t) = σ

∑
j=1

W1jσ

[
m∑
k=1

wjkz(t− kτ)

] (25)

where W1j and wjk are constant synaptic weights, and σ (x) = tanh(x) is the sigmoid function.

2 The residual r(t) is assumed to be in the form of a discrete-time series. This is a valid assumption given that the gray
box will be implemented on a digital computer.

8



z (t ) = σ{  ∑ w1j σ [  ∑ wjk z (t  − k)]} + E (t )
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m
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Fig. 3.  Description of the residual data.

y (t ) =    x (t ) = x (t ) − x (t −1) = (1 − B ) x (t )

The model fitting procedure is based upon minimization of the mean standard error:

E (W1j , wjk) =
∑
i

z(t− i)− σ
∑
j=1

W1jσ

[
m∑
k=1

wjkz(t− kτ − i)
]
2

(26)

The error measure Eq. (26) consists of two parts:

E = E1 + E2 (27)

where E1 represents the contribution of a physical noise, while E2 results from nonoptimal choice of the
parameters of the model Eq. (25).

There are two basic sources of random components in E1. The first source is chaotic instability of
the underlying dynamical system; in principle, this component of E1 is associated with instability of
the underlying model, and it can be represented based upon the stabilization principle introduced by
[5]. The second source is the physical noise, imprecision of the measurements, or human factor, such as
multi-choice decisions in economical or social systems, one’s driving habits in the case of the catalytic
converter of a car, etc.

The last component of E1 cannot be presented by any model based upon classical dynamics, including
Eq. (22). However, as shown by [5], there are models based upon a special type of dynamics called
terminal, or non-Lipschitz, dynamics that can simulate this component. In the simplest case, one can
assume that E1 represents a variance of a mean-zero Gaussian noise.

The component E2, in principle, can be eliminated by formal minimization of the error measure
Eq. (26) with respect to the parameters W1j , wjk, τ , m, m1, m2, and s. Since there is an explicit
analytical dependence between E and W1j , wjk, the first part of minimization can be performed by
applying back propagation. However, further minimization should include more sophisticated versions of
gradient descent since the dependence E(τ,m,m1,m2, s) is too complex to be treated analytically.

VI. Anomaly Detection

As discussed in the previous section, there are two causes for abnormal behavior in the solution to
Eq. (25): (1) changes in external forces or initial conditions (these changes can be measured by Lyapunov
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stability and associated with operational abnormalities) and (2) changes in the parameters W1j , wjk,
i.e., changes in the structure of the function F in Eq. (22). (These changes are measured by structural
stability and associated with structural abnormalities. They can be linked to the theory of catastrophe.)

The measure we use for anomaly detection in the nonlinear component is

ζ =
∑[(

W1j −
o

W 1j

)2

+
(
wij −

o
wij

)2
]

(28)

where
o
W 1j and

o
wij are the nominal, or “healthy,” values of the parameters and W1j , wjk, are their current

values. If

ζ = |ε| (29)

where ε is sufficiently small, then there is no structural abnormality. The advantage of this criterion is
in its simplicity. It can be periodically updated, and, therefore, the structural health of the process can
be easily monitored.

Similar criteria can be generated for the parameters of the linear component, aj , and the noise com-
ponent that is modeled by the variance or higher moments. Unfortunately, there is no general method
for setting the threshold, ε, other than experience and heuristic methods. This is a problem faced by all
fault diagnosis.

VII. Conclusion

In this article, we present a new method called the gray-box method for model-based system diagnosis.
It is a hybrid model incorporating elements from residual-based methods and parametric-estimation
methods. The residual is generated by filtering the measured state variable with those predicted by
the system model. The residual is modeled by a three-tier stochastic model. The linear and nonlinear
components of the residual are described by an autoregressive process and a time-delay feed-forward
neural network, respectively. The last component, the noise, is characterized by its moments.

The faults are detected by monitoring the parameters of the autoregressive model, the weights of
the neural network, and the moments of noise. The method is applicable to both linear and nonlinear
systems, and computer simulations are being conducted to validate the method in practice.
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