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Hardware Implementation of a Lossless Image
Compression Algorithm Using a Field

Programmable Gate Array
M. Klimesh,1 V. Stanton,1 and D. Watola1

We describe a hardware implementation of a state-of-the-art lossless image com-
pression algorithm. The algorithm is based on the LOCO-I (low complexity lossless
compression for images) algorithm developed by Weinberger, Seroussi, and Sapiro,
with modifications to lower the implementation complexity. In this setup, the com-
pression itself is performed entirely in hardware using a field programmable gate ar-
ray and a small amount of random access memory. The compression speed achieved
is 1.33 Mpixels/second. Our algorithm yields about 15 percent better compression
than the Rice algorithm.

I. Introduction

Lossless image compression is well-established as a means of reducing the volume of image data from
deep-space missions without compromising the data quality. Missions often desire hardware to perform
such compression, in order to reduce the demand on spacecraft processors and to increase the speed at
which images can be compressed. Currently, the only available space-qualified hardware designed for
lossless compression is based on the Rice compression algorithm [5].2

Rice compression has limitations, however, and there are other algorithms that achieve better lossless
image compression. An algorithm known as LOCO-I (low complexity lossless compression for images)
[6,7] is an appealing choice. LOCO-I is at the core of JPEG-LS, the algorithm selected by the Joint Pho-
tographic Experts Group as the International Standards Organization/International Telecommunications
Union (ISO/ITU) standard for lossless and near-lossless compression of continuous-tone images [3,7].

We have modified LOCO-I to reduce the complexity of implementation on a field programmable gate
array (FPGA). We refer to this modified version as FPGA LOCO. Our implementation of FPGA LOCO
in hardware represents a first step toward producing a space-qualified hardware version of the LOCO-I
algorithm.

1 Communications Systems and Research Section.

2 The Consultative Committee for Space Data Systems (CCSDS) lossless data compression standard [1] is a particular
implementation of the Rice algorithm.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
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For natural images, the compression achieved by FPGA LOCO varies slightly from that of the more
complex JPEG-LS, with a slight average performance edge going to JPEG-LS. Both are better than
Rice compression typically by around 15 percent. Table 1 compares the compression achieved by FPGA
LOCO, JPEG-LS, and the CCSDS version of Rice compression on a set of images representative of those
acquired by spacecraft. Tests on other natural images yield similar results. As FPGA LOCO is designed
for 8-bit (gray-scale) images, all images tested were of this type.

The remainder of this article is organized as follows. Section II contains a detailed description of the
FPGA LOCO algorithm. Section III describes our implementation. We conclude with Section IV, which
contains performance estimates.

Table 1. Comparison of the compression achieved by our algorithm (FPGA LOCO), JPEG-LS,
and CCSDS Rice compression, on a test set of 8-bit images. Rate is defined as the average
number of bits per pixel in the compressed image.

Rate, bits/pixel
Image Image description

FPGA LOCO JPEG-LS Rice

1 Lunar 4.48 4.35 5.44

2 Mars (Pathfinder) 4.61 4.69 5.72

3 Mars (Viking Orbiter) 3.07 2.95 3.67

4 Mars (Viking Lander) 4.79 4.76 5.32

5 Venus (Magellan radar image) 4.16 4.17 4.67

6 Europa (Galileo) 5.41 5.44 6.48

Average 4.42 4.39 5.22

II. Algorithm

The algorithm described in this section is based on the LOCO-I algorithm of [6].

The FPGA LOCO algorithm takes as input a rectangular image with 8-bit pixel values (the pixel
values are within the range 0 to 255). The compressed image produced is a sequence of bits from which
the original image can be reconstructed. Let wd be the image width and ht be the image height. Pixels
are identified by coordinates (x, y) with x in the range [0, wd − 1] and y in the range [0, ht − 1]. In our
illustrations, (0, 0) corresponds to the upper left corner of the image.

The FPGA LOCO algorithm is based on predictive compression (see, e.g., [4]). During compression,
the pixels of the image are processed in raster scan order. Specifically, y is incremented through the range
[0, ht− 1], and for each y value, x is incremented through the range [0, wd− 1]. (Thus, the y-dimension
is the slowly varying dimension.)

The first two pixels, with coordinates (0, 0) and (1, 0), are simply put into the output bit stream
uncoded.

For all other pixels of the image, the processing that occurs can be conceptually divided into four
steps:
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(1) Classify the pixel into one of several contexts according to the values of (usually 5)
previously encoded pixels.

(2) Estimate the pixel value from (usually 3) previously encoded pixels, and add a correction
(called the bias), which depends on the context.

(3) Map the difference between the estimate and the actual pixel value to a nonnegative
integer, and encode this integer using Golomb’s variable length codes [2].

(4) Update the statistics for the context based on the new pixel value.

These steps are explained in detail below.

A. Contexts

During the encoding loop, each pixel is classified into one of several contexts based on quantized
values of differences between pairs of nearby pixels. The context is used to estimate the distribution on
the prediction residuals and to determine a small estimated correction to the prediction. Both of these
estimates are determined adaptively and on-the-fly, based solely on statistics for previous pixels with the
same context.

The context of a pixel p is based on the values of 5 previous pixels a through e as shown in Fig. 1.
Assume for now that p is sufficiently far from the image edges that a through e all exist. The context is
determined by the values Q7(a−c), Q7(d−a), Q7(c−b), and Q3(b−e), where Q7 and Q3 are quantization
functions taking on 7 and 3 possible values, respectively. We describe Q7 by the 3 bits it produces and
Q3 by the 2 bits it produces. Specifically, we have chosen

Q7(n) =



011 if n ≥ 13
010 if 5 ≤ n ≤ 12
001 if 2 ≤ n ≤ 4
000 if −1 ≤ n ≤ 1
101 if −4 ≤ n ≤ −2
110 if −12 ≤ n ≤ −5
111 if n ≤ −13

and

Q3(n) =

{ 01 if n ≥ 6
00 if −5 ≤ n ≤ 5
11 if n ≤ −6

a

b

c

e

d

p

Fig. 1.  The labeling of pixels rela-
tive to the current pixel, p.  The
shaded portion represents pixels
not yet encoded.
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We interpret the values taken on by Q7 and Q3 as integers in sign-magnitude form; e.g., 110 can be
read as “negative 102” or −2. Note the number of quantization levels in Q7 was chosen to allow a 3 bit
representation; this differs from the 9 quantization levels for the corresponding quantizer in LOCO-I.

The context is based on the binary concatenation (Q7(a− c), Q7(d− a), Q7(c− b), Q3(b− e)). When
we view Q7(a − c), Q7(d − a), Q7(c − b), and Q3(b − e) in sign-magnitude form, the context can be
interpreted as an ordered quadruple of integers. In order to reduce the number of contexts, a context
with some quadruple (c1, c2, c3, c4) is merged with the context with quadruple (−c1,−c2,−c3,−c4). This
is accomplished by inverting the signs of Q7(a − c), Q7(d − a), Q7(c − b), and Q3(b − e) if the first
nonzero value of these is negative. For example, (101, 010, 000, 11) is inverted to give (001, 110, 000, 01),
and (000, 110, 011, 00) is inverted to give (000, 010, 111, 00). When inversion occurs, an “invert” flag is
set so that the prediction residual (the difference between the estimated and actual pixel values) and the
bias can also be inverted. When contexts are combined, the leading bit in the binary concatenation will
always be 0 and thus can be dropped, allowing contexts to be described with 10 bits.

This combining of contexts is based on symmetry assumptions and motivated primarily by the fact
that fewer contexts allow quicker adaptation to image statistics.

Near the left, right, and top edges of the image, some of the values a through e do not exist. We
handle these cases by forming separate contexts in each of these situations using the quantized difference
values that are available. The resulting regions, with the number of different contexts for the region, are
shown in Fig. 2. All of the border contexts formed can be put within the 10 bit context format without
reusing any of the values taken by non-border contexts. This is accomplished by using 100 or 10 (the
negative 0 unused by Q7 or Q3) for unavailable quantization values. Specifically, when y = 0, the context
is (00, 100, 100, Q3(b− e)); when x = 0, the context is (00, Q7(d− a), 100, 10); when x = 1, the context is
(Q7(a−c), Q7(d−a), Q7(c−b), 10); and when x = wd−1, the context is (Q7(a−c), 100, Q7(c−b), Q3(b−e)).

Fig. 2.  Division of an image into regions with separate contexts.

NON-BORDER
(515 contexts)

x = 0
(4 contexts)

x = 1
(172 contexts)

y = 0
(2 contexts)

x = wd − 1
(74 contexts)

We can enumerate the possible context values by representing them as “patterns” in ordered quadruple
form, nominally corresponding to (Q7(a− c), Q7(d−a), Q7(c− b), Q3(b− e)), where we use “u” to denote
an unavailable value, “+” to denote a positive value, and “·” to denote any value. The result is given in
Table 2. It can be seen that 767 of the 1024 possible 10 bit strings represent valid contexts. Since the
767 bit strings used as contexts are interspersed among the unused strings, we simply reserve all 1024
addresses for context data storage.

The benefit of having many contexts for edge regions of an image is necessarily small, since edge
regions make up a small proportion of the image area; however, our context framework accommodates
the extra contexts with little effort.

Associated with each context are 32 bits of memory to store data associated with the context. These
data consist of 6 bits for a count of times the context occurs; 13 bits for the sum of the magnitude of the
residuals encoded; 8 bits for the (signed) sum of the residuals encoded; and 5 bits for the bias associated
with the context.
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Table 2. Enumeration of contexts.

Location Pattern Number Total

Non-border (+, · , · , ·) 3× 7× 7× 3 = 441

(0,+, · , ·) 3× 7× 3 = 63

(0, 0,+, ·) 3× 3 = 9

(0, 0, 0,+) 1

(0, 0, 0, 0) 1 515

y = 0 (u, u,u,+) 1

(u,u, u, 0) 1 2

x = 0 (u,+, u,u) 3

(u, 0, u,u) 1 4

x = 1 (+, · , · , u) 3× 7× 7 = 147

(0,+, · ,u) 3× 7 = 21

(0, 0,+,u) 3

(0, 0, 0,u) 1 172

x = wd− 1 (+, u, · , ·) 3× 7× 3 = 63

(0,u,+, ·) 3× 3 = 9

(0,u, 0,+) 1

(0, u, 0, 0) 1 74

Grand total 767

B. Estimation

The second step in the main encoding loop is to estimate the value of the pixel to be encoded. A more
accurate estimate will produce a smaller, and thus more compressible, residual. In FPGA LOCO (and
other versions of LOCO), a preliminary estimate is computed with a fixed (i.e., non-adaptive) estimator,
and the adaptively computed bias is added to form the final estimate.

In this discussion, we let p̂ denote the preliminary estimate of the current pixel p. As in [6], p̂ is
computed as the median of the three values a, b, and a+ b− c or, equivalently,

p̂ =

{min(a, b) if c ≥ max(a, b)
max(a, b) if c ≤ min(a, b)
a+ b− c otherwise

Part of the motivation for this estimator is to serve as a primitive edge detector. Note that, for
images without many sharp edges, a small improvement might be obtained by using an estimator (such
as a + b − c) that is well-suited to smooth images. Similarly, for noisy images, it would be desirable to
use a predictor that is better at averaging out noise values.

The final estimate of a pixel is obtained by adding the bias value (or its negative, if the invert flag is
set) to the initial estimate. The bias value attempts to adaptively fine-tune the fixed predictor.

The addition of the bias could put the estimate outside the range of 0 to 255; therefore, the estimate
is clipped to this range.
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C. Encoding the Residual

After the encoder determines the estimate of the current pixel value, the difference between the actual
pixel value and the estimate is losslessly encoded. (If the invert flag is set, the negative of this difference
is encoded instead.) We denote this value by ε.

Although ε can take on values from −255 to 255, only 256 of these values are possible for a given
pixel estimate. We eliminate the unused values by mapping ε to the range −128 to 127, accomplished
by simply truncating the two’s complement representation of ε to 8 bits, and interpreting the resulting
number as a two’s complement 8 bit integer, referred to as ε′.

The ε′ values have a distribution that is usually approximately two-sided geometric. We map ε′ to
M(ε′) to get a quantity with a distribution that is approximately (one-sided) geometric, with the range
from 0 to 255. As in [6], this is accomplished with the transformation

M(ε′) =
{

2ε′ if ε′ ≥ 0
−2ε′ − 1 if ε′ < 0

Note that this transformation can be carried out efficiently with bit-manipulation operations (assuming
two’s complement form for ε′); with “<<” as the left shift operation and “ ~ ” as the bitwise not operation,
2ε′ equals ε′ << 1 and −2ε′ − 1 equals ~ (ε′ << 1).

The original motivations for this choice of mappings from ε to ε′ to M(ε′) are simplicity and a possible
advantage for images with sharp transitions; however, the latter is not a significant factor with natural
images. Mappings such as those suggested in [5] may give a small improvement.

Golomb codes [2] are simple entropy codes that are well-suited to encoding quantities with distributions
that are approximately geometric and, thus, are a logical choice for encoding M(ε′). The Golomb code
with parameter k (corresponding to m = 2k in [2]) encodes a value v by putting the k low-order bits of
v directly into the output bit stream, then encoding the remaining value bv/2kc with a unary encoding;
that is, sending bv/2kc ‘0’ bits followed by a ‘1’ bit. Thus, v is encoded with k + 1 + bv/2kc bits.

The value of k for this encoding is determined from previous values of ε′ occurring within the same
context. Specifically, if A is the sum of the magnitudes of these previous values and N is the number of
samples, then k is given by

k = min{i | 2iN ≥ A}

This is from [6], which also contains reasons supporting this choice. The resulting k will be in the range
0 to 7.

D. Updating Context Data

After the encoding operation takes place, the data associated with the context are updated. The goal
of this process is to ensure that later values with the same context are encoded efficiently.

As previously mentioned, there are 32 bits of data associated with each context:

(1) Occurrence count (count, 6 bit unsigned integer)

(2) Magnitude sum of residuals (msum, 13 bit unsigned integer)

(3) Sum of residuals (rsum, 8 bit signed integer)

(4) Bias value (bias, 5 bit signed integer)
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For all contexts, the values of these data before compression are set identically: count is 2, msum is
12, rsum is 0, and bias is 0. A small compression improvement might be obtained by carefully choosing
initial values to minimize the typical time to adapt to an image.

Note that during the update process count, rsum, and bias may take on values outside their usual
ranges (e.g., we temporarily allow count to be 64 even though it is stored as a 6 bit integer).

The following steps occur during the update process:

(1) Increment count by 1.

(2) Add ε′ to rsum. If the new rsum is greater than 0, bias is increased by 1 (unless it
already equals its maximum value, 15) and rsum is decreased by count; if the new rsum
is less than −count, bias is decreased by 1 (unless it equals its minimum value, −16)
and rsum is increased by count.

(3) Clip rsum to the range [−128, 127].

(4) Increase msum by |ε′|.
(5) If count is 64, then count, msum, and rsum are all divided by 2 (accomplished with a

right shift, with sign extension in the case of rsum).

Note that adjustment to bias that occurs in Step (2) attempts to keep the average ε′ value between
−1 and 0, rather than centered around 0. This is because the asymmetry of the mapping M(ε′) results in
an encoding that is better matched to a distribution on ε′ that is centered around −1/2 when k > 0 [6].
When k = 0, the encoding is matched to a distribution centered at −2/9; however, we do not attempt to
account for this case separately.

E. Run-Length Encoding

We did not implement the run-length encoding of [6] (referred to as embedded alphabet extension). The
run-length encoding efficiently encodes regions of an image containing identical pixel values. Although this
feature does not slow a software implementation, it would greatly complicate a hardware implementation.
In any case, natural images usually do not contain such regions, although a possible exception is images
with regions of uniformly black sky (and then only if the regions have exactly identical pixel values).
Without the run-length encoding, our implementation cannot compress to less than 1 bit/pixel.

III. FPGA Implementation

A. Physical Setup

Our FPGA LOCO system is implemented using a board commercially available from Associated Pro-
fessional Systems (APS). Specifically, the board is the APS-V240 with a Xilinx Virtex XCV50 FPGA.
The APS-V240 is interfaced to a computer that we refer to as a “PC.”

The physical setup is schematically represented in Fig. 3. The APS-V240 uses a PC104 interface, and
so is connected to the PC’s Industrial Standards Architecture (ISA) interface with an adaptor card. An
optional 256K × 18 zero bus turnaround (ZBT) static random access memory (SRAM) is installed on
the APS-V240.3 It is convenient to be able to access all 32 bits of data for a context at once, so a second
identical SRAM was installed on a daughter card. The daughter card connects to the APS-V240 with two
ribbon cables: one to the original SRAM connector and a second to a connector with available XCV50
input/output (I/O) pins. These pins were designated for the extended 18 bit width SRAM. The onboard

3 The notation 256K × 18 describes memory with 256 × 1024 addresses, each allowing storage of 18 bits.
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SRAM and the daughter card SRAM together form 256K × 36 SRAM space available to the XCV50, of
which 32 bits of width were used. Figure 4 contains photographs of the hardware.

B. Data Flow

Figure 5 illustrates the major data pathways of the implementation. The PC runs software that reads
the image, transmits it to the FPGA (one pixel at a time), and receives the compressed image data (one
byte at a time). Several registers in PC I/O space were implemented in the FPGA. These include a
control register, an input byte register, and an output byte register.

The SRAM external to the FPGA is used to store the context data and to store pixel values. Because
the algorithm transmits the output from a given pixel before receiving the next pixel, it is only necessary
to store those pixels needed to recreate future pixel contexts. In this case, enough memory for one row of
pixels is needed. Note that the total amount of SRAM needed by the algorithm is 1K × 8 for the pixel
memory (assuming a maximum image width of 1024) and 1K × 32 for the context memory.

The transmission of pixels from the software to the FPGA, and of bytes from the FPGA to the software,
is done one byte at a time using software–hardware handshaking.

XCV50 FPGA

ISA INTERFACE

PC

PC104 INTERFACE

256K    18 SRAM
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Fig. 3.  Schematic representation of the physical setup.

256K    18 SRAM

(a) (b)

Fig. 4.  Photographs of the hardware:  (a) the inside of the PC containing the APS-V240 board, the 
shorter card near the center of the photo (above the APS-V240 are first the adaptor card and then the 
daughter card with the expansion SRAM), and (b) the APS-V240 board with the XCV50 FPGA with the 
ribbon cables removed.
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Fig. 5.  The flow of data among components.
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C. State Machine Implementation

The state machine implemented in the FPGA has five states that form the main loop, and a hand-
ful of additional states such as initialize states, wait states, and termination sequencing states. The
overwhelming majority of active compression time is spent in the five states of the main loop.

The states S1 through S5 of the main loop are shown in Fig. 6, along with some of the data transfers
that occur. Each state occurs for each pixel (except the first two pixels of the image). In state S1, a new
pixel is received from the PC, and a pixel from the previous line (part of the context) is loaded from the
SRAM. The read operation from SRAM requires three clock cycles, so state S1 is held for two additional
clock cycles. In state S2, the new pixel is stored in the SRAM (the write is held for two additional clock
cycles, but the main state machine does not pause for this). By state S3, the context has been computed
so the context data can be retrieved from the SRAM. In state S4, the Golomb encoding is begun in a
concurrent state machine. Finally, in state S5, the updated context data are stored in the SRAM, and
a pause occurs until any bytes that were generated by the Golomb encoding are transmitted back to the
PC.

Individual input pixels occasionally produce multiple output bytes (the worst case is 32 output bytes).
The concurrent state machine that generates these bytes puts them into a first-in, first-out (FIFO) buffer.
The contents of the FIFO are transmitted to the PC one byte at a time. The FIFO is implemented in
the FPGA.

IV. Performance and Conclusions

Our implementation was tested with several images, and the output was verified to decompress suc-
cessfully in each case.

The clock speed used in the implementation is 12 MHz. The main loop takes nine clock cycles to
complete (unless the pixel produces multiple output bytes, which is rare), so this translates to a core
speed of about 1.33 Mpixels/second. Our complete test system runs slower due to software delays during
the transfer of bytes to and from the PC. (The speed actually realized was 260 kpixels/second; logic
analyzer traces showed the compression core spent about 80 percent of its time waiting on the software-
handled I/O.)
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S1

S2

S3

S4

S5

FROM S5

START GOLOMB ENCODING

WRITE CONTEXT DATA TO SRAM

PAUSE FOR FIFO TO EMPTY

READ CONTEXT DATA FROM SRAM

WRITE PIXEL TO SRAM

RECEIVE NEW PIXEL,
GET PREVIOUS LINE PIXEL FROM SRAM

INPUT
PIXEL PIXEL FROM SRAM

OUTPUT
BYTES

TO S1

PIXEL TO SRAM
(HOLD FOR 2 ADDITIONAL CLOCK CYCLES)

WAIT CYCLES FOR SRAM READ

WAIT CYCLES FOR SRAM READ

CONTEXT DATA FROM SRAM

CONTEXT DATA TO SRAM
(HOLD FOR 2 ADDITIONAL
CLOCK CYCLES)

PUT OUTPUT BYTES INTO FIFO

CONCURRENT STATE MACHINE
BYTES

IN

FIFO

BYTES
OUT

EMPTY
FLAG

Fig. 6.  States and major data transfers in the primary loop.

In a spacecraft implementation, it would be relatively straightforward to reduce or eliminate the I/O
delays. For example, the spacecraft may have a bus controller that facilitates such data transfers; input
and output buffers could be added to the compressor design; or a separate digital signal processor (DSP)
could be used to handle data transfers. In any case, a throughput of approximately 1.33 Mpixels/second
is realizable from our core design.

It is worth noting that a radiation-hardened version of the Xilinx Virtex XCV300 FPGA is available
as the Xilinx Virtex XQVR300. The XCV300 has a component count about six times as large as that
of the XCV50. Thus, conversion of the design to radiation-hardened hardware could be accomplished
without redesigning the compression core. Since the amount of memory used by the algorithm is relatively
low (about 5 kbytes), such memory probably could be provided internally in the FPGA containing the
compression core, eliminating the need for external memory.

If still faster compression is desired, a pipelined architecture could be designed. Although difficulties
arise from the sequential nature of the use of context statistics, a design achieving significantly improved
speed (with the same clock rate as our current implementation) would be possible. Much of the current
design would need to be redone to accomplish this, and an FPGA with a much higher component count
(perhaps such as the Xilinx Virtex XCV1000) would be needed.

The algorithm and implementation can easily be adapted to handle modifications in various param-
eters. In particular, pixel bit depths greater than 8 could be accommodated. Some parameters of the
design could be made controllable with the interface to allow greater flexibility. Depending on the down-
link channel characteristics, it may be desirable to incorporate some method of limiting the effects of
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channel errors. This would probably consist of dividing an image up into smaller images and need not be
part of the hardware.

Overall, our implementation represents significant progress toward producing space-qualified lossless
image-compression hardware with improved compression performance as compared with currently avail-
able hardware.
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