
TMO Progress Report 42-144 February 15, 2001

A Generalized Pre-Processor for Block and
Convolutionally Coded Signals

V. Vilnrotter,1 C. Lee,1 and N. Lay1

The concept of a generalized data pre-processor for preliminary estimates of block
and convolutionally encoded symbols is described and evaluated. Preliminary data
estimates are envisioned to have application in removing binary phase-shift-keyed
(BPSK) modulated data from the received carrier prior to phase estimation, partic-
ularly in low signal-to-noise ratio (SNR) environments where squaring losses impose
a limit on estimator performance. Reception of weak signals from distant space-
craft, emergency-mode communications, and signals generated by small antenna
elements of a larger array provide practical examples of where this technique can
be used to improve overall system performance. Examples illustrating the potential
improvements in carrier recovery are evaluated using both analysis and system-level
simulation. The simulations include realistic block and convolutionally coded signals
of the type often encountered in practice, such as extended Hamming and extended
Bose–Chaudhuri–Hocquenghem (BCH) codes, along with short constraint-length
convolutional codes generally employed in turbo codes. It is shown that received
signal power can be reduced by as much as 6 dB when this technique is employed,
implying a similar reduction in required transmitter power or antenna area on the
spacecraft.

I. Introduction

The novel concept presented and evaluated in this article addresses the phase-estimation problem
under conditions of very low signal-to-noise ratio (SNR) characteristic of distant spacecraft, emergency-
mode communications, and reception of turbo-coded signals where symbol SNRs of −6 dB are routinely
encountered. This technique may also provide significantly improved phase estimates for the individual
elements of a large antenna array, such as the 400-element array of 5-meter antennas recently proposed
for the DSN, where symbol SNRs as low as −31 dB may be encountered.

The concept of an information-reduced maximum a posteriori (MAP) phase estimator for binary phase-
shift-keyed (BPSK) modulated signals has been presented in a previous article [1], where it was shown
that dramatic reductions in squaring-loss performance can be achieved by partially removing the data
modulation from the carrier before attempting to estimate the phase. With this approach, a partially
reconstructed carrier forms the input to a MAP carrier phase estimation loop designed to accommodate

1 Communications Systems and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

1

arbitrary data transition densities. The performance of this coupled system consisting of a pre-processor
and a phase estimator has been evaluated for the case of uncoded and block-orthogonal coded signals in
[2], where improvements of approximately 5 dB in squaring loss have been demonstrated at symbol SNRs
as low as −10 dB. Here we extend these earlier results to algebraic block codes and convolutional codes
in order to determine system performance when realistic codes are observed.

The system concept is illustrated in Fig. 1. First the data sequence is estimated using a symbol-
sequence estimator or data pre-processor, and then the estimated data sequence m̂(t −∆) is multiplied
with a delayed version of the sampled waveform. Even if the data estimates contain some errors, the
original data modulation will be largely removed, leaving only a residual error sequence on the carrier with
a necessarily lower transition rate than the original signal. This partially reconstructed carrier forms the
input to a MAP phase estimator whose structure depends on the transition rate at its input, as described
in [1,2]: with equal transition probabilities, the structure reduces to the familiar hyperbolic tangent loop,
whereas if the transition probability approaches zero, the in-phase arm in the MAP phase estimator is
completely eliminated, resulting in a conventional phase-locked loop. The MAP phase estimator supplies
the pre-processor with an estimate of phase, θ̂, whereas the pre-processor provides an estimate of the
residual transition rate, p̂, to the MAP carrier-tracking loop. Thus, it was shown that ideal phase-locked
loop performance can be achieved even at low symbol SNRs if the effects of the data modulation can be
removed.

GENERALIZED
PRE-PROCESSOR

DELAY
∆

MAP PHASE
ESTIMATOR

θp
m (t − ∆)

r 0 (t − ∆)r 0 (t)

Fig. 1. Block diagram of the coupled data pre-processor
MAP phase-estimation concept.

II. Signal and Noise Models

Consider a modulated sinusoidal signal received in the presence of additive narrowband noise,

r0(t) =
√

2Pm(t) cos
(
ω0t+ θ(t)

)
+ n(t) (1)

where m(t) represents amplitude modulation, θ(t) is a slowly varying random phase process, and ω0 =
2πf0, where f0 is the carrier frequency. The narrowband representation of the additive noise waveform is

n(t) =
√

2nc(t) cos(ω0t)−
√

2ns(t) sin(ω0t) (2)

where nc(t) and ns(t) are statistically independent, stationary Gaussian random processes, each with
two-sided spectral level Sn(f) = N0/2 and single-sided bandwidth W assumed to be much less than f0.
Defining

Nc(t) = nc(t) cos θ(t) + ns(t) sin θ(t)

Ns(t) = − nc(t) sin θ(t) + ns(t) cos θ(t)

 (3)

2

and using simple trigonometric identities, Eq. (2) can be rewritten in a form where the total noise has
been decomposed into a component that is in phase with the signal and phase-noise-modulated carrier,
plus a component in quadrature with it:

n(t) =
√

2Nc(t) cos
(
ω0t+ θ(t)

)
−
√

2Ns(t) sin
(
ω0t+ θ(t)

)
(4)

Note that this transformation does not change the statistics of the noise provided the phase process
remains constant over the observation interval.

Expanding the sinusoidal terms in Eq. (3) as complex exponentials, Eq. (1) can be rewritten as

r̃0(t) =
√

2Pm(t)
ej(ω0t+θ(t)) + e−j(ω0t+θ(t))

2
+ ñ(t) (5a)

where now

ñ(t) =
√

2Nc(t)
ej(ω0t+θ(t)) + e−j(ω0t+θ(t))

2
−
√

2Ns(t)
ej(ω0t+θ(t)) − e−j(ω0t+θ(t))

2j
(5b)

Let θ̂(t) be an estimate of the phase process θ(t). When this phase estimate is applied to a local oscillator
(LO), the resulting complex function can be represented as

s̃LO(t) ≡
√

2 e−j(ω0t+θ̂(t)) (6)

The received waveform can be frequency translated (or downconverted) without loss to complex baseband
by multiplying the received and local signals and complex-low-pass filtering the result (denoted CLP) to
eliminate the double-frequency terms, yielding the complex baseband waveform

r̃(t) = r̃0(t) s̃LO(t)|CLP =
√
P m(t) ejϕ(t) +

{
Nc(t) + jNs(t)

}
ejϕ(t) (7)

where ϕ(t) ≡ θ(t)− θ̂(t). If the phase estimate is suitably close to the true phase, so that ϕ(t) ≈ 0 ∀t,
then the downconversion is considered coherent; otherwise, it is partially coherent.

III. Coherent Detection

Assuming the coherent condition holds, the received signal reduces to

r̃(t) =
{√

P m(t) +Nc(t)
}

+ jNs(t) (8)

Note that the signal is contained entirely in the real part; therefore, only the real part of the complex
baseband signal needs to be observed when the coherent condition holds.

The real part of Eq. (8) is the real function

r(t) =
√
P m(t) +Nc(t) ≡ sm(t) +Nc(t) (9)

3

where ENc(t) = 0 with two-sided spectral level Sn(f) = N0/2 and single-sided bandwidth W . Assume
the noise bandwidth, W , is much greater than the signal bandwidth, B, and expand the received waveform
in an orthonormal series. If W À B Hz, then the noise autocorrelation function is of the form

R(t1 − t2) ≡ E
{
Nc(t1)Nc(t2)

}
= N0W

sin
(
2πW (t1 − t2)

)
2πW (t1 − t2)

∼= N0

2
δ(t1 − t2) (10)

In order to expand the signal and noise processes in a series with uncorrelated (for Gaussian noise,
independent) coefficients, we make use of the Karhounen–Loeve (K-L) expansion, and select as our basis
the set of functions {ψi(t)} that are the eigenfunctions of Eq. (10), satisfying the integral equation

∫ ∞
−∞

R(t1 − t2)ψi(t2) dt2 = λi ψi(t1) (11)

This integral equation is solved by the well-known sampling functions

ψi(t) =
√

2W
sin(2πWt− iπ)

2πWt− iπ (12)

with λi = N0/2 for 0 ≤ i ≤ 2WT ; 0 otherwise. When operating on any waveform bandlimited to W Hz,
these sampling functions effectively yield samples of the waveform at time instants i/2W :

∫ ∞
−∞

r(t)ψi(t) dt =
1√
2W

r

(
i

2W

)
≡ ri = sm,i + ni (13)

Therefore, if the observation interval is suitably great (so that 2WT À 1), the received random waveforms
can be represented using a K-L expansion with uncorrelated coefficients as

r(t) =
2WT∑
i=0

ri ψi(t) dt =
2WT∑
i=0

sm,iψi(t) +
2WT∑
i=0

niψi(t) (14)

where sm,i ∼=
∫ T

0
sm(t) ψi(t) dt represents samples of the signal, and similarly ni represents samples of

the noise.

IV. Maximum-Likelihood Detection

In the above derivation, the probability density of each noise sample was assumed to be Gaussian of
the form

pNc(ni) =
1√
2πσ

e−n
2
i /2σ

2
(15)

Because the sampling functions are approximate solutions of the integral Eq. (11), different samples are
uncorrelated and hence independent for the case of Gaussian processes. The probability density of a
vector of noise samples can therefore be expressed as the product of the individual densities:

4

pNc(n) =
2WT∏
k=0

pNc(nk) =
1

(2πσ2)(2WT+1)/2
e−
∑2WT

k=0
n2
k/2σ

2

(16)

The probability density of the received vector, conditioned on the signal waveform m(t), can be obtained
from Eq. (16) directly by noting that n(t) = r(t)− sm(t); therefore,

pr
(
r|sm(t)

)
= pNc

(
r− sm|sm(t)

)
=

1(
2πσ2

)(2WT+1)/2
e−
∑2WT

k=0
(rk−sm,k)2/2σ2

(17)

where r and sm are vectors of coefficients representing the received and signal waveforms. In decision
theory, this conditional density is called the likelihood function and is the quantity to be maximized
over the set of messages for maximum-likelihood detection. If sm(t) represents one of M equally likely
messages, the likelihood of the observed vector is evaluated for each of the M possible messages, and the
one with the greatest numerical value is selected as our best estimate of the transmitted message, given
the observed vector of samples. Since maximization of a monotone-increasing function of the likelihood
will provide the same result, it is convenient to maximize the natural logarithm of the conditional density,
yielding the log-likelihood function

ln p
(
r|sm(t)

)
= − 2WT + 1

2
ln
(
2πσ2

)
−
∑
k

(rk − sm,k)2

2σ2

= − 2WT + 1
2

ln
(
2πσ2

)
−
∑
k

r2
k

2σ2
−
∑
k

s2
m,k

2σ2
+
∑
k

rksm,k
σ2

(18)

The first two terms on the right-hand side do not depend on m and hence cannot be used to differentiate
between the signals. The third term does depend on m but only through the sum of squares of the
coefficients. If the sum is independent of the message (i.e., equal-energy signals), then this term can also
be ignored. Assuming equal-energy signals and multiplying through by the common scale factor yields
the decision function

Λm =
∑
k

rksm,k = r · sm, m = 1, 2, · · · ,M (19)

which is seen to be the inner product of the mth signal and received vectors. Thus, that signal is selected
whose correlation with the received vector is the greatest. By substituting the integral form of the samples
and letting 2WT = K, this can also be written in terms of the original time functions as

Λm =
K∑
k=0

rksm,k =
K∑
k=0

∫ T

0

r(t1)ψk(t1)dt1
∫ T

0

sm(t2)ψk(t2)dt2

=
∫ T

0

dt1

∫ T

0

dt2 r(t1)sm(t2)
K∑
k=0

ψk(t1)ψk(t2) ∝
∫ T

0

dt1

∫ T

0

dt2 r(t1)sm(t2)R(t1 − t2)

∼= N0

2

∫ T

0

dt1

∫ T

0

dt2 r(t1)sm(t2)δ(t1 − t2) =
N0

2

∫ T

0

r(t)sm(t)dt (20)

5

Here we made use of Mercer’s theorem to substitute the correlation function for the sum of sampling-
function products in the second line. Therefore, it can be seen that the mth log-likelihood function can
be equivalently expressed as the correlation of the received waveform with the mth signal waveform. The
continuous version of the log-likelihood function often yields an accurate representation of densely sampled
waveforms—that is, waveforms that are sampled much faster than the inverse of the signal bandwidth.

V. Information Transfer and Performance of Binary Sequences

The above derivation holds for arbitrary M -ary BPSK-modulated signals in additive Gaussian noise
and demonstrates that, for the case of equilikely signals, best performance is obtained by correlating the
received waveform with all possible realizations of the signal. However, not all signal sets yield the same
detection performance nor provide the same information transfer to the receiver, as we now demonstrate.

Consider the case of BPSK modulation, where the amplitude of the received signal is modulated with
a sequence of real binary symbols taking on the value +

√
P or −

√
P in each consecutive τ second time

interval. Thus, if the mth transmitted symbol consists of a sequence of K binary symbols represented by
the K-dimensional vector x = (xm,1, xm,2, · · · , xm,K), then the modulation can be expressed as

m(t) =

xm,1 0 ≤ t < τ
xm,2 τ ≤ t < 2τ

...
xm,N (N − 1)τ ≤ t < Nτ

(21)

where xm,i = ±1. For signals of the form described in Eq. (21), the log-likelihood function can now be
rewritten as

Λm =
∫ T

0

r(t)sm(t)dt =
K∑
k=1

∫ kτ

(k−1)τ

r(t)sm(t)dt =
K∑
k=1

ρm,k (22)

which is recognized as a sum of Gaussian random variables ρm,k over k. Therefore, the mth log-likelihood
function is a Gaussian random variable with mean value determined by the correlation between the
received and locally generated signals, and variance equal to the sum of the component variances: σ2

Λ =
KN0τ/2.

The maximum amount of information that can be conveyed by K binary symbols is K bits; this
is achieved when all possible 2K sequences are used to modulate the carrier. At the other extreme,
if the information symbol is simply repeated K times, then only 1 bit of information is transmitted
in Kτ seconds. It is instructive to examine the error performance of these two extreme cases, since
these serve as useful bounds to the information content and word-error performance of commonly used
sequences.

A. Symbol-Error Performance with Maximal Information Transfer

Consider a sequence of K consecutive uncoded BPSK symbols, where each symbol lasts for τ seconds.
For example, if K = 1, two distinct mean values are possible for each received symbol, namely ±

√
Pτ ,

but only 1 bit of information is transferred. If K = 2, then 2 bits of information are transferred; now
the possible mean vectors are (−

√
Pτ,−

√
Pτ), (−

√
Pτ,
√
Pτ), (

√
Pτ,−

√
Pτ), and (

√
Pτ,
√
Pτ). The

extension to longer sequences is straightforward; for example, one of the possible received sequences of
length eight is (

√
Pτ,−

√
Pτ,
√
Pτ,
√
Pτ,−

√
Pτ,−

√
Pτ,−

√
Pτ). It is clear that, for any K, exactly 2K

codewords can be constructed in this manner.

6

First, consider the case of K = 1. Only two hypotheses are possible in this case, denoted by H1 and H2,
occurring with a priori probabilities P (H1) and P (H2). To compute receiver performance, suppose that
one of the two messages has been received, and compute the probability of correct detection conditioned
on the reception of that message. It is implicitly assumed that a replica of the received waveform,
r(t), has been stored in a form suitable for repeated processing. With r(t) =

√
P + Nc(t), 0 ≤ t < τ

and s1(t) = 1, 0 ≤ t < τ , the receiver computes Λ1, which is seen to be a Gaussian random variable
with mean

√
Pτ and variance N0τ/2. Next, the receiver multiplies the same received waveform by

s2(t) = −1, 0 ≤ t < τ and computes Λ2. Note that in this example Λ2 is exactly equal to the negative of
Λ1.

Since by assumption the first hypothesis is true, the correct binary symbol is selected if Λ1 > Λ2, or,
equivalently, if Λ1 − Λ2 > 0, in which case the receiver declares that hypothesis H1 is true. However,
since Λ2 = −Λ1, it follows that the mean and variance of the difference are E(Λ1 − Λ2) = 2

√
P τ and

var(Λ1−Λ2) = 4×(N0τ/2) = 2N0τ . The probability of a correct decision, given that H1 is true, is simply
the probability that a Gaussian random variable with mean 2

√
Pτ and variance 2N0τ exceeds zero:

Pr(Λ1 − Λ2 > 0|H1) =
∫ ∞

0

1√
2π(2N0τ)

e−(x−2
√
Pτ)2/2(2N0τ)dx (23)

With the change of variables y = (x− 2
√
Pτ)/

√
2N0τ and dy = dx/

√
2N0τ , Eq. (23) yields

Pr (Λ1 − Λ2 > 0|H1) =
∫ ∞
−2
√
Pτ/2N0

1√
2π
e−y

2/2dy = 1−Q
(√

2Pτ
N0

)
= 1−Q

(√
2Es
N0

)
(24)

where Q(x) ≡
∫∞
x

(1/
√

2π)e−y
2/2dy.

The probability of correct decision is the average (over the a priori probabilities) of the condi-
tional probability of being correct: P (C) = P (C|H1)P (H1) + P (C|H2)P (H2). For equilikely hy-
potheses, P (H1) = P (H2) = 1/2; hence, for this case, the average probability of correct decoding is
P (C) = P (C|H1) = 1 − Q

(√
2Es/N0

)
, while the average probability of error is P (E) = 1 − P (C) =

Q
(√

2Es/N0

)
≡ p.

Next, consider the probability of selecting the correct K sequence when all possible realizations are
allowed. We observe that for K = 2 the possible signal vectors occupy all possible corners of a square
in the two-dimensional signal space spanned by the vectors (1, 1), (1,−1). In general, the signal vectors
occupy every corner of a hypercube of dimension K. As shown in [3], the probability of correctly decoding
a vector of length K when all possible realizations are allowed is given by P (C) = (1 − p)K , which is
seen to be the probability of not making any binary symbol errors in K independent trials, and where
the probability of a binary symbol error is p ≡ Q(

√
2Es/N0). It follows that the probability of vector

error, defined as the probability of not selecting the correct received vector, is P (E) = 1 − (1 − p)K . A
graph of this vector-error probability as a function of Es/N0 is shown in Fig. 2, labeled as “all possible
sequences,” for K = 8 and 16, in the low-SNR region of operation.

An interesting conclusion follows from the observation that the probability of a correct vector decision is
equivalent to the probability of selecting a vector whose Hamming distance from the received information
vector is zero. Similarly, the probability of selecting a vector that is a Hamming distance one from the
received vector is K p(1− p)K−1, that of selecting a vector a distance two from the transmitted vector is(
K
2

)
p2(1− p)K−2, while the general term is

7

Pr(k symbol errors in a vector of length K) =
(
K
k

)
pk(1− p)K−k (25)

Evidently, the errors are governed by the binomial distribution; therefore, the average number of errors in
a vector of length K is Kp. Alternatively, it follows that the average probability of a binary symbol error
is P (SE) = p. Since p is also the probability of making a binary symbol error when decoding individual
binary symbols one at a time, this result confirms the observation that vector decoding of all possible
binary sequences is equivalent to bit-by-bit decoding.

16

K = 8

ALL POSSIBLE
SEQUENCES

16

K = 8

ORTHOGONAL VECTORS

REPETITION
16

K = 8

−10 −8 −6 −4 −2 0

Es /N 0, dB

8 10−1

0

10

6 10−1

4 10−1

2 10−1

V
E

C
T

O
R

-E
R

R
O

R
 P

R
O

B
A

B
IL

IT
Y

 P
 (

E
)

Fig. 2. Probability of vector error for the case of all possible sequences,
orthogonal vectors, and repetition vectors.

B. Repetition Coding: Lower Bound on Symbol-Error Probability

Suppose that instead of sending all possible sequences, we simply repeat each binary symbol K
times. This scheme generates exactly two mean vectors of length K, namely (

√
Pτ,
√
Pτ, · · · ,

√
Pτ)

and (−
√
Pτ,−

√
Pτ, · · · ,−

√
Pτ). The amount of information transferred in Kτ seconds is only 1 bit,

however, since the energy of each information bit has been increased by a factor of K, decoding
performance has been greatly improved. Specifically, the probability of a vector error now becomes
P (E) = Q(

√
2KEs/N0), which represents a dramatic improvement over the performance of the maximal

information transfer vectors, as can be seen in Fig. 2.

Note that for this case the probability of a binary symbol error, P (SE), is equivalent to the probability
of a vector error, P (E), since grouping into blocks of K binary symbols does not change the average
probability of symbol error (if a vector error occurs, all K binary symbols will be in error; however,
each correctly decoded vector also yields K correctly decoded binary symbols, hence grouping blocks of
symbols has no effect on the average number of errors). Therefore, P (SE) = P (E) = Q

(√
2KEs/N0

)
for the case of repetition coding.

C. Performance of Orthogonal Block-Coded Modulation

There are many practical encoding schemes that transfer more than 1 bit of information per vector and
at the same time achieve reasonable error probabilities. Perhaps the simplest among these is orthogonal
block coding, where log2K information bits are encoded onto K orthogonal vectors. For example, vectors
of length 8 carry 3 bits of information; length 32 contain 5 bits; and so on. An accepted technique

8

for generating orthogonal codewords is to use the sign convention defined by the rows of a Hadamard
matrix of suitable dimension. There is a Hadamard matrix of order equal to any power of two. As in
[2], a Hadamard matrix of order K can be constructed from one of order K/2,K = 4, 8, 16, · · · , using
Sylvester’s construction, as

HK =
[

HK/2 HK/2

HK/2 −HK/2

]
(26)

For example, a Hadamard matrix of order four is

H4 =

1, 1 1, 1
1, −1, 1, −1
1, 1, −1, −1
1, −1, −1, 1

 (27)

The encoder assigns each sequence of log2K information bits in some predetermined order to different
rows of the Hadamard matrix. One possible assignment for the case K = 4 is the following:

(1, 1)→ (1, 1, 1, 1)

(1, 0)→ (1,−1, 1,−1)

(0, 1)→ (1, 1,−1,−1)

(0, 0)→ (1,−1,−1, 1)

If the first codeword is received, the mean-value vector at the receiver is of the form (
√
Pτ,
√
Pτ,
√
Pτ,√

Pτ); let the reception of this vector be denoted by hypothesis H1. When correlated with s1(t) as defined
in Eq. (19), the mean value of the first log-likelihood function becomes K

√
Pτ . Since noise samples from

disjoint time intervals are uncorrelated, the variance of the first log-likelihood function is the sum of the
component variances, namely KN0τ/2. Because the codewords are orthogonal, the mean value of every
other log-likelihood function is zero; however, its variance does not change. Therefore, when H1 is true,
E(Λ1) = K

√
Pτ, var (Λ1) = KN0τ/2. For every other log-likelihood function, E(Λk) = 0, var (Λk) =

KN0τ/2; k 6= 1.

The received noise-corrupted codeword is correlated with every row of the Hadamard matrix, and the
row corresponding to the greatest correlation coefficient is selected as the maximum-likelihood codeword
decision. In other words, the correct codeword is selected if the correlation result corresponding to the
correct codeword exceeds all others; for the case of additive Gaussian noise, the probability of correct
detection given H1, P (C|H1), can be expressed as

P (C|H1) =
∫ ∞
−∞

dy√
2π
KN0τ

2

e−(y−K
√
Pτ)2/2(KN0τ/2)

∫ y

−∞

dx√
2π
KN0τ

2

e−x
2/2(KN0τ/2)

K−1

(28)

which is also equal to the average probability of correct detection, P (C), when all hypotheses are equally
likely (that is, when P (Hi) = (1/K), i = 1, 2, · · · ,K). The probability of selecting the wrong vector is
P (E) = 1− P (C), also shown in Fig. 2 for the cases K = 8 and 16. Note that the probability of vector
error actually decreases with increasing K for orthogonal vectors; this occurs because here we are keeping

9

the binary symbol SNR, instead of the total vector SNR, fixed. Since longer vectors have greater energy,
performance improves with vector length.

For orthogonal vectors, the probability of a binary symbol error, P (SE), can be related to the prob-
ability of correct vector detection as P (SE) = [K/2(K − 1)]P (E). Binary symbol-error probabilities for
orthogonal codewords of lengths 8 and 16 are shown in Fig. 3 as functions of the binary symbol SNR
Es/N0, in the low-SNR region, along with binary symbol-error probabilities for all possible sequences and
for repetition vectors. Note that the binary symbol-error probability for all possible sequences remains p
regardless of the value of K, but changes with K for both the orthogonal and repetition vectors.

−10 −8 −6 −4 −2 0

Es /N 0, dB

0

1.5 10−1

10−1

5.0 10−2

S
Y

M
B

O
L-

E
R

R
O

R
 P

R
O

B
A

B
IL

IT
Y

 P
 (

S
E

)

Fig. 3. Probability of binary symbol error for the case of all possible sequences,
orthogonal vectors, and repetition vectors.

2.0 10−1

2.5 10−1

3.0 10−1

3.5 10−1

ALL POSSIBLE SEQUENCES

16

K = 8

ORTHOGONAL

REPETITION

16

K = 8

9 dB

8, 16, ...

D. Algebraic Block Codes

The process of encoding and decoding information using algebraic block codes is treated extensively in
the literature. For our interest here, we note that pre-processing by means of maximum-likelihood block
decoding as defined in Eq. (19) requires the generation and storage of all possible channel codewords
for subsequent correlation with the received noise-corrupted codeword. This suggests incorporating an
encoder into the pre-processor, which often consists of nothing more than a generator matrix or gen-
erator polynomial, plus the arithmetic operations needed to generate the codewords. Complexity and
storage requirements tend to grow with block length and may become prohibitive for large blocks, due
to possible exponential growth; however, optimum detection is always achieved. Despite the complexity,
decoding appears feasible with currently available dedicated high-speed hardware at moderate bit rates,
for moderate-sized dictionaries consisting of perhaps thousands to millions of codewords. Since squaring
loss is most pronounced in the low-SNR region at low symbol rates, it appears that decoding based on
the maximum-likelihood approach may not present a serious problem for deep-space applications.

E. Convolutional Codes

It would be advantageous if the same maximum-likelihood block decision approach described above
could also be applied to convolutional codes, since that would enable the generalization of the pre-
processor structure to most commonly employed encoding schemes, including turbo codes. An additional

10

benefit of processing short blocks of convolutionally encoded symbols is that the user can effectively
match the vector lengths to channel conditions, ensuring essentially stationary statistics over each block.
However, this requires the generation of all possible sequences of a given length for correlating with the
received waveform. We begin by describing the partitioning of convolutionally encoded binary sequences
into blocks, and the operations for generating the complete set of codewords needed for maximum-
likelihood detection.

Convolutional encoders generate channel symbols by sampling the contents of serially connected shift
registers in a predetermined manner and at a predetermined rate. This operation is illustrated in Fig. 4,
which represents a three-register, rate 1/2 encoder, with taps represented by the generating polynomials
p = 1 1 1 and q = 1 0 1. We are interested in decoding the output of the convolutional encoder with the
maximum-likelihood block decoding strategy described above. One reason for this approach is that, in
a time-varying channel, where the phase of the signal changes with time, there is an implied coherence
time over which the phase remains essentially constant. Therefore, the user can select the block length
to match channel conditions, thus ensuring detection for each block.

[1 1 1]

[1 0 1]

1100, 1101, 0100

0110, 0010, 1100

1111, 1000, 0100

10 11 11 10, 10 00 01 00, 01 11 00 00

Fig. 4. Block codeword representation of convolutional codes
(each block codeword is separated by a comma).

The information sequence shown in Fig. 4 has been separated into blocks of 4 bits; since this is a
rate 1/2 encoder, each block of 4 information symbols gives rise to a block of 8 output symbols. If
initially the three registers contained zeros, represented by 000, then shifting the first information block
through 1 bit at a time (in our example, 0100, with the rightmost bit entering first) yields the output
block 01 11 00 00. Since there is a one-to-one mapping from the input space to the output space, the
total number of output symbols equals the total number of input symbols, which for this case is 24 = 16.

It is evident from the encoder structure that channel-symbol blocks generated by the convolutional
encoder depend not only on the current information bits but also on the state the registers were left in
by the trailing bits of the last information block. After every symbol of the first block has been clocked
through, the shift registers contain 010. When the first bit of the second information block is clocked in,
the contents of the rightmost shift register is clocked out; for our example, the shift registers now contain
101, where the leftmost register contains the first symbol of the second information block, and the middle
and rightmost registers contain the trailing symbols of the first information block. The rightmost 2 bits
determine the state of the register and clearly affect the next output block; even if exactly the same
information bits were to be reentered, the output block would be different. Since there are 22 = 4 states
possible in our example, the total number of codewords this three-stage encoder can generate after the
first input block is shifted through is 16× 4 = 64.

11

VI. Simplified Pre-Processor Structure

The correlation operation specified by the maximum-likelihood detection algorithm requires knowledge
of every codeword generated by the encoder. This approach does not make use of the algebraic structure
inherent in block codes to simplify decoder design, but rather employs the encoder to generate a copy of
every codeword at the receiver. An immediate simplification to the pre-processor structure results from
the observation that, for BPSK-modulated signals, correlation with all possible codewords is equivalent
to correlation with a suitable orthogonal basis, followed by matrix multiplication to reconstruct the
codewords. Since only K basis vectors are needed to span a K-dimensional signal space, while the
number of possible codewords could grow exponentially with K, this approach often results in substantial
simplifications to the processing algorithms and hardware. For block codes, the equivalence of the direct
and simplified approaches can be demonstrated as follows.

Codewords for block codes of a given length consist of both information and check bits. The binary
values (0,1) generated by the encoder are modulated onto the carrier as BPSK symbols via the mapping
0 → −1, 1 → 1 (or vice-versa). After this mapping, a valid BPSK-modulated codeword of length K,
Ci, selected from the set of codewords {C}, takes the form Ci = (ci1, ci2, · · · , ciK), where the elements
of the vector are cik = ±1. Since each codeword is K-dimensional, it can be represented by a linear
superposition of basis functions that span the same K-dimensional space. Any orthogonal subset of the
set of BPSK sequences of length K will suffice; however, we shall select the rows of the K-dimensional
Hadamard matrix as our basis because of their close connection to some algebraic codes, such as the
Reed–Muller codes, and because the rows of a Hadamard matrix are orthogonal. Assuming that K = 2L,
where L is some integer, we can therefore represent the ith codeword of an arbitrary block code as

C ′i =
K∑
j=1

aijHj (29)

where Hj = (hj1, hj2, · · · , hjK), hjk = ±1, and aij = CiH
T
j , where the vector Hj is equal to the jth row

of the K-dimensional Hadamard matrix. Since a common scale factor applied to all codewords does not
affect the decision, it is not necessary to normalize the coefficients aij in this application.

It is useful to define the time function corresponding to the jth row of the Hadamard matrix as

hj(t) ≡

hj1 0 ≤ t < τ
hj2 τ ≤ t < 2τ

...
hjK (K − 1)τ ≤ t < Kτ

, hjk = ±1 (30)

We can write the time-function representation of the mth codeword as

sm(t) =
K∑
j=1

s
(h)
mjhj(t)

s
(h)
mj =

∫ T

0

sm(t)hj(t) dt

(31)

Given that the ith signal was received (that is, given that Hi is true), the mth log-likelihood function
can now be expressed as

12

Λm =
∫ T

0

r(t)sm(t) dt =
∫ T

0

r(t)
K∑
j=1

s
(h)
mjhj(t) dt

=
K∑
j=1

s
(h)
mj

∫ T

0

r(t)hj(t) dt =
K∑
j=1

r
(h)
j s

(h)
mj = r(h) · s(h)

m (32)

where the last equality follows directly from the projection of the received signal onto the jth Hadamard
basis function: r(h)

j =
∫ T

0
r(t)hj(t) dt.

Suppose there are N ≥ K codewords in a block code. The vector of log-likelihood function values,
Λ̄ = (Λ1,Λ2, · · · ,ΛN), needed for the maximum-likelihood decision, can now be obtained as a simple
matrix multiplication of the codeword coefficient matrix with the transpose of the received coefficient
vector,

ΛT = S(h)
(
r(h)

)T
(33)

where

S(h) ≡

s
(h)
11 s

(h)
12 · · · s

(h)
1K

s
(h)
21 s

(h)
22 · · · s

(h)
2K

...

s
(h)
N1 s

(h)
N2 · · · s

(h)
NK

and r(h) = (r(h)
1 , r

(h)
2 , · · · , r(h)

K). Implicit in this solution is the assumption that the codeword coefficient
matrix is known; however, this is not a serious restriction since the coefficient matrix can always be
generated at the pre-processor by using the block code’s encoder to generate all possible codewords,
followed by a Hadamard decomposition to obtain the coefficients. A block diagram of the simplified
pre-processor structure corresponding to Eq. (33) is illustrated in Fig. 5.

The extension to convolutional codes, processed in blocks as described above, is straightforward.
The first block generated by the encoder with initialized registers is a sequence of binary symbols of
length K and hence is subject to the Hadamard decomposition for a K-dimensional space. The second
and subsequent blocks produce more vectors proportional to the total number of states, but still span the
same K-dimensional space. Therefore, all channel blocks generated by convolutional encoders can also
be reconstructed from the Hadamard coefficients by means of simple matrix multiplication.

VII. Simulation Results

A. Pre-Processor Structure

The pre-processor structure shown in Fig. 5 was simulated using the signal processing workstation
(SPW). In the coherent mode of operation (that is, φ(t) ∼= 0), this pre-processor performs a decomposition
of the received codewords using orthogonal Hadamard basis functions as described above, and generates
a vector of coefficients of length K for each received block. Next, the coefficient vector is multiplied by a

13

2h1 (t) cos(ωt + θ)

iKT

(i − 1)KT

()dt

SIGNAL-
WEIGHTING

MATRIX

(USER INPUT:
GENERATOR

MATRIX,
ACQUISITION OR

TRACK MODE,
ETC.)

DETECTION

(SELECT
CODEWORD)

WAVEFORM
SYNTHESIZER

(CONSTRUCT ±1
SYMBOL STREAM)

MAP
PHASE

ESTIMATOR
 ∆ = KT

m (t)

r 0(t) = 2Pm (t) cos(ω0t + θ) + n (t)

2h2 (t) cos(ωt + θ)

θ

iKT

(i − 1)KT

()dt

Fig. 5. Block diagram of the simplified pre-processor, using Hadamard decomposition
and matrix reconstruction.

signal-weighting matrix to generate the vector of log-likelihood functions. The largest component of this
decision vector is identified, and its index is used to reconstruct the decoded codeword.

Note that the basic pre-processor structure remains essentially the same for any code of a given block
length, except for the signal-weighting matrix, which is unique to each code. The signal-weighting matrix
is pre-computed for each coding scheme by first generating the set of codewords and then multiplying the
Hadamard matrix by the coefficient matrix representing all possible codewords.

In the simulations, perfect symbol timing was assumed, and only block lengths that were powers of two
were simulated. The sampling rate was set to correspond to 500,000 samples/second, and an equivalent
symbol rate of 20,000 symbols/second was used, yielding 25 samples/symbol. In addition to orthogonal
block codes, an extended Hamming code, an extended Bose–Chaudhuri–Hocquenghem (BCH) code, and
a three-stage convolutional code were simulated and evaluated in the low-SNR region.

B. Performance of the Pre-Processor with Algebraic Block Codes

Extended Hamming codes can be created from a Hamming generator matrix, G, by appending a
column of ones to create a new generator matrix, G′. A particular codeword vector, C, can be generated
by multiplying a block of data symbols, x (row vector), with the generator matrix, G′: C = xG′, using
modulo 2 arithmetic. In our example, a data vector consisting of 4 symbols is multiplied together with a
4× 8 generator matrix to yield a codeword vector of length 8, which is a power of two and hence matches
the input requirements of the simulated pre-processor. In the pre-processor, all possible information
sequences are multiplied with the generator matrix to create every codeword, from which the coefficient
matrix can be constructed using the Hadamard decomposition described above.

BCH codewords were created by convolving each information sequence with a generator polynomial.
In the simulations, the generator polynomial g(x) = [1 0 1 0 0 1 1 0 1 1 1] was implemented, which
represents a (15,5,3) BCH code. In order to create codeword vectors whose lengths were powers of two,
an extended BCH code was created by adding a parity check bit to each codeword.

The symbol-error performance of the pre-processor operating on extended Hamming and extended
BCH algebraic codes as a function of Es/N0 is shown in Figs. 6 and 7, where the theoretical performance

14

K = 8

ALL POSSIBLE
SEQUENCES

ORTHOGONAL
(THEORY)

REPETITION

EXTENDED
HAMMING

−10 −8 −6 −4 −2 0

Es /N 0, dB

0.35

S
Y

M
B

O
L-

E
R

R
O

R
 P

R
O

B
A

B
IL

IT
Y

 P
 (

S
E

)

Fig. 6. Probability of binary symbol error for length-8 orthogonal and extended Ham-
ming codes (all-possible-sequences and repetition vectors are included for reference).

0.30

0.25

0.20

0.15

0.10

0.05

0.00

K = 16

ALL POSSIBLE
SEQUENCES

ORTHOGONAL

REPETITION

EXTENDED
BCH

−10 −8 −6 −4 −2 0

Es /N 0, dB

0.35

S
Y

M
B

O
L-

E
R

R
O

R
 P

R
O

B
A

B
IL

IT
Y

 P
 (

S
E

)

Fig. 7. Probability of binary symbol error for length-16 orthogonal and extended BCH
codes (all-possible-sequences and repetition vectors are included for reference).

0.30

0.25

0.20

0.15

0.10

0.05

0.00

of the appropriate orthogonal block code was also included for reference. Note that both algebraic
codes perform somewhat worse than the corresponding orthogonal block code in terms of symbol-error
probability; however, the algebraic codes convey more information than orthogonal block codes due to the
larger number of codewords in their dictionary. Symbol-by-symbol decoding, represented by the dashed
curve labeled “all possible sequences,” appears to perform nearly as well as the algebraic codes at very
low SNRs (−10 dB Es/N0); however, no improvement in squaring-loss performance over a conventional

15

tan-hyperbolic phase-locked loop is possible in this case because the pre-processor’s symbol estimates are
completely correlated with the symbol estimates in the in-phase arm of the loop, see [1, Appendix A].

C. Performance of the Pre-Processor with Convolutional Codes

Convolutional codes were generated for the simulation using a rate 1/2 code with generator polynomials
p = [1 1 1] and q = [1 0 1]. To generate a list of all possible codewords, a block-code representation of
convolutional codes described in Section V.E has been used.

Two block-decoding schemes for convolutionally encoded data have been simulated. First, decoder
performance is bounded by assuming that the state of the registers is known after each input block; hence,
the pre-processor needs to correlate the received waveform with only 16 codewords (for our example).
This is a useful bound, but not a practical decoding scheme because in reality the states are not known
and, therefore, must be estimated along with the codewords; incorrect decoding results in loss of state
information, which means the pre-processor generates the wrong codeword set for correlating with the
received signal. This, in turn, leads to incorrect decoding of subsequent codewords, with little chance of
ever recovering the correct state. This lower bound on pre-processor symbol-error rate is illustrated in
Fig. 8 by the curve labeled “pre-processor (known state bound)” and represents performance attainable
only when the states of the convolutional encoder are perfectly known.

The second scheme makes no attempt to estimate the state of the encoder; hence, the pre-processor
must correlate the received waveform with all possible codewords associated with every state, which for
our case becomes 16 × 4 = 64 codewords. Symbol-error performance of this approach is also shown in
Fig. 8, as the curve labeled “pre-processor (all states).” Its symbol-error performance is approximately
1.5 dB worse than that of the known state bound, and in fact closely matches the performance of symbol-
by-symbol decoding represented by the “all possible sequences” curve. However, it must be remembered

−10 −8 −6 −4 −2 0

Es /N 0, dB

0.00

S
Y

M
B

O
L-

E
R

R
O

R
 P

R
O

B
A

B
IL

IT
Y

 P
 (

S
E

)

Fig. 8. Probability of binary symbol error for convolutionally coded symbols, block-
length-8 decoding (Viterbi decoder and all-possible-sequences and repetition
vectors are also included for reference).

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ALL POSSIBLE
SEQUENCES

REPETITION

PRE-PROCESSOR
(ALL STATES)

VITERBI
DECODER

PRE-PROCESSOR
(KNOWN STATE BOUND)

16

that the block-decoding scheme reduces the correlation between the output of the symbol integrator in
the in-phase arm of the MAP phase estimator and the pre-processor’s symbol estimates (which are now
based on a block decision), thus enabling squaring-loss reduction, whereas symbol-by-symbol estimation
does not [1, Appendix A]. Although this block pre-processor approach attains optimal performance for
the expanded set of all possible codewords, it may become prohibitively complex for long registers and
block lengths due to the great number of codewords that must be generated and processed.

Finally, the symbol-error performance of a conventional Viterbi decoder of the type generally used in
the DSN has also been included for comparison, labeled “Viterbi decoder” in Fig. 8. In order to evaluate
the Viterbi decoder in the same framework as the pre-processor, it was operated with a fixed delay of
8 symbols. Symbol-error performance of the Viterbi decoder operated in this mode is seen to be worse
than that of the block pre-processor at SNRs less than −4 dB. Thus, when channel dynamics dictate
operation with relatively short delays, the block pre-processor appears to have a clear advantage over the
conventional Viterbi decoder operating with fixed delay, in the region of very low signal-to-noise ratios.

It is believed that relatively simple block algorithms can be found for convolutional codes whose
performance falls between the two extreme cases discussed above. For example, carrying along the
state associated with the selected codeword (the codeword corresponding to the greatest log-likelihood
function), plus the state associated with the next most likely codeword, and so on, up to some number
that represents a reasonable compromise between complexity and performance, may provide a practical
way to avoid catastrophic errors with only a modest increase in complexity.

D. Performance of the Pre-Processor-Aided MAP Phase Estimator

The performance of the entire combined system, consisting of the MAP phase estimator and pre-
processor as shown in Fig. 1, has been evaluated by means of SPW simulations. Coded symbol streams
were generated as described above, delayed along one path and applied to the pre-processor along the
other. After the blocks were decoded, the symbol estimates were applied to the delayed waveform in order
to remove the data and thus reduce transitions, and the resulting reconstructed carrier was then applied to
the MAP phase estimator along with an estimate of the transition rate measured in real time. The MAP
phase estimator then provided an estimate of the instantaneous carrier phase to the pre-processor needed
for coherent operation, completing the outer loop. Each symbol was sampled 25 times, and Gaussian
noise samples of the proper variance were added to each sample to establish the desired symbol SNR. The
MAP phase estimation loop was operated at two different loop bandwidths (5 Hz or 250 Hz), providing
either high loop SNR (36 dB) at Es/N0 = 0 dB for the orthogonal and block-coded symbols, or low SNR
(20 dB) at Es/N0 = 0 dB for some of the convolutionally coded results. The results of a large number
of simulations were averaged, where each simulation was long enough to ensure that the entire system
reached steady state before any measurements were taken.

The simulations for the convolutional block-decoding schemes were set up so that the loop SNR of the
MAP phase estimation loop was 20 dB when the symbol SNR was Es/N0 = 0 dB. As the symbol SNR
decreases, the squaring loss increases, and therefore the loop SNR decreases proportionally. It is generally
accepted that, for operational tracking of a BPSK-modulated signal, a Costas-loop SNR of 16 dB must
be maintained to limit radio loss to acceptable levels. Note from Fig. 9 that the conventional Costas
loop suffers a 4 dB squaring loss when Es/N0 = −4.8 dB, while the polarity-type Costas loop reaches the
4 dB squaring-loss limit when Es/N0 = −4 dB; this means that in our example neither loop qualifies for
operational tracking of BPSK signals weaker than −4 to −5 dB. However, in the same example, the loop
SNR of the combined pre-processor MAP phase estimator actually remains above 17 dB as long as the
symbol SNR exceeds −10 dB; this represents at least a 6 dB advantage over Costas loops currently used
for tracking suppressed-carrier signals. This very formidable advantage would enable extending the range
of a given spacecraft by 3 dB, could be used to reduce spacecraft telecommunications power requirements
by 6 dB, or could reduce the diameter of spacecraft or ground antennas by a factor of two.

17

ORTHOGONAL
BLOCK

POLARITY-TYPE
COSTAS LOOP

6+ dB

CONVOLUTIONAL

CONVENTIONAL
COSTAS LOOP4.4 dB

6 dB

EXTENDED
HAMMING

S
Q

U
A

R
IN

G
 L

O
S

S
, d

B

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Es /N 0, dB

Fig. 9. Comparison of squaring-loss improvement with orthogonal, extended Hamming, and
convolutionally coded signals over classical Costas loops (block length 8).

VIII. Summary and Conclusions

A pre-processor structure based on maximum-likelihood principles and applicable to carrier recon-
struction of BPSK-modulated signals has been developed and evaluated by means of analysis and SPW
simulation. The results of previous investigations restricted to block-orthogonal-modulated signals [2]
have been extended to include algebraic block codes as well as convolutionally coded signals. It has been
demonstrated that the pre-processor provides useful estimates of the data that can be used to reduce
the transitions in a BPSK-modulated waveform, thus effectively reconstructing the carrier and enabling
greatly improved phase estimation in the low-SNR regime. It was shown that, when the reconstructed
carrier is applied to a MAP phase estimation loop designed for arbitrary transition probabilities, squaring
loss in the low-SNR region can be reduced by 4 to 6 dB, enabling loop operation at 7 to 8 dB lower values
of Es/N0 than with conventional Costas loops. This gain can be used to more than double the useful
range of a spacecraft, to reduce spacecraft telecommunications power requirements by a factor of five,
or to reduce the diameter of either the spacecraft or ground antennas by a factor of two. In addition
to the example presented here, effective carrier reconstruction may also prove valuable in radio-science
applications with suppressed-carrier signals, enabling accurate phase measurements without the need to
divert precious telemetry signal power to an unmodulated (residual) carrier component.

References

[1] M. K. Simon and V. A. Vilnrotter, “Iterative Information-Reduced Carrier Syn-
chronization Using Decision Feedback for Low SNR Applications,” The Telecom-
munications and Data Acquisition Progress Report 42-130, April–June 1997, Jet
Propulsion Laboratory, Pasadena, California, pp. 1–21, August 15, 1997.
http://tmo.jpl.nasa.gov/tmo/progress report/42-130/130A.pdf

18

[2] V. Vilnrotter, A. Gray, and C. Lee, “Carrier Synchronization for Low Signal-to-
Noise Ratio Binary Phase-Shift-Keyed Modulated Signals,” The Telecommuni-
cations and Mission Operations Progress Report 42-139, July–September 1999,
Jet Propulsion Laboratory, Pasadena, California, pp. 1–16, November 15, 1999.
http://tmo.jpl.nasa.gov/tmo/progress report/42-139/139I.pdf

[3] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering,
New York: John Wiley and Sons, 1965.

19

