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Analysis of a Thick Dichroic Plate with
Arbitrarily Shaped Holes

W. A. Imbriale1

A thick dichroic plate acts as a frequency selective surface (FSS) in that it is
transparent at one frequency while at the same time reflective to other frequencies.
It is used in the DSN to enable simultaneous multiple-frequency operation. Most
of the plates currently in use were designed with programs that analyzed only the
simple geometries, such as circular or rectangular holes. Since it is too expensive to
experimentally determine the FSS parameters, only designs that could be accurately
analyzed were chosen, and it is the primary reason why the recent FSS designs use
rectangular holes. To achieve the sharp corners of the rectangular holes, it was
necessary to use an electrical discharge machining (EDM) manufacturing technique.
This manufacturing technique is expensive, and an important use of the arbitrary-
shaped analysis is to enable designs that use rounded corners that are able to be
manufactured by less expensive techniques.

The analysis is accomplished by combining the finite-element method (FEM)
for determining the waveguide modes of arbitrarily shaped guides with the method
of moments and Floquet mode theory for periodic structures. The software was
verified by comparison with previously measured and computed dichroic plates.

I. Introduction

The ability to transmit and receive simultaneously at multiple frequency bands is an important re-
quirement for the DSN. This is usually accomplished either by using a dual-band feed or by using separate
feeds and a frequency-selective surface (FSS), typically referred to as a dichroic plate.

The first use of a dichroic plate was as part of the reflex-dichroic feed system used on the 64-meter
antenna [1]. This first dichroic plate consisted of circular holes in a half-wavelength-thick metallic plate.
All subsequent dichroic plates used in the DSN were also thick plates with holes. The discussion that
follows treats the most general case of the analysis of a thick dichroic plate with arbitrarily shaped holes
at arbitrary angles of incidence. However, most of the plates currently in use in the DSN were designed
with programs that analyzed only the simple geometries, such as circular [2] or rectangular [3] holes. This
analysis limitation also impacted the choice of FSS designs. Since it is too expensive to experimentally
determine the FSS parameters, only designs that could be accurately analyzed were chosen, and this is
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the primary reason why the recent FSS designs use rectangular holes. To achieve the sharp corners of
the rectangular holes, it was necessary to use an electrical discharge machining (EDM) manufacturing
technique. This manufacturing technique is expensive, and an important use of the arbitrarily shaped
analysis is to enable designs that use rounded corners that are able to be manufactured by less expensive
techniques.

The analysis parallels the development for the rectangular-hole case except that the waveguide modes
are generated using the finite-element method instead of using the closed-form expressions available for
the rectangular waveguide.

The relationship between the holes, the array lattice of an infinite dichroic plate, and the incident wave
is shown in Fig. 1. The design variables are the hole size and shape, lattice size and shape, thickness
of the plate, dielectric constant in the hole, and angle of incidence of the linearly polarized wave. The
program calculates the amplitude and phase of both the transmission and reflection coefficients of the
two orthogonal linear polarizations—the transverse electric (TE) and transverse magnetic (TM).

The analysis of a thick dichroic plate with arbitrarily shaped holes is carried out in a series of steps
very similar to the technique described in [3]. First, a model of a half-space infinite array is constructed.
A complete set of basis functions with unknown coefficients is developed for the waveguide region (wave-
guide modes) and for the free-space region (Floquet modes) [4] in order to represent the electromag-
netic fields. Next the boundary conditions are applied at the interface between these two regions. The
method of moments is used to compute the unknown mode coefficients [2,5]. The scattering matrix of
the half-space infinite array is then calculated. The reference plane of the scattering matrix is moved
half-a-plate thickness in the negative z-direction. Finally, a dichroic plate of finite thickness is synthe-
sized by positioning two plates of half thickness back to back. The total scattering matrix is obtained by
cascading the scattering matrices of the two half-space infinite arrays.

Fig. 1.  Geometry of a thick dichroic plate with holes.
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II. Finite-Element Formulation of the Waveguide Problem

The analysis starts with an infinite array in half space (Fig. 2) consisting of a free-space region (z < 0)
and a waveguide region (z > 0). The electromagnetic fields in each region are represented by a set of
orthonormal basis functions, Floquet and waveguide modes, respectively, that satisfy Maxwell’s equations.

The finite-element method is used to compute the waveguide modes. The development is given in
several references, including [6], but will be repeated here for completeness and notational conformance.
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Fig. 2.  Half-space infinite array with reference at z = 0.
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As is well known, the propagating mode of a hollow, uniform waveguide may be determined by solving
the two-dimensional scalar Helmholtz equation,

(
∇2 + k2

)
Ψ = 0 (1)

Here Ψ represents the magnitude of an axially directed electric or magnetic Hertz vector. If the trans-
verse electric (TE) modes of the guide are desired, Ψ is the electric Hertz vector, and must satisfy the
homogeneous Neumann boundary condition

∂Ψ
∂n

= 0 (2)

while the transverse magnetic (TM) modes are obtained if Ψ is taken to be the magnetic Hertz vector,
subject to the boundary condition

Ψ = 0 (3)

everywhere along the guide walls.

Rather than attempting to solve this eigenvalue problem directly, the finite-element method reframes it
in variational terms. It is shown in books on mathematical physics [7] that the solution of the Helmholtz
equation with homogeneous boundary conditions is equivalent to minimizing the functional F defined by

F =
∫∫

R

(
− |gradϕ|2 + k2ϕ2

)
dxdy (4)

The region of integration is, of course, the waveguide cross-section. If a trial solution ϕ(x, y) is represented
geometrically as a surface spanning the region R over the x–y plane, the correct surface Ψ(x, y) is that
which yields the smallest possible value of F .

In the finite-element method, the correct solution will be approximated by a surface ϕ(x, y) made up
of finite surface elements of a simple kind. For simplicity, all the elementary regions are taken to be
triangles. Corresponding to each elementary region, a surface element will be defined by requiring ϕ(x, y)
to be a linear function of its values at the vertices; thus ϕ is then defined by
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ϕ(x, y) =
N∑
i=1

αi(x, y)ϕi (5)

F is now an ordinary function of the parameters that define ϕ, in this case the vertex values ϕi:

F(ϕ) = F (ϕ1, ϕ2, · · · , ϕN ) (6)

The solution is found by minimizing F with respect to all the parameters. That is, it will be required
that

∂F

∂ϕm
= 0 (7)

for all m. If the region R contains altogether N vertices, this minimization requirement changes Eq. (4)
into a matrix eigenvalue problem of order N , as will be shown next.

A. The Matrix Eigenvalue Problem

In view of Eq. (6), the minimization requirement, Eq. (7), is equivalent to

∫∫
R

∂

∂ϕm
|gradϕ|2 dxdy = k2

∫∫
R

∂

∂ϕm
ϕ2dxdy (8)

Differentiating repeatedly, one finds from Eq. (5) that

∂

∂ϕm
|gradϕ|2 = 2

N∑
k=1

(
∂αm
∂x

∂αk
∂x

+
∂αm
∂y

∂αk
∂y

)
ϕk (9)

everywhere within an elementary region that abuts on vertex m. Elsewhere, αm is zero, so that the
right-hand side vanishes. By carrying out a similar differentiation, one next finds that

∂

∂ϕm

(
ϕ2
)

= 2
N∑
k=1

αmαkϕk (10)

where again nonzero terms arise on the right-hand side only if both vertices m and k are vertices of the
triangle in question.

It will be convenient to define the purely geometric quantities

Smk =
∫∫

R

(
∂αm
∂x

∂αk
∂x

+
∂αm
∂y

∂αk
∂y

)
dxdy (11)

and

Tmk =
∫∫

R

αmαkdxdy (12)

4



which express the nature of the region R and the manner of its subdivision into elementary regions. In
terms of these integral quantities, Eq. (8) reads

SΦ = k2TΦ (13)

where Φ is the column matrix of vertex values ϕi, and S and T are square matrices of order N , whose
elements are Smk and Tmk, as defined above. Minimization of F is thus equivalent to the eigenvalue
problem, Eq. (13), and solution of the latter will provide approximate eigenvalues and eigenfunctions for
the boundary-value problem. It will be noted that S and T are always symmetric, and the eigenvalues
therefore always real.

B. Matrices S and T for Triangle Elements

If linear triangular elements are used, the unknown function φ within each element is approximated as

φe(x, y) = ae + bex+ cey (14)

where ae, be, and ce are constant coefficients to be determined and e is the element number. For a linear
triangular element, there are three nodes located at the vertices of the triangle (Fig. 3). Assume that
the nodes are numbered counterclockwise by numerals 1, 2, and 3, with the corresponding values of φ
denoted by φe1, φe2, and φe3, respectively. Enforcing Eq. (14) at the three nodes, we obtain

φe1 = ae + bexe1 + ceye1

φe2 = ae + bexe2 + ceye2

φe3 = ae + bexe3 + ceye3

Solving for the constant coefficients ae, be, and ce in terms of φe1, and substituting them back into Eq. (14)
yields

φe(x, y) =
3∑
j=1

Ne
j (x, y)φej (15)

where Ne
j (x, y) is the interpolation or expansion functions given by

Fig. 3.  Linear triangular element.
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Ne
j (x, y) =

1
2A
(
aej + bejx+ cejy

)
, j = 1, 2, 3 (16)

in which

ae1 = xe2y
e
3 − ye2xe3; be1 = ye2 − ye3; ce1 = xe3 − xe2

ae2 = xe3y
e
1 − ye3xe1; be2 = ye3 − ye1; ce2 = xe1 − xe3

ae3 = xe1y
e
2 − ye1xe2; be3 = ye1 − ye2; ce3 = xe2 − xe1


(17)

and

A =
1
2

∣∣∣∣∣∣∣
1 xe1 ye1

1 xe2 ye2

1 xe3 ye3

∣∣∣∣∣∣∣ =
1
2

(be1c
e
2 − be2ce1)

= area of the eth element (18)

In the above, xej and yej (j = 1, 2, 3) denote the coordinate values of the jth node in the eth element. It
can be easily shown that the interpolation functions have the property

Ne
i

(
xej , y

e
j

)
= δij =

{
1 i = j
0 i 6= j

(19)

and, as a result, at node i, φe in Eq. (15) reduces to its nodal value, φei .

For ease in both analysis and computer programming, it is useful to regard the matrices S and T as
being composed of sums of sparse matrices of order N , typically s(i) and t(i), made up of the contributions
to the S and T matrices that are attributable to only one elementary region, say the ith. That is to say,
one may write

Smk =
∑
i

s
(i)

mk (20)

Tmk =
∑
i

t
(i)

mk (21)

Clearly, s(i)
mk = t

(i)
mk = 0 whenever n equals neither m nor k, i.e., for all elements that touch neither vertex

m nor k. Explicit expressions for the element matrix components are

s
(i)
mk =

∫
i

∫ (
∂αm
∂x

∂αk
∂x

+
∂αm
∂y

∂αk
∂y

)
dxdy (22)

t
(i)
mk =

∫
i

∫
αmαkdxdy (23)
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the integrations being carried out over the ith elementary region. For triangular elementary regions, s(i)

and t(i) in general possess nine nonzero components and are symmetric. These component values are
found by substituting Eq. (15) into Eq. (22):

s
(i)
mk =

1
4A2

∫
i

∫
(bmbk + cmck) dxdy (24)

On carrying out the necessary integration,

s
(i)
mk =

−1
4A
[
(xem − xei ) (xek − xei ) + (yem − yei ) (yek − yei )

]
(25)

Similarly, substitution into Eq. (23) yields the surprisingly simple result

t
(i)
mk =


1
12
A, m 6= k

1
6
A, m = k

(26)

Leaving out all rows and columns composed of zeros only, a single triangular element is thus described
by the matrix contributions

 s11 s12 s13

s21 s22 s23

s31 s32 s33

ϕ1

ϕ2

ϕ3

 = k2 A

12

 2 1 1
1 2 1
1 1 2

ϕ1

ϕ2

ϕ3

 (27)

where the smk are calculated from Eq. (25), and the area A is given by Eq. (18).

III. Boundary Conditions and Method of Moments

The electromagnetic field in the waveguide is expressed as a sum of incident and reflected waveguide
modes, while in the free-space region it is expressed as a sum of incident and reflected Floquet modes.
Boundary conditions are applied at the interface between two regions, i.e., the transverse electric and
magnetic fields must be continuous across the junction at z = 0. This leads to an integral equation for the
unknown transverse electric field at the boundary. The infinite-array scattering problem then becomes
similar to a two-region waveguide problem.

The method of moments is used to transform the integral equation into a matrix equation suitable for
evaluation on a digital computer. Solving the set of linear equations gives the unknown mode coefficients
in both regions.

A. Integral Equation Formulation

In the waveguide region, the total transverse electric field and magnetic field (see Fig. 2) at z = 0+ is
given by
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EwT (x, y) =
∞∑
i=1

ēwi (x, y)
(
awi + bwi

)

Hw
T (x, y) =

∞∑
i=1

yi ẑ × ewi (x, y)
(
awi − bwi

)


(28)

where ēwi (x, y) represents the modal fields in the waveguide and, for TE modes,

ēwi (x, y) = ẑ ×∇ΨTE

yTE =
γi
jωµ

 (29)

and, for TM modes,

ēwi (x, y) = −∇ΨTM

yTM =
jωε

γi

 (30)

with ΨTE and ΨTM given by the finite-element method (FEM) solution of the waveguide.

It should be noted that Ψ and ∇Ψ are real functions and the Ψ vectors are normalized so that

∫
wg

∇Ψi∇Ψjds =
∫
wg

ēi · ējds = δij (31)

Forming the inner product of the ith waveguide mode with the total transverse electric field, Eq. (28),
we obtain an expression for the unknown modal coefficients,

∫∫
wg

ēwi · EwT dxdy = awi + bwi (32)

Note that it is also possible to extend the integral over the entire Floquet cell since ĒT = 0 outside the
waveguide. Using Eq. (32) in the H̄T field expression, it is possible to write

HT = 2
∞∑
i=1

yia
w
i (ẑ × ēwi )−

∞∑
i=1

yi (ẑ × ēwi )
∫∫

wg

ewi × EwT dx′dy′ (33)

In a very similar manner, the total electric and magnetic fields at z = 0− are given by
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E−T (x, y) =
∞∑
j=1

ēFj

(
aFj + bFj

)

H−T (x, y) = −
∞∑
j=1

Yj

(
ẑ × ēFj

)(
aFj − bFj

)


(34)

where, for TE modes,

ēFj = ẑ ×∇φTEi

YTE =
γi
jωµ

 (35)

and, for TM modes,

ēFj = −∇φTMi

YTM =
jωε

γi

 (36)

However, φj and ∇φj are complex functions that are normalized so that

∫
Floquet

cell

∇φi · ∇φ∗jds =
∫
ēi · ē∗jds = δij (37)

The Floquet modes on the skewed grid (skew angle Ω) and grid spacing Dx, Dy (Fig. 1) are given by [4]

φmn =
ej(αmx+βny)√

DxDy sin Ω
√
α2
m + β2

n

(38)

for either TE or TM waves (same boundary conditions!):

αm =
2πm
Dx
− k0 sin θ cosφ (39)

and

βn =
2πn

Dy sin Ω
− 2πm

Dx
cot Ω− k0 sin θ sinφ (40)

where k0 is the wave number in free space.

In much the same way as with the waveguide modes, we can show
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∫∫
A

e∗j · Ē−T dx′dy′ = aFj + bFj (41)

H−T = −2
∞∑
j=1

aFj
(
ẑ × ēFj

)
Yj +

∞∑
j=1

Yj
(
z̄ × ēFj

) ∫∫
A

e∗j · E−T dx′dy′ (42)

The transverse electric and magnetic fields must be continuous across the junction at z = 0. Thus,
equating the magnetic fields yields

2
∞∑
i=1

yia
w
i ē

w
i + 2

∞∑
j=1

aFj Yje
F
j =

∞∑
j=1

yiē
w
i

∫∫
A

ēwi · ET (x′, y′) dx′dy′

+
∞∑
j=1

Yj ē
F
j

∫∫
A

ēF
∗

j · ET (x′, y′) dx′dy′ (43)

B. Moment Method Solution

To solve the integral equation, it is necessary to expand the unknown electric field in terms of a set of
basis functions. The obvious choice for this is the waveguide modes ēwk (x, y). Thus,

ĒT (x′, y′) =
∞∑
k=1

ckē
w
k (x′, y′) (44)

Substituting this expression into the integral equation and interchanging the order of summation and
integration yields

2
∞∑
i=1

yia
w
i ē

w
i + 2

∞∑
j=1

aFj Yj ē
F
j =

∞∑
k=1

∞∑
i=1

ckyiē
w
i +

∞∑
k=1

∞∑
i=1

ckYj ē
F
j

∫∫
A

eFj · ēwk dx′dy′ (45)

To simplify the notation, define the inner product known as the intermodal coupling coefficient:

Ikj =
∫∫

ēwk (x′, y′) · ēFj (x′, y′) dx′dy′ (46)

Using this notation, the equation simplifies to

2
∞∑
i=1

yia
w
i e

w
i + 2

∞∑
j=1

aFj Yje
F
j =

∑
k

ck

∑
i

yie
w
i +

∑
j

Yje
F
j Iky

 (47)

To apply the moment method, we must take the inner product with the weighting. In this analysis,
we use the same basis functions (Galerkin). Thus, multiply Eq. (47) by ew` (x, y) and integrate over the
waveguide. This yields the matrix equation
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2
∑
i

awi yi + 2
∑
j

aFj YjIej =
∑
k

∑
i

yi +
∑
j

YjI`jIkj

 ck (48)

Using the following definitions,

M`k =
∑
i

yi +
∑
j

YjI`jIkj (49)

and

G` = 2
∑
i

awi yi + 2
∑
j

aFj YjI`j (50)

Thus, Eq. (48) can be expressed as

G` =
∑
k

M`kCk (51a)

or

[G] = [M ] [C] (51b)

The solution for the unknown mode coefficients is then given by

[C] = [M ]−1 [G] (52)

Generally, the scattered fields are the primary quantities of interest and can be derived from the mode
coefficients. Recalling

bwi =
∫∫

ewi · EwT dxdy − awi (53)

then

bwi =
∫∫

ewi ·
∑
k

cKe
w
k dxdy − awi

bwi = ci − awi

 (54)

Similarly,

bFj =
∑
k

ckIkj − aFj (55)
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IV. Scattering Matrix and Reference Plane

The characteristics of the infinite array referenced to z = 0 are represented by a scattering matrix S
that contains the transmission and reflection information for the free-space/waveguide junction:

S =
[
S11 S12

S21 S22

]
(56)

where S11, S12, S21, and S22 are matrices with 1 representing the free-space region and 2 the waveguide
region. The size of matrix S11 is 2 by 2; S22 is n by n; S12 is 2 by n; S21 is n by 2; and n is the number
of waveguide modes used. For an arbitrary set of incident waveguide modes contained in vector a1 and
incident TE00 and TM00 Floquet modes contained in vector a2, the reflected mode vectors b1 and b2 are
determined by the following set of equations:

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2

 (57)

Moving the reference plane in the waveguide region from z = 0 to z = −t/2 (Fig. 4), where t is the
thickness of the plate, the elements of the new scattering matrix S′ become

S′11(u, v) = S11(u, v) (58)

S′12(u, v) = S12(u, v) exp
(
−jγv

t

2

)
(59)

S′21(u, v) = S21(u, v) exp
(
−jγu

t

2

)
(60)

S′22(u, v) = S22(u, v) exp
[(
−jγu

t

2

)(
−jγv

t

2

)]
(61)

where γu and γv are the propagation constants of modes u and v.

z = 0

z

FREE-SPACE REGION WAVEGUIDE REGION

t
2

z =

Fig. 4.  Half-space infinite array with reference at z = −t / 2.
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V. Cascading the Finite Thickness

Scattering by a dichroic plate with finite thickness can be analyzed by considering two infinite-array
problems. The space is divided into four regions: a free-space region (region I), two waveguide regions
(regions II and III), and another free-space region (region IV), as shown in Fig. 5. The scattering matrix
with reference to z = −t/2 for regions I and II is S′, and the scattering matrix with reference to z = −t/2
for regions III and IV isS′′, which is the transpose matrix of S′:

S′′11 = S′22 (62)

S′′12 = S′21 (63)

S′′21 = S′12 (64)

S′′22 = S′11 (65)

The scattering matrix ST for the finite-thickness plate is determined by cascading these two matrices:

ST11 = S′12 (I − S′′11S
′
22)−1

S′′11S
′
21 + S′11 (66)

ST12 = S′12 (I − S′′11S
′
22)−1

S′′12 (67)

ST21 = S′21 (I − S′′22S
′
11)−1

S′′21 (68)

ST22 = S′′21 (I − S′22S
′′
11)−1

S′22S
′′
12 + S′′22 (69)

where I is a unitary matrix.

z = 0

z

FREE-SPACE
REGION WAVEGUIDE REGION

t
2

z =−

REGION I REGION II REGION III REGION IV

t
2

t
2

z = −t

t
FREE-SPACE

REGION

Fig. 5.  The finite-thickness (t ) plate is analyzed by considering
two infinite-array problems.
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VI. Computing the Intermodal Coupling Coefficients

The intermodal coupling coefficients are given as

Ikj =
∫∫

A

ēwk (x′, y′) · ēFj (x′, y′) dx′dy′ (70)

Using Eq. (38),

φmn =
ej(αmx+βny)√

DxDy sin Ω
√
α2
m + β2

m

then, for TE modes,

ēFi = ẑ ×∇φmn (71)

and, for TM modes,

ēFi = −∇φmn (72)

where i represents the mn mode.

Also, for the waveguide modes, let

ΨTE,TM
i =

NT∑
t=1

3∑
j=1

Njt(x, y)φTE,TM
jt (73)

where φTM,TE
jt is the solution for the ith mode of the finite-element waveguide eigenmode problem de-

scribed in Section II. Also, recall that, for TE modes,

eωi = ẑ ×∇ΨTE
i (74)

and, for TM modes,

eωi = −∇ΨTM
i (75)

There are then four expressions for the intermodal coupling coefficients formed by combining TE and TM
waveguide modes with TE and TM Floquet modes.

To develop the expression for the TE waveguide, TE Floquet mode, substitute the expressions for ēFi
and ēωi into Eq. (70) and integrate. Defining

Se(α, β) =
∫

ith triangle

ej(αx+βy)dxdy

14



which is the Fourier transform of the triangular shape function for the ith triangle of the finite-element grid
(see [8] for the closed-form expression to evaluate the integral), then we can write for the TE waveguide,
TE Floquet mode

Ikj = −
NT∑
e=1

3∑
i=1

(ceiφ
e
iβj + beiφ

e
iαj)

∗Se(√
α2
j + β2

j

) (√
DxDy sin Ω 2Ae

)
where cei and bei are given by Eq. (17) for each triangle, and the φeki are the values for the kth eigenmode
on the eth triangle. There are very similar-looking expressions for the other TE,TM combinations.

VII. The Frequency-Selective Surface Finite-Element (FSSFE) Computer Program

There are a number of steps required to compute the reflection and transmission coefficients of arbi-
trarily shaped holes in a thick plate:

(1) The hole is defined by a sequence of x, y boundary points. There are also various sub-
routines that generate the required set of boundary points for specific shapes, i.e., rect-
angular, cross-shaped, circular, Pyle, etc.

(2) The next step is to generate the finite-element grid. This is done using a Delaunay
triangularization with a public domain computer program, delaundo, based on a Ph.D.
thesis by Jans-Dominik Müller [9]. Delaundo creates triangular grids based on the frontal
Delaunay method (Frod) [10]. First the set of discretized curves that describes the
boundary is triangulated. This initial mesh is suitable for interpolation of a local mesh
size throughout the domain after a few modifications in the connections are made by the
algorithm. New internal vertices are then created on frontal edges between well-shaped
and ill-shaped triangles such that a new triangle with the desired size and a good shape
will result.

Thus, the algorithm is similar to the various Delaunay methods in that the resulting
triangulation observes a circum-circle criterion. It is also akin to advancing front methods
in that new vertices are introduced in layers on the boundaries in a very regular fashion.
The regularity of the point distribution and, thus, the element quality are enhanced by
an averaging process that tends to choose an equilibrium position between competing
edges when the front is refined or coarsened.

(3) After the grid has been generated, the finite-element method of Section II is utilized to
generate the waveguide eigenvectors and eigenvalues. The S and T matrices are filled,
and the corresponding eigenvalue problem is solved using ARPACK [11], a collection of
FORTRAN77 subroutines designed to solve large-scale eigenvalue problems. ARPACK
is designed to compute a few eigenvalues and corresponding eigenvectors of a general
n-by-n matrix A. It is most appropriate for large sparse or structured matrices A, where
structured means that a matrix–vector product w ≤ Av requires order n rather than the
usual order n∗∗2 floating-point operations. This software is based upon an algorithmic
variant of the Arnoldi process called the implicitly restarted Arnoldi method (IRAM).
When the matrix A is symmetric, it reduces to a variant of the Lanczos process called
the implicitly restarted Lanczos method (IRLM). These variants may be viewed as a
synthesis of the Arnoldi/Lanczos process with the implicitly shifted QR algorithm that
is suitable for large-scale problems. For many standard problems, a matrix factorization
is not required. Only the action of the matrix on a vector is needed. However, for the
generalized case that exists for the finite-element problem Sx = k2Tx, it is necessary to
factor the matrix T . Since T is sparse, the sparse matrix solver given in [12] is used.

15



(4) The solution then proceeds as shown in Sections III through VI. The intermodal coupling
coefficients are computed and the matrix M is formed and inverted. Next the terms of the
scattering matrix for the free-space/waveguide junction are computed. The scattering
matrices are then shifted and cascaded to compute the scattering coefficients for the
finite-thickness plate.

VIII. Verification of the Computer Code

The first test of the arbitrarily shaped hole computer code was to see if it could duplicate the results
from the earlier code [3] that could only do rectangular-shaped holes. The case analyzed is the same test
dichroic plate fabricated to verify the rectangular-hole computer code. The dimensions of the plate are
Hx = 1.850 cm, Hy = 1.923 cm, Dx = 2.388 cm, Dy = 2.388 cm, and Ω = 60.0 deg. And, t = 3.584 cm,
with a tolerance of 0.0025 cm. Figure 6 plots the TE and TM reflection coefficients for the two codes
and demonstrates that the new code accurately computes the reflection coefficients of the rectangular
geometry. Satisfactory convergence is achieved by using 40 waveguide modes and gridding the hole with
1683 triangles. Figures 7 and 8, reproduced from [3], show that the analysis also agrees with the measured
data.

The first dichroic plate used in the DSN is described in [1] and consisted of an array of hexagonally
packed 2.237-cm-diameter holes drilled normal to the plate surfaces. The plate is 3.576-cm thick, and
the center-to-center hole spacing is 2.388 cm. It was designed using the Chen Holey Plate computer
program [2], and the computer program shows that the plate E- and H-plane resonant frequencies (30-
deg incident wave tilt from normal) are 8.481 and 8.363 GHz, respectively. The FSSFE program gives
8.497 and 8.350 GHz, respectively. The small difference is probably because the Chen program does not
use a sufficient number of waveguide modes. At the operational frequency, a differential phase shift of
11.3 deg (11.6 deg with the FSSFE program) and an ellipticity of 1.75 dB was predicted. This dichroic
plate depolarization was cured by making the holes slightly non-circular in cross section, thus introduc-
ing a different E- and H-plane phase shift to counteract the 11.3-deg phase shift. The particular hole
cross section selected was “Pyle guide” [13]. The dichroic design was approximate in that the design pro-
cedure was to adjust the guide geometry (using a program developed by Knud Pontoppidan for computing

Fig. 6.  Rectangular versus FSSFE code.
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Fig. 7.  Measured and calculated reflection ver-
sus frequency for the test dichroic plate for TE
polarization.
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Fig. 8.  Measured and calculated reflection ver-
sus frequency for the test dichroic plate for TM
polarization.
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the guide wavelength numbers [14]) until the plate electrical thickness at 8.415 GHz corresponded to
those in the original circular-hole plate at 8.481 and 8.363 GHz, respectively. There was no FSS program
at that time that could compute the reflection and transmission coefficients for the actual Pyle plate. A
comparison of a measured Pyle plate [15] and the FSSFE program is shown in Fig. 9. For reference, a
gridding of the guide is shown in Fig. 10.

Another plate built for the DSN that was only approximately analyzed was the cross-shaped plate
[16] designed to pass both the transmit (7.145–7.235 GHz) and receive (8.4–8.5 GHz) X-band frequencies
while reflecting the S-band frequencies (2.090–2.320 GHz). The analytic technique used to design the
plate was to assume infinitely thin walls and then to build a plate with as thin a wall as possible. The
FSSFE program can analyze the exact cross geometry, including the thickness of the walls. A plot of
the measured data versus frequency compared to the calculated data from FSSFE is shown in Fig. 11,
demonstrating the accuracy of the FSSFE program. The hole geometry is shown in Fig. 12, and the plate
was 3.167-cm thick.

IX. Conclusions

A computer code that can accurately compute the reflection and transmission coefficients from a thick
dichroic plate with arbitrarily shaped holes has been described. The code was verified by comparisons
both to earlier but more restrictive computer programs (circular and rectangular holes) and to measured
data for plates built with rectangular, Pyle, and cross-shaped holes.

Both the rectangular-hole and cross-shaped-hole plates were manufactured using a very accurate but
very expensive electrical discharge machining (EDM) process. The EDM process produces very accurate
holes with sharp (square) corners. With the new analysis tool, it is now possible to design dichroics with
rounded corners that may be manufactured by a less expensive water jet or machining process. Work
is currently under way to design and fabricate dichroic plates using the less expensive manufacturing
processes and will be the subject of a follow-on article.
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Fig. 9.  Measured and calculated transmission loss versus frequency
for DSN Pyle plate:  (a) TE polarization and (b) TM polarization.
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Fig. 10.  Finite-element gridding for a Pyle plate.

Fig. 11.  Measured and calculated reflection coefficient for cross-shaped plate.
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Fig. 12.  Cross-shaped plate geometry (all units in cm).
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